
Object oriented Prog. Solving ODEs

Object-oriented scientific computing

Pras Pathmanathan

Summer 2012

Object oriented Prog. Solving ODEs

Classes

class Academic inherits from Human:
Data:

mNumPapers

Methods:
PublishPaper() (increments mNumPapers by one)
GetNumPapers()

Key concepts in object-oriented programming

1 Encapsulation

2 Security (private member variables)

3 Interface

4 Inheritence

5 Abstract methods

Object oriented Prog. Solving ODEs

Second-order PDEs

Object oriented Prog. Solving ODEs

PDEs

Second-order PDEs commonly arise in physical models. There are three
archetypal second-order PDEs

1 Elliptic PDEs, for example, Poisson’s equation

∇2u + f = 0

2 Parabolic PDEs, for example, the heat equation

ut = ∇2u + f

3 Hyperbolic PDEs, for example, the wave equation

utt = ∇2u

We will only consider elliptic and parabolic PDEs..

Object oriented Prog. Solving ODEs

PDEs

Second-order PDEs commonly arise in physical models. There are three
archetypal second-order PDEs

1 Elliptic PDEs, for example, Poisson’s equation

∇2u + f = 0

2 Parabolic PDEs, for example, the heat equation

ut = ∇2u + f

3 Hyperbolic PDEs, for example, the wave equation

utt = ∇2u

We will only consider elliptic and parabolic PDEs..

Object oriented Prog. Solving ODEs

PDEs

Second-order PDEs commonly arise in physical models. There are three
archetypal second-order PDEs

1 Elliptic PDEs, for example, Poisson’s equation

∇2u + f = 0

2 Parabolic PDEs, for example, the heat equation

ut = ∇2u + f

3 Hyperbolic PDEs, for example, the wave equation

utt = ∇2u

We will only consider elliptic and parabolic PDEs..

Object oriented Prog. Solving ODEs

PDEs

Second-order PDEs commonly arise in physical models. There are three
archetypal second-order PDEs

1 Elliptic PDEs, for example, Poisson’s equation

∇2u + f = 0

2 Parabolic PDEs, for example, the heat equation

ut = ∇2u + f

3 Hyperbolic PDEs, for example, the wave equation

utt = ∇2u

We will only consider elliptic and parabolic PDEs..

Object oriented Prog. Solving ODEs

PDEs

Second-order PDEs commonly arise in physical models. There are three
archetypal second-order PDEs

1 Elliptic PDEs, for example, Poisson’s equation

∇2u + f = 0

2 Parabolic PDEs, for example, the heat equation

ut = ∇2u + f

3 Hyperbolic PDEs, for example, the wave equation

utt = ∇2u

We will only consider elliptic and parabolic PDEs..

Object oriented Prog. Solving ODEs

Defining PDEs in an object oriented manner

First, an abstract class defining a general linear elliptic PDE

∇ · D∇u = f ,

where D is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde:
Abs. method: GetDiffusionTensor(x)
Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)
Implemented method: GetForceTerm(x)

For example ∇2u = 0

LaplacesEquation: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)
B return identity matrix

Implemented method: GetForceTerm(x)
B return zero

Object oriented Prog. Solving ODEs

Defining PDEs in an object oriented manner

First, an abstract class defining a general linear elliptic PDE

∇ · D∇u = f ,

where D is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde:
Abs. method: GetDiffusionTensor(x)
Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)
Implemented method: GetForceTerm(x)

For example ∇2u = 0

LaplacesEquation: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)
B return identity matrix

Implemented method: GetForceTerm(x)
B return zero

Object oriented Prog. Solving ODEs

Defining PDEs in an object oriented manner

First, an abstract class defining a general linear elliptic PDE

∇ · D∇u = f ,

where D is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde:
Abs. method: GetDiffusionTensor(x)
Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)
Implemented method: GetForceTerm(x)

For example ∇2u = 0

LaplacesEquation: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)
B return identity matrix

Implemented method: GetForceTerm(x)
B return zero

Object oriented Prog. Solving ODEs

Defining PDEs in an object oriented manner

Next, an abstract class defining a general linear parabolic PDE

αut = ∇ · D∇u + f

where α, D and f are functions of space and time.

