
Isotropic problems

We shall see later how stress is a function of strain E , or equivalently, of C , say
σ = σ(C11,C12,C13,C22,C23,C33).

If can be shown that for isotropic problems, the stress is just a function of the
principal invariants1 of C

I1 = tr(C)

I2 =
1

2

“
tr(C)2 − tr(C 2)

”
I3 = det(C)

1To complicate matters even more, compressible problems often use the deviatoric invariants:

Ī1 = I1I
− 1

3
3 , and Ī2 = I2I

− 2
3

3 . These are the invariants of C after it has been scaled to have
determinant 1—see [Horgan and Saccomandi, Journal of Elasticity, 2004] for a discussion.
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Linear elasticity

Linearise E , removing terms that are quadratic in the displacement:

Eij =
1

2

„
∂ui

∂Xj
+
∂uj

∂Xi

«
+O(u2)

so define

εij =
1

2

„
∂ui

∂Xj
+
∂uj

∂Xi

«
This is the infinitesimal strain tensor

Note: normally in linear elasticity x represents undeformed position, so εij is

defined to be 1
2

“
∂ui
∂xj

+
∂uj

∂xi

”
.

Note also that linearising the incompressibility constraint det F = 1 gives:

∇ · u = 0
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Balance laws



Stresses

There are various definitions of stress in nonlinear elasticity:

Cauchy stress, σ, the force per unit deformed area acting on surfaces on the
deformed body (i.e. the true stress) (symmetric)

1st Piola-Kirchhoff stress, S , the force per unit undeformed area acting on
surfaces on the deformed body (not symmetric)

2nd Piola-Kirchhoff stress, T , the force per unit undeformed area acting on
surfaces on the undeformed body (symmetric)

Relationships:

S = JF−1σ T = SF−T σ =
1

J
FTF T
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Equilibrium equation

Let ρ0 and ρ be the density in the undeformed and deformed bodies, and let b
be the body force density (e.g. gravity, for which b = [0, 0,−9.81])

For a body in static equilibrium, the equilibrium equation is

∂σij

∂xj
+ ρbi = 0 in Ω

This isn’t particularly useful as x and Ω are unknown
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Equilibrium equation

We can transform to the undeformed state, for which the 1st Piola-Kirchhoff
stress arises

∂SMi

∂XM
+ ρ0bi = 0 in Ω0

The two equations can be written as

div(σ) + ρb = 0 in Ω

Div(S) + ρ0b = 0 in Ω0

Replacing the 1st PK stress with the 2nd PK stress, we obtain

∂

∂XM

„
TMN

∂xi

∂XN

«
+ ρ0bi = 0 in Ω0

Note that T ≡ T (x) (through some material-dependent relationship, to be
discussed)
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Boundary conditions

Mixed Dirichlet-Neumann boundary conditions are the specification of

deformation/displacement on one part of the boundary (Dirichlet BCs)

tractions the rest of the boundary (Neumann BCs)

The Neumann boundary condition is

σijnj = si on deformed surface

where s is the prescribed traction, which again has to be transformed back to
the undeformed body

Splitting ∂Ω0 into Γ1 and Γ2, overall the boundary conditions are

x = x∗ on Γ1

SMi NM = si on Γ2

(and again we could replace S with TF T)
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Other balance equations

Linear elasticity

Use ∂
∂xi
≈ ∂

∂Xi
(which means all 3 types of stress are equal to lowest order);

work with
∂σij

∂Xj
+ ρ0bi = 0 in Ω0

Time-dependent problems

Defining the acceleration a = ∂2x
∂t2 .

ρ0ai =
∂

∂XM

„
TMN

∂xi

∂XN

«
+ ρ0bi in Ω0



Material laws



The strain energy function

An elastic material is one where stress is a function of strain: T ≡ T (E) say

A hyper-elastic material is an elastic material for which there exists a strain
energy function whose derivative with respect to strain gives the stress.

Specifically, there exists W ≡W (E) such that2

TMN =
∂W

∂EMN

W must be determined experimentally (propose a law and experimentally
determine parameters)

2For reference, it is also the case that SMi = ∂W
∂FiM
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The strain energy function

It is often simpler to just work with C

W ≡W (C) such that TMN = 2
∂W

∂CMN

Isotropic materials

In general, W is a function of the six independent components of C (recall
that C is symmetric)

However, for (compressible) isotropic materials, it can be shown that

W ≡W (I1, I2, I3)

only



Incompressible strain energy functions

Recall that for incompressible materials we have the constraint

det F = 1

(everywhere), i.e. I3 = 1. This introduces a Lagrange multiplier p ≡ p(X),
which must be computed together with the deformation.

The material law becomes, for an isotropic material

W (C) = W mat(I1, I2)− p

2
(I3 − 1)

This gives: TMN = 2 ∂W mat

∂CMN
− p

`
C−1

´
MN

, or equivalently

σij = σmat
ij − pδij
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Example strain energy functions

Incompressible strain energies:

Neo-Hookean: W mat(I1, I2) = c1(I1 − 3)

Mooney-Rivlin: W mat(I1, I2) = c1(I1 − 3) + c2(I2 − 3)

Veronda-Westman: W mat(I1, I2) = c1eα(I1−3) + c2(I2 − 3)

Similar exponential laws are often used in biology

W mat(C) = c1eα(Q(C)−1)

where Q(C) is a quadratic in the entries of C

A compressible strain energy: the compressible Neo-Hookean law

W (I1, I2, I3) = c1(Ī1 − 3) + c3(J − 1)2



Material law for (compressible) linear elasticity

Stress σij is linearly related to strain εij :

