
Second-order PDEs Finite differences Finite elements

Object-oriented scientific computing

Pras Pathmanathan

Summer 2012



Second-order PDEs Finite differences Finite elements

The finite element method



Second-order PDEs Finite differences Finite elements

Advantages of the FE method over the FD method

Main advantages of FE over FD

1 Deal with Neumann boundary conditions in a natural (systematic) way

2 Deals with irregular geometries much more easily



Second-order PDEs Finite differences Finite elements

FEM stages

Solve:
∇2u + f = 0

subject to boundary conditions

u = u∗ on Γ1

(∇u) · n = g on Γ2

1 Set up the mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

∫
Ω

∇φj ·∇φk dV

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

This gives the solution uh(x) = U1φ1(x) + . . .UNφN(x)



Second-order PDEs Finite differences Finite elements

FEM stages

Solve:
∇2u + f = 0

subject to boundary conditions

u = u∗ on Γ1

(∇u) · n = g on Γ2

1 Set up the mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

∫
Ω

∇φj ·∇φk dV

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

This gives the solution uh(x) = U1φ1(x) + . . .UNφN(x)



Second-order PDEs Finite differences Finite elements

FEM stages

Solve:
∇2u + f = 0

subject to boundary conditions

u = u∗ on Γ1

(∇u) · n = g on Γ2

1 Set up the mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

∫
Ω

∇φj ·∇φk dV

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

This gives the solution uh(x) = U1φ1(x) + . . .UNφN(x)



Second-order PDEs Finite differences Finite elements

FEM stages

Solve:
∇2u + f = 0

subject to boundary conditions

u = u∗ on Γ1

(∇u) · n = g on Γ2

1 Set up the mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

∫
Ω

∇φj ·∇φk dV

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

This gives the solution uh(x) = U1φ1(x) + . . .UNφN(x)



Second-order PDEs Finite differences Finite elements

FEM stages

Solve:
∇2u + f = 0

subject to boundary conditions

u = u∗ on Γ1

(∇u) · n = g on Γ2

1 Set up the mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

∫
Ω

∇φj ·∇φk dV

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

This gives the solution uh(x) = U1φ1(x) + . . .UNφN(x)



Second-order PDEs Finite differences Finite elements

FEM stages

Solve:
∇2u + f = 0

subject to boundary conditions

u = u∗ on Γ1

(∇u) · n = g on Γ2

1 Set up the mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

∫
Ω

∇φj ·∇φk dV

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

This gives the solution uh(x) = U1φ1(x) + . . .UNφN(x)



Second-order PDEs Finite differences Finite elements

Basis functions



Second-order PDEs Finite differences Finite elements

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c 

K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN




U1

U2

...
UN

 =


b1

b2

...
bN





Second-order PDEs Finite differences Finite elements

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c 

K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN




U1

U2

...
UN

 =


b1

b2

...
bN





Second-order PDEs Finite differences Finite elements

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c 

1 0 . . . 0
K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN




U1

U2

...
UN

 =


c
b2

...
bN





Second-order PDEs Finite differences Finite elements

Solving linear systems

Consider the general problem of solving the linear system

Ax = b

where A is an n × n matrix and b an n-vector.

Direct solvers

One approach is to compute A−1 and calculate x = A−1b

Gaussian elimination is an algorithm that is often used and is essentially
equivalent to computing A−1

These approaches get too costly (in time and memory) for large n

For n ≤ 10000 (maybe even 50000) this may be the best approach



Second-order PDEs Finite differences Finite elements

Solving linear systems

Consider the general problem of solving the linear system

Ax = b

where A is an n × n matrix and b an n-vector.

Direct solvers

One approach is to compute A−1 and calculate x = A−1b

Gaussian elimination is an algorithm that is often used and is essentially
equivalent to computing A−1

These approaches get too costly (in time and memory) for large n

For n ≤ 10000 (maybe even 50000) this may be the best approach



Second-order PDEs Finite differences Finite elements

Solving linear systems

Consider the general problem of solving the linear system

Ax = b

where A is an n × n matrix and b an n-vector.

Direct solvers

One approach is to compute A−1 and calculate x = A−1b

Gaussian elimination is an algorithm that is often used and is essentially
equivalent to computing A−1

These approaches get too costly (in time and memory) for large n

For n ≤ 10000 (maybe even 50000) this may be the best approach



Second-order PDEs Finite differences Finite elements

Solving linear systems

Consider the general problem of solving the linear system

Ax = b

where A is an n × n matrix and b an n-vector.

