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Coupled reaction-diffusion equations

A solver for general coupled reaction-diffusion equations has recently been
written.

∂ui

∂t
−∇ · (Di∇ui ) = fi (x, u1, . . . , up, v1, . . . , vp),

dvi

dt
= gi (x, u1, . . . , up, v1, . . . , vp),

where ui and vi denote the extracellular and intracellular concentrations of
solute i respectively, and with BCs

ui = u∗i (x), on Γ1

n · (Di (x)∇ui ) = gi (x), on Γ2

ui (0, x) = u
(0)
i (x),

vi (0, x) = v
(0)
i (x),
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Coupled reaction-diffusion equations

See the tutorial LinearParabolicPdeSystemsWithCoupledOdeSystems for
more details
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An overview of alternative methods for solving PDEs
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The finite difference method

Finite differences are conceptually the simplest method for solving PDEs

Set up a (generally regular) grid on the geometry, aim to compute the
solution at the gridpoints

All derivatives in the PDE (and in Neumann BCs) are replaced with
difference formulas

For a regular grid in 1D x0, x1, . . . , xN , stepsize h: some possible difference
formulas and corresponding error introduced are: forward, backward and
central differences:

du

dx
(xi ) =

xi+1 − xi

h
+O(h)

du

dx
(xi ) =

xi − xi−1

h
+O(h)

du

dx
(xi ) =

xi+1 − xi−1

2h
+O(h2)

and
d2u

dx2
(xi ) =

xi+1 − 2xi + xi−1

h2
+O(h2)
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The finite difference method

For example, for the heat equation ut = uxx + f , suppose we choose a fully
explicit time-discretisation, and then discretise in space:

Heat equation: ut = uxx + f

Semi-discretised: un+1 − un = ∆t un
xx + ∆t f (tn)

Fully discretised: un+1
i − un

i =
∆t

h2
(un

i+1 − 2un
i + un

i−1) + ∆t f (tn, xi )

(Since this is an explicit scheme there will be a condition required for stability:
∆t
h2 ≤ 1

2
. Such results are obtained using Von Neumann (Fourier) stability

analysis).

Let us write the above as a linear system: Un+1 = Un + ∆t
h2 DUn + ∆t Fn, where

Un = [Un
1 , . . . ,U

n
N ], F n = [f (tn, x1), . . . , f (tn, xN)], and D is a matrix with -2s

on the diagonal and 1s above and below the diagonal.

The first and last rows of the linear system have to be altered to take into
account Dirichlet and/or Neumann boundary conditions.
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The finite difference method

Compare the finite difference equation:

Un+1 = Un +
∆t

h2
DUn + ∆tFn

with the equivalent finite element equation:

MUn+1 = MUn + ∆t KUn + ∆tbn

In fact, for a regular grid in 1D and with linear basis functions, K = D/h
(except for first/last rows).

The big advantages of FE over FD are

FD is difficult to write down on irregular geometries, but FE works ON
any valid mesh

Neumann boundary conditions are handled very naturally in FE—
require an integral over surface, and nothing required for zero-Neumann
BCs. Much more difficult in FD

Error analysis
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Finite volume methods

Very commonly used for hyperbolic PDEs (for which the FE method tends
to have trouble) and in computational fluid dynamics

As with FE, FV is based on integral formulations.

The domain is broken down into control volumes (similar to ‘elements’).

One unknown computed per element (i.e. no need for ‘node’)—this can be
considered to be the average value of u in the control volume.

Consider the advection equation ut +∇ · f(u) = 0. Integrate over a control
volume Ωi of volume Vi :Z

Ωi

ut dV =

Z
Ωi

−∇ · f(u) dV = −
Z

∂Ωi

f(u) · ndS

Using an explicit time-discretisation, and
R

Ωi
Un dV ≈ Vi U

n
i , we obtain

Un+1
i = Un

i −
∆t

Vi

Z
∂Ωi

f(un) · ndS

See eg http://www.comp.leeds.ac.uk/meh/Talks/FVTutorial.pdf for
more details
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Methods of weight residuals

In FE we used an integral formulation of the PDE, eg: find u ∈ V such that:Z
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V

Write this as: find u ∈ V such that: a(u, v) = l(v) ∀v ∈ V

To discretise the integral equation, we replace V by finite-dimensional
subspaces (of dimension N): find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

Choosing bases:

W1 = span{φ1, . . . , φN}
W2 = span{χ1, . . . , χN}

(ie uapprox =
P
αiφi ), we can obtain N equations for N unknowns.

Different methods are based on different choices of W1 and W2.
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Methods of weight residuals

Find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

with:

W1 = span{φ1, . . . , φN}.
W2 = span{χ1, . . . , χN}

Galerkin methods: use φ = χ, i.e. W1 =W2

Collocation methods: use δ-functions for χ’s (i.e. replace integrals with
point evaluations (at N collocation points x1, x2, . . . , xN)
(Continuous) Galerkin FEM: use W1 =W2 and take the φi to be
continuous and piecewise polynomial on element

As we know in practice we just consider 1 canonical element and define the
basis functions on this (the shape functions)
Elements could be tetrahedral/hexahedral, shape functions could be linear,
quadratic, cubic Hermite and more...

