Isotropic problems

We shall see later how stress is a function of strain E, or equivalently, of C, say
o = o(Cu, G2, Ci3, Coz, Co3, C33).




Isotropic problems

We shall see later how stress is a function of strain E, or equivalently, of C, say
o = o(Cu, G2, Ci3, Coz, Co3, C33).

If can be shown that for isotropic problems, the stress is just a function of the
principal invariants' of C

L = tr(C)
b= % (er(C)? — ()
/3 = det(C)

1To complicate matters even more, compressible problems often use the deviatoric invariants:
1 2

h= I1I37§, and h = I2I37§. These are the invariants of C after it has been scaled to have
determinant 1—see [Horgan and Saccomandi, Journal of Elasticity, 2004] for a discussion:
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Linear elasticity

Linearise E, removing terms that are quadratic in the displacement:

1 du; ouj 5

e--—l 8Ui+0Uj
Y2 \0X,  OX

This is the infinitesimal strain tensor

so define

Note: normally in linear elasticity x represents undeformed position, so €j; is
. . Au;
defined to be 1 (a”'_ + "f>.

Ox; Ox;

Note also that linearising the incompressibility constraint det F = 1 gives:

V-u=0
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Stresses

There are various definitions of stress in nonlinear elasticity:

Cauchy stress, o, the force per unit deformed area acting on surfaces on the
deformed body (i.e. the true stress) (symmetric)

1st Piola-Kirchhoff stress, S, the force per unit undeformed area acting on
surfaces on the deformed body (not symmetric)

2nd Piola-Kirchhoff stress, T, the force per unit undeformed area acting on
surfaces on the undeformed body (symmetric)

Relationships:

S=JF o T=SF" o= =FTF"
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Equilibrium equation

Let po and p be the density in the undeformed and deformed bodies, and let b
be the body force density (e.g. gravity, for which b = [0,0, —9.81])

For a body in static equilibrium, the equilibrium equation is

:.erb,-:O in Q

This isn't particularly useful as x and Q are unknown



Equilibrium equation

We can transform to the undeformed state, for which the 1st Piola-Kirchhoff

stress arises
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Equilibrium equation

We can transform to the undeformed state, for which the 1st Piola-Kirchhoff

stress arises
OSwmi

OXm

+ pob,' =0 in Qo

The two equations can be written as

div(c) + pb =0 in Q
DiV(S) + pob =0 in Qo

Replacing the 1st PK stress with the 2nd PK stress, we obtain

6 8)(,‘ o .
m(TMNaXN>+pob,—O in Qo

Note that T = T(x) (through some material-dependent relationship, to be
discussed)
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Boundary conditions

Mixed Dirichlet-Neumann boundary conditions are the specification of
o deformation/displacement on one part of the boundary (Dirichlet BCs)

@ tractions the rest of the boundary (Neumann BCs)

The Neumann boundary condition is
ojjnj =s; on deformed surface

where s is the prescribed traction, which again has to be transformed back to
the undeformed body

Splitting 9 into 1 and Iz, overall the boundary conditions are

x=x" on

SMiNM =S on r2

(and again we could replace S with TFT)



r balance equations

Linear elasticity

Use a%,- = aix,- (which means all 3 types of stress are equal to lowest order);
work with 8
&7 .
+ pobi =0 in Q
a)(] PoDj 0

Time-dependent problems

. . . 2
Defining the acceleration a = %.

poai = i (TMNai?;;/) + pobi in Qo
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The strain energy function

An elastic material is one where stress is a function of strain: T = T(E) say

A hyper-elastic material is an elastic material for which there exists a strain
energy function whose derivative with respect to strain gives the stress.

Specifically, there exists W = W/(E) such that?

ow

Tun = ——
MN 9Ewn

W must be determined experimentally (propose a law and experimentally
determine parameters)

2For reference, it is also the case that Sy; = aaFl:\/,,
2




The strain energy function

It is often simpler to just work with C

W= W(QC) such that Tun =2

Isotropic materials

@ In general, W is a function of the six independent components of C (recall
that C is symmetric)

@ However, for (compressible) isotropic materials, it can be shown that
W= W(h, IQ, I3)

only




Incompressible strain energy functions

Recall that for incompressible materials we have the constraint
detF =1

(everywhere), i.e. 5 = 1. This introduces a Lagrange multiplier p = p(X),
which must be computed together with the deformation.



Incompressible strain energy functions

Recall that for incompressible materials we have the constraint
detF =1

(everywhere), i.e. 5 = 1. This introduces a Lagrange multiplier p = p(X),
which must be computed together with the deformation.