σij = Cijklεkl

For isotropic materials, it can be shown that this relationship must be of the
form

σij = 2µεij + λδijεkk

where material parameters λ and µ are the Lamé coefficients

This relationship is often re-written using derived parameters E (Young’s
modulus) and ν (Poisson’s ratio)
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This relationship is often re-written using derived parameters E (Young’s
modulus) and ν (Poisson’s ratio)



Material law for (compressible) linear elasticity

Stress σij is linearly related to strain εij :

σij = Cijklεkl

For isotropic materials, it can be shown that this relationship must be of the
form

σij = 2µεij + λδijεkk

where material parameters λ and µ are the Lamé coefficients
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Overall governing equations:



Overall governing equations: static, incompressible nonlinear elasticity

Given a material relationship W ≡W (C , p), T ≡ 2 ∂W
∂C

:

Find x ≡ x(X) and p ≡ p(X) satisfying

∂

∂XM

„
TMN(x, p)

∂xi

∂XM

«
+ ρ0bi = 0

det F (x) = 1

with boundary conditions:

x = x∗ on Γ1

TF TN = s on Γ2



Overall governing equations: static, compressible linear elasticity

Given the material relationship

σij = 2µεij + λδijεkk

find u ≡ u(X) satisfying
∂σij(u)

∂Xj
+ ρ0bi = 0

with boundary conditions:

u = u∗ on Γ1

σn = s on Γ2

Sometimes this is expanded and expressed explicitly in terms of u

(λ+ µ)∇ (∇ · u) + µ∇2u + ρ0b = 0
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Overall governing equations: fluids

For fluids, u is used to denote flow rather than displacement and x is the
independent variable (i.e. an Eulerian formulation is used).

For incompressible flow:

Kinematics: Incompressibility ⇒ ∇ · u = 0 again, ...

Balance law: use time-dependent Eulerian, i.e. ρ D
Dt

ui =
∂σij

∂xj
+ ρbi

Material law: Stress is a function of strain-rate, one material parameter,
µ, the viscosity; and of pressure, as before

Overall, the Navier-Stokes equations are: find u and p satisfying

ρ

„
∂u

∂t
+ u ·∇u

«
= −∇p + µ∇2u + ρb

∇ · u = 0
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Numerical methods (incompressible nonlinear elasticity only)



Weak form

We cam compute the weak form as before

multiplying (inner product) of the first equation with a test function
v ∈ V, integrate, use divergence theorem.

multiply second equation with q ∈ W, integrate

Find x ∈ V and p ∈ W such x = x∗ on Γ1 andZ
Ω0

TMN(x, p)
∂xi

∂XN

∂vi

∂XM
dV0 −

Z
Ω0

ρ0b · v dV0 −
Z

Γ2

s · v dS0

+

Z
Ω0

q (det F (x)− 1) dV0 = 0

∀v ∈ V0, q ∈ W



Newton’s method

Using u as the unknown instead of x, write weak problem as:

Find uh ∈ Vh, ph ∈ Wh such that u = u∗ on Γ1 and:

F(uh, ph, v, q) = 0 ∀v ∈ V0
h, q ∈ Wh

Use quadratic basis functions for displacement, linear for pressure. This is
necessary for a ‘stable’ scheme (accuracy).

Suppose there are

N quadratic bases, φ1, . . . , φN

M linear bases, ψ1, . . . , ψM :

Let v =

24 φi

0
0

35 ,
24 0
φi

0

35 ,
24 0

0
φi

35 and q = ψi ⇒ 3N + M nonlinear eqns

Solve using Newton’s method as described in lecture 4.
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Object-oriented design

SolidMechanicsProblemDefinition

mBodyForce

mFixedNodes

mFixedNodeLocations

mNeumannBoundaryElements

mTractions



Object-oriented design

IncompressibleNonlinearElasticitySolver

Solve(mesh, solidMechProblemDefn, absIncompMaterialLaw)

B Use Newton’s method to solve the given problem



Object-oriented design

AbstractIncompressibleMaterialLaw

Abs. method: GetStrainEnergyValue(C)

B Take in C, return W (C)

This doesn’t work as code needs to use T = 2 ∂W
∂C

(and also ∂2W
∂CMN∂CPQ

)



Object-oriented design

AbstractIncompressibleMaterialLaw

Abs. method: ComputeStressAndStressDerivative(C,p)

B Take in C, p, return 2 ∂W
∂C

and 4 ∂2W
∂CMN∂CPQ

AbstractIsotropicIncompressibleMaterialLaw inherits from (above):
Method: ComputeStressAndStressDerivative(C,p)

Abs. method: Get dW dI1(I1,I2) Get ∂W
∂I1

Abs. method: Get dW dI2(I1,I2) Get ∂W
∂I2

Abs. method: Get d2W dI1(I1,I2) Get ∂2W
∂I12

Abs. method: Get d2W dI2(I1,I2)

Abs. method: Get d2W dI1dI2(I1,I2)



Object-oriented design

The Mooney-Rivlin law is

W mat(I1, I2) = c1(I1 − 3) + c2(I2 − 3)

MooneyRivlinMaterialLaw inherits from AbsIsotropicIncompMaterialLaw:

Implemented method: Get dW dI1(I1,I2)

B return c1

Implemented method: Get dW dI2(I1,I2)

B return c2

Implemented method: Get d2W dI1(I1,I2)

B return 0, etc.