Direct solvers

One approach is to compute A−1 and calculate x = A−1b

Gaussian elimination is an algorithm that is often used and is essentially
equivalent to computing A−1

These approaches get too costly (in time and memory) for large n

For n ≤ 10000 (maybe even 50000) this may be the best approach



Second-order PDEs Finite differences Finite elements

Solving linear systems

Iterative solvers

Often A is sparse

This means that computing Ay for given y is cheap.

Choose initial guess x0

An iterative solver takes in a current guess xn and provides an improved
solution xn+1, just using matrix-vector products

Common iterative solvers are conjugate gradients (for when A is
symmetric and positive-definite) and GMRES.

Preconditioning

Question is then: (i) does xn → x and (ii) how fast does xn → x?

For any non-singular matrix P, the system

PAx = Pb

is equivalent to the original system Ax = b.

By choosing P appropriately, can obtain (massively) improved
convergence—preconditioning



Second-order PDEs Finite differences Finite elements

Solving linear systems

Iterative solvers

Often A is sparse

This means that computing Ay for given y is cheap.

Choose initial guess x0

An iterative solver takes in a current guess xn and provides an improved
solution xn+1, just using matrix-vector products

Common iterative solvers are conjugate gradients (for when A is
symmetric and positive-definite) and GMRES.

Preconditioning

Question is then: (i) does xn → x and (ii) how fast does xn → x?

For any non-singular matrix P, the system

PAx = Pb

is equivalent to the original system Ax = b.

By choosing P appropriately, can obtain (massively) improved
convergence—preconditioning



Second-order PDEs Finite differences Finite elements

Solving linear systems

Iterative solvers

Often A is sparse

This means that computing Ay for given y is cheap.

Choose initial guess x0

An iterative solver takes in a current guess xn and provides an improved
solution xn+1, just using matrix-vector products

Common iterative solvers are conjugate gradients (for when A is
symmetric and positive-definite) and GMRES.

Preconditioning

Question is then: (i) does xn → x and (ii) how fast does xn → x?

For any non-singular matrix P, the system

PAx = Pb

is equivalent to the original system Ax = b.

By choosing P appropriately, can obtain (massively) improved
convergence—preconditioning



Second-order PDEs Finite differences Finite elements

Solving linear systems

Iterative solvers

Often A is sparse

This means that computing Ay for given y is cheap.

Choose initial guess x0

An iterative solver takes in a current guess xn and provides an improved
solution xn+1, just using matrix-vector products

Common iterative solvers are conjugate gradients (for when A is
symmetric and positive-definite) and GMRES.

Preconditioning

Question is then: (i) does xn → x and (ii) how fast does xn → x?

For any non-singular matrix P, the system

PAx = Pb

is equivalent to the original system Ax = b.

By choosing P appropriately, can obtain (massively) improved
convergence—preconditioning



Second-order PDEs Finite differences Finite elements

Solving linear systems

Iterative solvers

Often A is sparse

This means that computing Ay for given y is cheap.

Choose initial guess x0

An iterative solver takes in a current guess xn and provides an improved
solution xn+1, just using matrix-vector products

Common iterative solvers are conjugate gradients (for when A is
symmetric and positive-definite) and GMRES.

Preconditioning

Question is then: (i) does xn → x and (ii) how fast does xn → x?

For any non-singular matrix P, the system

PAx = Pb

is equivalent to the original system Ax = b.

By choosing P appropriately, can obtain (massively) improved
convergence—preconditioning



Second-order PDEs Finite differences Finite elements

Solving linear systems

Iterative solvers

Often A is sparse

This means that computing Ay for given y is cheap.

Choose initial guess x0

An iterative solver takes in a current guess xn and provides an improved
solution xn+1, just using matrix-vector products

Common iterative solvers are conjugate gradients (for when A is
symmetric and positive-definite) and GMRES.

Preconditioning

Question is then: (i) does xn → x and (ii) how fast does xn → x?

For any non-singular matrix P, the system

PAx = Pb

is equivalent to the original system Ax = b.