AbstractLinearParabolicPde:
Abs. method: GetDuDtCoefficientTerm(t,x)
Abs. method: GetDiffusionTensor(t,x)
Abs. method: GetForceTerm(t,x)

For example ut = ∇2u

HeatEquation: inherits from AbstractLinearParabolicPde

Implemented method: GetDuDtCoefficientTerm(t,x)
B return 1

Implemented method: GetDiffusionTensor(x)
B return identity matrix

Implemented method: GetForceTerm(x)
B return zero

Object oriented Prog. Solving ODEs

Defining PDEs in an object oriented manner

Next, an abstract class defining a general linear parabolic PDE

αut = ∇ · D∇u + f

where α, D and f are functions of space and time.

AbstractLinearParabolicPde:
Abs. method: GetDuDtCoefficientTerm(t,x)
Abs. method: GetDiffusionTensor(t,x)
Abs. method: GetForceTerm(t,x)

For example ut = ∇2u

HeatEquation: inherits from AbstractLinearParabolicPde

Implemented method: GetDuDtCoefficientTerm(t,x)
B return 1

Implemented method: GetDiffusionTensor(x)
B return identity matrix

Implemented method: GetForceTerm(x)
B return zero

Object oriented Prog. Solving ODEs

Defining PDEs in an object oriented manner

Doing this allows the possibility of writing solvers of generic PDEs, eg

EllipticPdeSolver:
Method: Solve(AbstractLinearEllipticPde)

ParabolicPdeSolver:
Method: Solve(AbstractLinearParabolicPde,t0,t1,initCond)

Object oriented Prog. Solving ODEs

The finite difference method

Object oriented Prog. Solving ODEs

Heat equation on a regular geometry

Consider the PDE
ut = uxx

on [0, 1], with boundary conditions u = 0 and initial condition u0.

We discretise space and time with a spacestep δx and a timestep δt:

Object oriented Prog. Solving ODEs

Heat equation on a regular geometry

Let un
i represent the numerical solution at (xi , tn). We can use the

approximations:

∂u

∂t
(xi , tn) ≈ un+1

i − un
i

∆t

∂2u

∂x2
(xi , tn) ≈

un
i−1 − 2un

i + un
i+1

∆x2

which gives the numerical scheme

un+1
i − un

i

∆t
=

un
i−1 − 2un

i + un
i+1

∆x2

or, alternatively stated

un+1
i = un

i +
∆t

∆x2
(un

i−1 − 2un
i + un

i+1)

Given the solution (un
0 , u

n
1 , . . . , u

n
M) at time t = tn, we can directly compute the

solution at the next timestep, i.e. the scheme is explicit

Object oriented Prog. Solving ODEs

Heat equation on a regular geometry

Let un
i represent the numerical solution at (xi , tn). We can use the

approximations:

∂u

∂t
(xi , tn) ≈ un+1

i − un
i

∆t

∂2u

∂x2
(xi , tn) ≈

un
i−1 − 2un

i + un
i+1

∆x2

which gives the numerical scheme

un+1
i − un

i

∆t
=

un
i−1 − 2un

i + un
i+1

∆x2

or, alternatively stated

un+1
i = un

i +
∆t

∆x2
(un

i−1 − 2un
i + un

i+1)

Given the solution (un
0 , u

n
1 , . . . , u

n
M) at time t = tn, we can directly compute the

solution at the next timestep, i.e. the scheme is explicit

Object oriented Prog. Solving ODEs

Heat equation on a regular geometry

Let un
i represent the numerical solution at (xi , tn). We can use the

approximations:

∂u

∂t
(xi , tn) ≈ un+1

i − un
i

∆t

∂2u

∂x2
(xi , tn) ≈

un
i−1 − 2un

i + un
i+1

∆x2

which gives the numerical scheme

un+1
i − un

i

∆t
=

un
i−1 − 2un

i + un
i+1

∆x2

or, alternatively stated

un+1
i = un

i +
∆t

∆x2
(un

i−1 − 2un
i + un

i+1)

Given the solution (un
0 , u

n
1 , . . . , u

n
M) at time t = tn, we can directly compute the

solution at the next timestep, i.e. the scheme is explicit

Object oriented Prog. Solving ODEs

Heat equation on a regular geometry

The scheme is:

un+1
i = un

i +
∆t

∆x2
(un

i−1 − 2un
i + un

i+1)

with u0 = 0 and uM = 0

Let un = (un
0 , u

n
1 , . . . , u

n
M). (Excluding first and last row) the above can be

re-written as

un+1 = un +
∆t

∆x2
Aun

where A is the matrix

A =

−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

...
...

...
...

...
0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2

Object oriented Prog. Solving ODEs

Heat equation on a regular geometry

Suppose u0 is given (the initial condition).