The material law becomes, for an isotropic material
W(C) = W™ (h, ) = 5k~ 1)

Hyymat
OCpyn

This gives: Tyny =2 —p (C_I)MN, or equivalently

.. _ . mat 5
oj =05 — pdj



Example strain energy functions

Incompressible strain energies:
o Neo-Hookean: W™ (I, b) = ci(h — 3)
@ Mooney-Rivlin: W™ (I, b) = ci(h —3) + c(k —3)
o Veronda-Westman: ~ W™ (I, h) = c;e®h=% 4 o (h — 3)

Similar exponential laws are often used in biology

Wmat(c) _ Clea(Q(C)fl)

where Q(C) is a quadratic in the entries of C

A compressible strain energy: the compressible Neo-Hookean law

W(h, k, ) = C1(/_1 -3+ a(J-— 1)2
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Material law for (compressible) linear elasticity

Stress oj; is linearly related to strain €;:

oij = Cijuen

For isotropic materials, it can be shown that this relationship must be of the
form
ojj = 2p€j + Njj€k

where material parameters A\ and 1 are the Lamé coefficients

This relationship is often re-written using derived parameters E (Young's
modulus) and v (Poisson's ratio)
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Overall governing equations: static, incompressible nonlinear elasticity

. . . . _ _ BW.
Given a material relationship W = W(C,p), T =2%%:

Find x = x(X) and p = p(X) satisfying

0
Xu (TM’V(" p)ax )*pob =0
detF(x) = 1
with boundary conditions:
x = x" on N

TFIN = s on I



Overall governing equations: static, compressible linear elasticity

Given the material relationship
gjj = 2;1,6,'1' =+ )\5ij€kk

find u = u(X) satisfying

(90’;j(u) L
T)(j + pob: =0

with boundary conditions:

u = u on N

on = s on N



Overall governing equations: static, compressible linear elasticity

Given the material relationship
gjj = 2;1,6,'1' =+ )\5ij€kk

find u = u(X) satisfying

90ij(u)
— b =0
X, + po
with boundary conditions:
u = u on
on = s on I

Sometimes this is expanded and expressed explicitly in terms of u

A+ @)V (V-u) 4+ puVu+ pb =0
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Overall governing equations: fluids

For fluids, u is used to denote flow rather than displacement and x is the
independent variable (i.e. an Eulerian formulation is used).

For incompressible flow:

o Kinematics: Incompressibility = V - u = 0 again, ...

. L 9o
o Balance law: use time-dependent Eulerian, i.e. p% uj = af;’_’ + pbi
J

@ Material law: Stress is a function of strain-rate, one material parameter,
u, the viscosity; and of pressure, as before

Overall, the Navier-Stokes equations are: find u and p satisfying

p(%Jru-Vu) = —Vp+uViu+pb
Vu = 0



Numerical methods (incompressible nonlinear elasticity only)



We cam compute the weak form as before

e multiplying (inner product) of the first equation with a test function
v € V, integrate, use divergence theorem.

@ multiply second equation with ¢ € W, integrate

Find x € V and p € W such x = x* on I'; and

ox; 0v; / /
T , dWo — b-vdV, — s-vdS
/Qo MN(X P)aXN X 0 o poD - vdVo 0 VvV ddo

+ /Qoq(detF(x)fl) dWp = 0

Yv eVo,qgeW




Newton's method

Using u as the unknown instead of x, write weak problem as:

Findu €V ,p €W such that u=u* on '} and:
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Newton's method

Using u as the unknown instead of x, write weak problem as:

Find u" € V", p" € W" such that u = u* on I'; and:

F", p" v,q) =0 Wwew' gew'

Use quadratic basis functions for displacement, linear for pressure. This is
necessary for a ‘stable’ scheme (accuracy).

Suppose there are
o N quadratic bases, ¢1,...,¢n

@ M linear bases, 91,...,¥um:

i 0 0
Letv=| 0 |,| ¢i |,| O and g =v¥; = 3N + M nonlinear eqns
0 0 i

Solve using Newton's method as described in lecture 4.



Object-oriented design

SolidMechanicsProblemDefinition
mBodyForce
mFixedNodes
mFixedNodeLocations
mNeumannBoundaryElements
mTractions




Object-oriented design

IncompressibleNonlinearElasticitySolver
Solve(mesh, solidMechProblemDefn, absIncompMaterialLaw)
> Use Newton’s method to solve the given problem




Object-oriented design

AbstractIncompressibleMateriallLaw
Abs. method: GetStrainEnergyValue(C)
> Take in C, return W(C)

ow

This doesn’t work as code needs to use T = 25~

?*w
(and also m)




Object-oriented design

AbstractIncompressibleMateriallLaw
Abs. method: ComputeStressAndStressDerivat ive(C,p)

aw 2y
> Take in C, p, return 2= and 4m

AbstractIsotropicIncompressibleMateriallaw inherits from (above):

Method: ComputeStressAndStressDerivative(C,p)

Abs. method: Get_dW_dI1(I1,I2) Get 2%
Abs. method: Get_dW_dI2(I1,I12) Get
Abs. method: Get_d2W_dI1(I1,I2) Get

Abs. method: Get_d2W_dI2(I1,I2)
Abs. method: Get_d2W_dI1dI2(I1,I2)




The Mooney-Rivlin law is

W™ (h, h) = ci(h — 3) + c(h — 3)

MooneyRivlinMaterialLlaw inherits from AbsIsotropicIncompMaterialLaw:

Implemented method: Get_dW_dI1(I1,I2)
> return c

Implemented method: Get_dW_dI2(I1,I2)
> return ¢

Implemented method: Get_d2W_dI1(I1,I2)
> return 0, etc.