By choosing P appropriately, can obtain (massively) improved
convergence—preconditioning



Second-order PDEs Finite differences Finite elements

FEM stages

Solve:
∇2u + f = 0

subject to boundary conditions

u = u∗ on Γ1

(∇u) · n = g on Γ2

1 Set up the mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

∫
Ω

∇φj ·∇φk dV

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

This gives the solution uh(x) = U1φ1(x) + . . .UNφN(x)



Second-order PDEs Finite differences Finite elements

The finite element method: assembly



Second-order PDEs Finite differences Finite elements

Numerical quadrature

Suppose we want to compute∫
unit square

F (x , y) dxdy

We can use the approximation∫
unit square

F (x , y)dxdy ≈
∑
i

wiF (xi , yi )

where (xi , yi ) are the quadrature points, and wi the weights



Second-order PDEs Finite differences Finite elements

Numerical quadrature

Suppose we want to compute∫
unit square

F (x , y) dxdy

We can use the approximation∫
unit square

F (x , y)dxdy ≈
∑
i

wiF (xi , yi )

where (xi , yi ) are the quadrature points, and wi the weights



Second-order PDEs Finite differences Finite elements

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
∫

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
∑
K

∫
K
φjφk dV

Consider
∫
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

∫
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.



Second-order PDEs Finite differences Finite elements

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
∫

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
∑
K

∫
K
φjφk dV

Consider
∫
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

∫
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.



Second-order PDEs Finite differences Finite elements

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
∫

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
∑
K

∫
K
φjφk dV

Consider
∫
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

∫
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.



Second-order PDEs Finite differences Finite elements

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
∫

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
∑
K

∫
K
φjφk dV

Consider
∫
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

∫
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.



Second-order PDEs Finite differences Finite elements

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
∫

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
∑
K

∫
K
φjφk dV

Consider
∫
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

∫
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.



Second-order PDEs Finite differences Finite elements

Assembly



Second-order PDEs Finite differences Finite elements

Computing an elemental contribution

We have reduced the problem to computing small matrices/vectors, for
example the 3 by 3 matrix ∫

K
φjφk dV

where φj , φk are the 3 basis functions corresponding to the 3 nodes of the
mesh.

Next, map to the reference triangle (also known as the canonical triangle),
Kref, the triangle with nodes (0, 0), (0, 1), (1, 0).



Second-order PDEs Finite differences Finite elements

Computing an elemental contribution

We have reduced the problem to computing small matrices/vectors, for
example the 3 by 3 matrix ∫

K
φjφk dV

where φj , φk are the 3 basis functions corresponding to the 3 nodes of the
mesh.

Next, map to the reference triangle (also known as the canonical triangle),
Kref, the triangle with nodes (0, 0), (0, 1), (1, 0).



Second-order PDEs Finite differences Finite elements

Reference element (also called the canonical element)

We now need to be able to compute∫
K
φjφk dxdy =

∫
Kref

φjφk det J dξdη

where J is the Jacobian of the mapping from the true element to the canonical
element.

The basis functions on the reference triangle are easy to write down

φ1(ξ, η) = 1− ξ − η
φ2(ξ, η) = ξ

φ3(ξ, η) = η



Second-order PDEs Finite differences Finite elements

Computing an elemental contribution

J is also required if ∇φi is needed (for example, in computing the stiffness
matrix), since ∇φi = J∇ξNi .

Consider the mapping from an element with nodes x1, x2, x3, to the canonical
element. The inverse mapping can in fact be easily written down using the
basis functions.

x(ξ, η) =
3∑

j=1

xjNj(ξ, η)

from which it is easy to show that J is the following function of nodal positions

J = inv

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]



Second-order PDEs Finite differences Finite elements

Computing an elemental contribution

J is also required if ∇φi is needed (for example, in computing the stiffness
matrix), since ∇φi = J∇ξNi .

Consider the mapping from an element with nodes x1, x2, x3, to the canonical
element. The inverse mapping can in fact be easily written down using the
basis functions.

x(ξ, η) =
3∑

j=1

xjNj(ξ, η)

from which it is easy to show that J is the following function of nodal positions

J = inv

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]



Second-order PDEs Finite differences Finite elements

FEM stages

Solve:
∇2u + f = 0

subject to boundary conditions

u = u∗ on Γ1

(∇u) · n = g on Γ2

1 Set up the mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

∫
Ω

∇φj ·∇φk dV

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

This gives the solution uh(x) = U1φ1(x) + . . .UNφN(x)



Second-order PDEs Finite differences Finite elements

FEM stages - full algorithm

Write

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system



Second-order PDEs Finite differences Finite elements

FEM stages - full algorithm

Write

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system



Second-order PDEs Finite differences Finite elements

FEM stages - full algorithm

Write

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system



Second-order PDEs Finite differences Finite elements

FEM stages - full algorithm

Write

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system



Second-order PDEs Finite differences Finite elements

FEM stages - full algorithm

Write

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system



Second-order PDEs Finite differences Finite elements

FEM stages - full algorithm

Write

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system



Second-order PDEs Finite differences Finite elements

FEM stages - full algorithm

Write

bj =

∫
Ω

f φj dV +

∫
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system



Second-order PDEs Finite differences Finite elements

FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods



Second-order PDEs Finite differences Finite elements

FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods



Second-order PDEs Finite differences Finite elements

FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods



Second-order PDEs Finite differences Finite elements

Object-oriented design

What are the self-contained ‘concepts’ (objects) that form the overall
simulation code, and what functionality should each of these objects have?