Forward Euler (explicit)

un+1 = un +
∆t

∆x2
Aun

Backward Euler (implicit)

un+1 = un +
∆t

∆x2
Aun+1

i.e. (
I − ∆t

∆x2
A

)
un+1 = un

This requires the solution of a linear system to get from un to un+1

Object oriented Prog. Solving ODEs

Heat equation on a regular geometry

Suppose u0 is given (the initial condition).

Forward Euler (explicit)

un+1 = un +
∆t

∆x2
Aun

Backward Euler (implicit)

un+1 = un +
∆t

∆x2
Aun+1

i.e. (
I − ∆t

∆x2
A

)
un+1 = un

This requires the solution of a linear system to get from un to un+1

Object oriented Prog. Solving ODEs

Theory for finite differences

The same concepts that were discussed for ODEs can be applied to these
methods for solving PDEs

Truncation error: defined analogously to with ODEs, and is O(δt + δx2) for
both forward and backward Euler

Convergence: does numerical solution converge to the true solution as
δt, δx → 0?

Stability: Different method of definition, similar conclusions to those for ODEs

Forward Euler: require δt
δx2 <

1
2

(conditionally stable)

For 2D heat equation ut = uxx + uyy this generalises to δt
δx2+δy2 <

1
8

Refine mesh by factor of 10 ⇒ δt needs to get 100 times smaller..
These are known as CFL conditions (Courant-Friedrichs-Lewy conditions)

Backward Euler: unconditionally stable

Object oriented Prog. Solving ODEs

Theory for finite differences

The same concepts that were discussed for ODEs can be applied to these
methods for solving PDEs

Truncation error: defined analogously to with ODEs, and is O(δt + δx2) for
both forward and backward Euler

Convergence: does numerical solution converge to the true solution as
δt, δx → 0?

Stability: Different method of definition, similar conclusions to those for ODEs

Forward Euler: require δt
δx2 <

1
2

(conditionally stable)

For 2D heat equation ut = uxx + uyy this generalises to δt
δx2+δy2 <

1
8

Refine mesh by factor of 10 ⇒ δt needs to get 100 times smaller..
These are known as CFL conditions (Courant-Friedrichs-Lewy conditions)

Backward Euler: unconditionally stable

Object oriented Prog. Solving ODEs

Theory for finite differences

The same concepts that were discussed for ODEs can be applied to these
methods for solving PDEs

Truncation error: defined analogously to with ODEs, and is O(δt + δx2) for
both forward and backward Euler

Convergence: does numerical solution converge to the true solution as
δt, δx → 0?

Stability: Different method of definition, similar conclusions to those for ODEs

Forward Euler: require δt
δx2 <

1
2

(conditionally stable)

For 2D heat equation ut = uxx + uyy this generalises to δt
δx2+δy2 <

1
8

Refine mesh by factor of 10 ⇒ δt needs to get 100 times smaller..
These are known as CFL conditions (Courant-Friedrichs-Lewy conditions)

Backward Euler: unconditionally stable

Object oriented Prog. Solving ODEs

Theory for finite differences

The same concepts that were discussed for ODEs can be applied to these
methods for solving PDEs

Truncation error: defined analogously to with ODEs, and is O(δt + δx2) for
both forward and backward Euler

Convergence: does numerical solution converge to the true solution as
δt, δx → 0?

Stability: Different method of definition, similar conclusions to those for ODEs

Forward Euler: require δt
δx2 <

1
2

(conditionally stable)

For 2D heat equation ut = uxx + uyy this generalises to δt
δx2+δy2 <

1
8

Refine mesh by factor of 10 ⇒ δt needs to get 100 times smaller..
These are known as CFL conditions (Courant-Friedrichs-Lewy conditions)

Backward Euler: unconditionally stable

Object oriented Prog. Solving ODEs

The finite element method

Object oriented Prog. Solving ODEs

Advantages of the FE method over the FD method

Main advantages of FE over FD

1 Deal with Neumann boundary conditions in a natural (systematic) way

2 Deals with irregular geometries much more easily

Object oriented Prog. Solving ODEs

The finite element method

Stages

1 Convert equation from strong form to weak form

2 Convert infinite-dimensional problem into a finite dimensional one

3 Set up the finite element linear system to be solved

Object oriented Prog. Solving ODEs

Weak form of Poisson’s equation

Consider Poisson’s equation:
∇2u + f = 0

subject to boundary conditions

u = 0 on Γ1

∇u · n = g on Γ2

Weak form

Multiply by a test function v satisfying v = 0 on Γ1, and integrate:

v
(
∇2u

)
= −fv∫

Ω

v
(
∇2u

)
dV = −

∫
Ω

fv dV∫
∂Ω

v (∇u · n) dS −
∫

Ω

∇u ·∇v dV = −
∫

Ω

fv dV∫
Ω

∇u ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS

Object oriented Prog. Solving ODEs

Weak form of Poisson’s equation

Consider Poisson’s equation:
∇2u + f = 0

subject to boundary conditions

u = 0 on Γ1

∇u · n = g on Γ2

Weak form

Multiply by a test function v satisfying v = 0 on Γ1, and integrate:

v
(
∇2u

)
= −fv∫

Ω

v
(
∇2u

)
dV = −

∫
Ω

fv dV∫
∂Ω

v (∇u · n) dS −
∫

Ω

∇u ·∇v dV = −
∫

Ω

fv dV∫
Ω

∇u ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS

Object oriented Prog. Solving ODEs

Weak form of Poisson’s equation

Let V be the space of all differentiable functions on Ω (more precisely, V is the
Sobolev space H1(Ω)). Let

V0 = {v ∈ V : v = 0 on Γ1}

Weak form

Find u ∈ V0 satisfying∫
Ω

∇u ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS ∀v ∈ V0

Example

Solve d2u
dx2 = 1, u(0) = u(1) = 0 vs

Find differentiable u satisfying
u(0) = u(1) = 0 and:∫ 1

0
du
dx

dv
dx

dx = −
∫ 1

0
v dx for all

v s.t. v(0) = v(1) = 0

Object oriented Prog. Solving ODEs

Weak form of Poisson’s equation

Let V be the space of all differentiable functions on Ω (more precisely, V is the
Sobolev space H1(Ω)). Let

V0 = {v ∈ V : v = 0 on Γ1}

Weak form

Find u ∈ V0 satisfying∫
Ω

∇u ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS ∀v ∈ V0

Example

Solve d2u
dx2 = 1, u(0) = u(1) = 0 vs

Find differentiable u satisfying
u(0) = u(1) = 0 and:∫ 1

0
du
dx

dv
dx

dx = −
∫ 1

0
v dx for all

v s.t. v(0) = v(1) = 0

Object oriented Prog. Solving ODEs

Weak form of Poisson’s equation

Let V be the space of all differentiable functions on Ω (more precisely, V is the
Sobolev space H1(Ω)). Let

V0 = {v ∈ V : v = 0 on Γ1}

Weak form

Find u ∈ V0 satisfying∫
Ω

∇u ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS ∀v ∈ V0

Example

Solve d2u
dx2 = 1, u(0) = u(1) = 0 vs

Find differentiable u satisfying
u(0) = u(1) = 0 and:∫ 1

0
du
dx

dv
dx

dx = −
∫ 1

0
v dx for all

v s.t. v(0) = v(1) = 0

Object oriented Prog. Solving ODEs

FEM discretisation

Find u ∈ V0 satisfying∫
Ω

∇u ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS for all v ∈ V0

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:[∫
Ω
∇φ1 ·∇φ1 dV

∫
Ω
∇φ1 ·∇φ2 dV∫

Ω
∇φ2 ·∇φ1 dV

∫
Ω
∇φ2 ·∇φ2 dV

] [
α
β

]
=

[∫
Ω
f φ1 dV +

∫
Γ2
gφ1 dS∫

Ω
f φ2 dV +

∫
Γ2
gφ2 dS

]

Object oriented Prog. Solving ODEs

FEM discretisation

Find uh ∈ Vh
0 satisfying∫

Ω

∇uh ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS for all v ∈ Vh
0

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:[∫
Ω
∇φ1 ·∇φ1 dV

∫
Ω
∇φ1 ·∇φ2 dV∫

Ω
∇φ2 ·∇φ1 dV

∫
Ω
∇φ2 ·∇φ2 dV

] [
α
β

]
=

[∫
Ω
f φ1 dV +

∫
Γ2
gφ1 dS∫

Ω
f φ2 dV +

∫
Γ2
gφ2 dS

]

Object oriented Prog. Solving ODEs

FEM discretisation

Find uh ∈ Vh
0 satisfying∫

Ω

∇uh ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS for all v ∈ Vh
0

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:[∫
Ω
∇φ1 ·∇φ1 dV

∫
Ω
∇φ1 ·∇φ2 dV∫

Ω
∇φ2 ·∇φ1 dV

∫
Ω
∇φ2 ·∇φ2 dV

] [
α
β

]
=

[∫
Ω
f φ1 dV +

∫
Γ2
gφ1 dS∫

Ω
f φ2 dV +

∫
Γ2
gφ2 dS

]