Discontinuous Galerkin FEM: φi piecewise polynomial but no longer
continuous across elements

Spectral methods: φk globally continuous and infinitely differentiable (for
example, φk(x) = exp(ikx))
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Spectral methods

There are both spectral-collocation methods (work with the strong form)
or spectral-Galerkin methods (work with the weak form)

Various choices of basis functions (W1) are possible, for example

For problems with periodic boundary conditions, use φk(x) = exp(ikx)
i.e. uapprox =

P
αkφk approximates u with a cut-off Fourier series

For problems with non-periodic boundary conditions: use a set of
‘orthogonal polynomials’ for φk , such a Legendre or Chebychev
polynomials

For problems with smooth data (initial condition, boundary conditions,
forces etc are smooth functions), spectral methods give exceptional rates
of convergence.

For more info, see e.g. http://www.lorene.obspm.fr/palma.pdf

http://www.lorene.obspm.fr/palma.pdf
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4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only



Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only



Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only



Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only



Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only



Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only



Other PDE methods Continuum Mechanics

Introduction: solids and fluids



Other PDE methods Continuum Mechanics

Solids versus fluids



Other PDE methods Continuum Mechanics

Solids versus fluids

Pitchdrop experiment, Queensland. Experiment begun 1927 (1930). Drops fell
in: 1938, 1947, 1954, 1962, 1970, 1979, 1988, 2000
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Solids versus fluids

“Fluids cannot resist deformation force”. Shape will change as long as the
force is applied. Whereas a solid can change shape but not indefinitely.

More specifically, fluids cannot resist shear forces

For solids, force is related to deformation (coefficient: stiffness)

For fluids, force is related to deformation-rate (coefficient: viscosity)

Some materials are fluid under some conditions (excl. temperature) and solid
under others (see, for example, youtube:walking on custard)

http://www.youtube.com/watch?v=BN2D5y-AxIY
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Types of solid

For solids, force is related to deformation (stress related to strain):

Elastic

When an applied force is removed, the solid returns to its original shape

For small enough forces/strains, stress is usually proportional to strain
(linear elasticity)

Visco-elastic

Also exhibit a viscous response, for example, slow change of shape if a
force is held constant / slow decrease of stress if strain held constant

Stress becomes a function of strain and strain rate

Plastic

Once a large enough stress is applied (the yield stress), the material
undergoes permanent deformation (flows), due to internal rearrangement.
If the stress is removed it won’t return back to original state.
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Types of fluid

For fluids force is related to deformation-rate (stress is related to strain-rate)

Newtonian

Stress is related linearly to the strain-rate

Non-Newtonian

Stress is related non-linearly to the strain-rate
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Kinematics of solids

In the later section we will write down balance equations relating the internal
stresses in the body to external forces.

What are the internal stresses a function of?
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Undeformed and deformed states

Let Ω0 represent the unloaded, unstressed body
Let Ωt represent the deformed body at time t

For time-independent problems, we denote the deformed body Ω

Let X represent a point in the undeformed body

Let x ≡ x(t,X) represent the corresponding deformed position

Let the displacement be denoted u = x− X
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The deformation gradient

Let FiM = ∂xi
∂XM

be the deformation gradient. This describes the deformation,
excluding rigid body translations.

Any deformation can be decomposed into a (local) translation, rotation, and
stretch. Correspondingly, F can be decomposed into a rotation and a stretch:
F = RU, where R is an rotation matrix, and U is a positive-definite symmetric
matrix representing stretch.

Examples, in 2D:

let x =

»
αX
βY

–
, then F =

»
α 0
0 β

–
(simple bi-axial stretch)

let x =

»
X − αY

Y

–
, then F =

»
1 −α
0 1

–
(simple shear)
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The deformation gradient

det F

F is the jacobian of the mapping from Ω0 to Ω, therefore det F represents the
change in local volume. Hence:

det F > 0 for all deformations

For incompressible deformations (also known as isochoric or isovolumetric
deformations), det F = 1 (everywhere)

Define J = det F

Principal stretches

The eigenvalues of U are of the principal stretches, denoted λ1, λ2, λ3
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Lagrangian measures of strain

The (right) Cauchy-Green deformation tensor is

C = F TF

Note that

F = RU ⇒ C = UTRTRU = UTU = U2

i.e. C is independent of the rotation

the eigenvalues of C are λ2
1, λ2

2, λ2
3.

The Green-Lagrange strain tensor is

E =
1

2
(C − I )

and is the nonlinear generalisation of the simple 1d strain measure (l − l0)/l0

Can work with either C or E . Note: for no deformation C = I vs E = 0.
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