Second-order PDEs Finite differences Finite elements

Geometry

Node

Member var: mLocation

B a vector
Member var: mIsBoundaryNode

B a boolean (true/false)

Element

Member var: mNodes

B (Pointers to) the 3 nodes (assuming a 2d simulation) of this
element

Method: ComputeJacobian()

Method: ComputeJacobianDeterminant()

SurfaceElement

Member var: mNodes

B (Pointers to) the 2 nodes of this element
B Also has corresponding methods to the Jacobian methods above



Second-order PDEs Finite differences Finite elements

Geometry

Mesh

mNodes

B a list of Node objects
mElements

B a list of Element objects
mBoundaryElements

B a list of surface elements (SurfaceElement) on the boundary
Method: ReadFromFile(filename)

Method: GenerateRegularMesh(width,height,stepsize)

Method: Refine()

Note

Here, boundary nodes/elements represent the entire boundary—‘mesh’
concept is self-contained and not dependent on PDE problem being solved.



Second-order PDEs Finite differences Finite elements

Boundary conditions

There are various ways this could be implemented

Key point: the implementation requires that
Dirichlet BCs be defined at boundary nodes
Neumann BCs be defined on boundary elements (ie element interiors)

BoundaryConditions<DIM>

mDirichletBoundaryNodes

mDirichletValues

mNeumannBoundaryElements

mNeumannValues

AddDirichletBoundaryCondition(node,dirichletBcValue)

AddNeumannBoundaryCondition(boundaryElement,neumannBcValue)



Second-order PDEs Finite differences Finite elements

A simple solver

Suppose we want to write a solver for Poisson’s equation ∇2u = f for general
forcing terms f (x) and general boundary conditions. The solver class could be
self-contained, and look like:

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)



Second-order PDEs Finite differences Finite elements

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Initialise a matrix K and vector b
2 Set up stiffness matrix Kij =

∫
Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

∫
Ω
f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
∫

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



Second-order PDEs Finite differences Finite elements

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Initialise a matrix K and vector b
2 Set up stiffness matrix Kij =

∫
Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

∫
Ω
f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
∫

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



Second-order PDEs Finite differences Finite elements

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Initialise a matrix K and vector b
2 Set up stiffness matrix Kij =

∫
Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

∫
Ω
f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
∫

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



Second-order PDEs Finite differences Finite elements

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Initialise a matrix K and vector b
2 Set up stiffness matrix Kij =

∫
Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

∫
Ω
f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
∫

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



Second-order PDEs Finite differences Finite elements

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Initialise a matrix K and vector b
2 Set up stiffness matrix Kij =

∫
Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

∫
Ω
f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
∫

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



Second-order PDEs Finite differences Finite elements

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Initialise a matrix K and vector b
2 Set up stiffness matrix Kij =

∫
Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

∫
Ω
f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
∫

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



Second-order PDEs Finite differences Finite elements

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Initialise a matrix K and vector b
2 Set up stiffness matrix Kij =

∫
Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

∫
Ω
f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
∫

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



Second-order PDEs Finite differences Finite elements

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Initialise a matrix K and vector b
2 Set up stiffness matrix Kij =

∫
Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

∫
Ω
f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
∫

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



Second-order PDEs Finite differences Finite elements

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Initialise a matrix K and vector b
2 Set up stiffness matrix Kij =

∫
Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

∫
Ω
f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
∫

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



Second-order PDEs Finite differences Finite elements

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Initialise a matrix K and vector b
2 Set up stiffness matrix Kij =

∫
Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

∫
Ω
f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
∫

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



Second-order PDEs Finite differences Finite elements

A simple solver

A (possible) more complete interface

PoissonEquationSolver:
PoissonEquationSolver(mesh,abstractForce,boundaryConditions)

Solve()

PlotSolution()

PlotForce()

ComputeQOI()

WriteSolutionToFile(filename)


	Second-order PDEs
	The finite difference method
	The finite element method