Object oriented Prog. Solving ODEs

FEM discretisation

Find uh ∈ Vh
0 satisfying∫

Ω

∇uh ·∇φj dV =

∫
Ω

f φj dV +

∫
Γ2

gφj dS for j = 1, 2

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:[∫
Ω
∇φ1 ·∇φ1 dV

∫
Ω
∇φ1 ·∇φ2 dV∫

Ω
∇φ2 ·∇φ1 dV

∫
Ω
∇φ2 ·∇φ2 dV

] [
α
β

]
=

[∫
Ω
f φ1 dV +

∫
Γ2
gφ1 dS∫

Ω
f φ2 dV +

∫
Γ2
gφ2 dS

]

Object oriented Prog. Solving ODEs

FEM discretisation

Find uh ∈ Vh
0 satisfying∫

Ω

∇uh ·∇φj dV =

∫
Ω

f φj dV +

∫
Γ2

gφj dS for j = 1, 2

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:[∫
Ω
∇φ1 ·∇φ1 dV

∫
Ω
∇φ1 ·∇φ2 dV∫

Ω
∇φ2 ·∇φ1 dV

∫
Ω
∇φ2 ·∇φ2 dV

] [
α
β

]
=

[∫
Ω
f φ1 dV +

∫
Γ2
gφ1 dS∫

Ω
f φ2 dV +

∫
Γ2
gφ2 dS

]

Object oriented Prog. Solving ODEs

Basis functions

Object oriented Prog. Solving ODEs

FEM discretisations

Take
Vh = span{φ1, φ2, . . . , φN}

(satisfying φj = 0 on Γ1) so

uh = α1φ1 + . . .+ αNφN

Let the stiffness matrix and RHS vector be given by

Kjk =

∫
Ω

∇φj ·∇φk dV

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

and solve

K

 α1

...
αN

 = b

Object oriented Prog. Solving ODEs

FEM discretisations

Let

Kjk =

∫
Ω

∇φj ·∇φk dV stiffness matrix

Mjk =

∫
Ω

φjφk dV mass matrix

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

FEM discretisations

Laplace’s equation: ∇2u + f = 0 → KU = b

Heat equation:

∂u

∂t
= ∇2u + f → M

dU

dt
+ KU = b

Time-discretised heat equation:

un+1 − un

∆t
= ∇2un+1 + f n+1 → MUn+1 + ∆t KUn+1 = MUn + ∆t bn+1

Object oriented Prog. Solving ODEs

Anisotropic diffusion

Suppose we have an anisotropic diffusion tensor D (symmetric, positive
definite), for example, in Poisson’s equation:

∇ · (D∇u) + f = 0

subject to boundary conditions

u = 0 on Γ1

(D∇u) · n = g on Γ2

The weak form is: find u ∈ V0 satisfying∫
Ω

(D∇u) ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS ∀v ∈ V0

and the only change in the FEM discretisation is that the stiffness matrix
becomes

Kjk =

∫
Ω

∇φj · (D∇φk) dV

Object oriented Prog. Solving ODEs

Anisotropic diffusion

Suppose we have an anisotropic diffusion tensor D (symmetric, positive
definite), for example, in Poisson’s equation:

∇ · (D∇u) + f = 0

subject to boundary conditions

u = 0 on Γ1

(D∇u) · n = g on Γ2

The weak form is: find u ∈ V0 satisfying∫
Ω

(D∇u) ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS ∀v ∈ V0

and the only change in the FEM discretisation is that the stiffness matrix
becomes

Kjk =

∫
Ω

∇φj · (D∇φk) dV

Object oriented Prog. Solving ODEs

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c

K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

U1

U2

...
UN

 =

b1

b2

...
bN

Object oriented Prog. Solving ODEs

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c

K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

U1

U2

...
UN

 =

b1

b2

...
bN

Object oriented Prog. Solving ODEs

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c

1 0 . . . 0
K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

U1

U2

...
UN

 =

c
b2

...
bN

Object oriented Prog. Solving ODEs

FEM stages

Solve:
∇ · (D∇u) + f = 0

subject to boundary conditions

u = u∗ on Γ1

(D∇u) · n = g on Γ2

1 Set up the computational mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

∫
Ω

∇φj · (D∇φk) dV

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

	Object Oriented Programming
	Solving ODEs

