Object-oriented scientific computing

Pras Pathmanathan

Summer 2012

The finite element method

Advantages of the FE method over the FD method

Main advantages of FE over FD

- **()** Deal with Neumann boundary conditions in a natural (systematic) way
- ② Deals with irregular geometries much more easily

э

FEM stages

Solve:

$$\nabla^2 \mathbf{u} + f = \mathbf{0}$$

subject to boundary conditions

$$u = u^*$$
 on Γ_1
 $(\nabla u) \cdot \mathbf{n} = g$ on Γ_2

 Set up the mesh and choose basis functions
 Compute the matrix K and vector b:
 K_k = ∫_Ω ∇φ₁ · ∇φ_k dV b_l = ∫_Ω fφ_l dV + ∫_{Γ₂} gφ_l dS
 Alter linear system KU = b to impose Dirichlet BCs
 Solve linear system

This gives the solution $u_h(\mathbf{x}) = U_1\phi_1(\mathbf{x}) + \dots + U_N\phi_N(\mathbf{x})$

FEM stages

Solve:

$$\nabla^2 \mathbf{u} + f = \mathbf{0}$$

subject to boundary conditions

$$u = u^*$$
 on Γ_1
 $(\nabla u) \cdot \mathbf{n} = g$ on Γ_2

Set up the mesh and choose basis functions

Compute the matrix K and vector b:

$$\begin{array}{lll} \mathcal{K}_{jk} & = & \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot \boldsymbol{\nabla} \phi_k \, \mathrm{d} V \\ b_j & = & \int_{\Omega} f \phi_j \, \mathrm{d} V + \int_{\Gamma_2} g \phi_j \, \mathrm{d} S \end{array}$$

<ロ> (四) (四) (三) (三) (三)

() Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs

Solve linear system

This gives the solution $u_h(\mathbf{x}) = U_1\phi_1(\mathbf{x}) + \dots U_N\phi_N(\mathbf{x})$

FEM stages

Solve:

$$\nabla^2 \mathbf{u} + f = 0$$

subject to boundary conditions

$$u = u^*$$
 on Γ_1
 $(\nabla u) \cdot \mathbf{n} = g$ on Γ_2

Set up the mesh and choose basis functions

2 Compute the matrix K and vector **b**:

$$\begin{aligned} \mathcal{K}_{jk} &= \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot \boldsymbol{\nabla} \phi_k \, \mathrm{d} V \\ b_j &= \int_{\Omega} f \phi_j \, \mathrm{d} V + \int_{\Gamma_2} g \phi_j \, \mathrm{d} S \end{aligned}$$

- **(3)** Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

This gives the solution $u_h(\mathbf{x}) = U_1\phi_1(\mathbf{x}) + \dots U_N\phi_N(\mathbf{x})$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

FEM stages

Solve:

$$abla^2 \mathbf{u} + f = 0$$

subject to boundary conditions

$$u = u^*$$
 on Γ_1
 $(\nabla u) \cdot \mathbf{n} = g$ on Γ_2

Set up the mesh and choose basis functions

2 Compute the matrix K and vector **b**:

$$\begin{aligned} \mathcal{K}_{jk} &= \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot \boldsymbol{\nabla} \phi_k \, \mathrm{d} V \\ b_j &= \int_{\Omega} f \phi_j \, \mathrm{d} V + \int_{\Gamma_2} g \phi_j \, \mathrm{d} S \end{aligned}$$

③ Alter linear system $K \mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs

Solve linear system

This gives the solution $u_h(\mathbf{x}) = U_1\phi_1(\mathbf{x}) + \dots + U_N\phi_N(\mathbf{x})$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

FEM stages

Solve:

$$\nabla^2 \mathbf{u} + f = \mathbf{0}$$

subject to boundary conditions

$$u = u^*$$
 on Γ_1
 $(\nabla u) \cdot \mathbf{n} = g$ on Γ_2

Set up the mesh and choose basis functions

2 Compute the matrix K and vector **b**:

$$\begin{aligned} \mathcal{K}_{jk} &= \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot \boldsymbol{\nabla} \phi_k \, \mathrm{d} V \\ b_j &= \int_{\Omega} f \phi_j \, \mathrm{d} V + \int_{\Gamma_2} g \phi_j \, \mathrm{d} S \end{aligned}$$

3 Alter linear system $K \mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs

Solve linear system

This gives the solution $u_h(\mathbf{x}) = U_1\phi_1(\mathbf{x}) + \dots U_N\phi_N(\mathbf{x})$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

FEM stages

Solve:

$$\nabla^2 \mathbf{u} + f = 0$$

subject to boundary conditions

$$u = u^*$$
 on Γ_1
 $(\nabla u) \cdot \mathbf{n} = g$ on Γ_2

Set up the mesh and choose basis functions

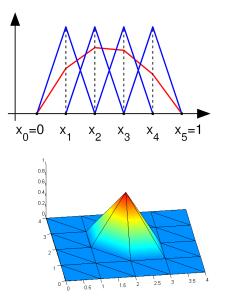
2 Compute the matrix K and vector **b**:

$$\begin{aligned} \mathcal{K}_{jk} &= \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot \boldsymbol{\nabla} \phi_k \, \mathrm{d} V \\ b_j &= \int_{\Omega} f \phi_j \, \mathrm{d} V + \int_{\Gamma_2} \mathbf{g} \phi_j \, \mathrm{d} S \end{aligned}$$

- **③** Alter linear system $K \mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

This gives the solution $u_h(\mathbf{x}) = U_1\phi_1(\mathbf{x}) + \dots U_N\phi_N(\mathbf{x})$

Basis functions



・ロト・日本・日本・日本・日本・日本

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in \mathcal{V}_0^h (i.e. bases satisfying $\phi_i = 0$ on Γ_1), we use \mathcal{V}^h , i.e. all the basis functions corresponding to all nodes in the mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate rows of the linear system, for example, for $K\mathbf{U} = b$, if we want to impose $U_1 = c$

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in \mathcal{V}_0^h (i.e. bases satisfying $\phi_i = 0$ on Γ_1), we use \mathcal{V}^h , i.e. all the basis functions corresponding to all nodes in the mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate rows of the linear system, for example, for $K\mathbf{U} = b$, if we want to impose $U_1 = c$

$$\begin{bmatrix} K_{11} & K_{12} & \dots & K_{1N} \\ K_{21} & K_{22} & \dots & K_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ K_{N1} & K_{N2} & \dots & K_{NN} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_N \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix}$$

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in \mathcal{V}_0^h (i.e. bases satisfying $\phi_i = 0$ on Γ_1), we use \mathcal{V}^h , i.e. all the basis functions corresponding to all nodes in the mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate rows of the linear system, for example, for $K\mathbf{U} = b$, if we want to impose $U_1 = c$

$$\begin{bmatrix} 1 & 0 & \dots & 0 \\ K_{21} & K_{22} & \dots & K_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ K_{N1} & K_{N2} & \dots & K_{NN} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_N \end{bmatrix} = \begin{bmatrix} c \\ b_2 \\ \vdots \\ b_N \end{bmatrix}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Solving linear systems

Consider the general problem of solving the linear system

 $A\mathbf{x} = \mathbf{b}$

where A is an $n \times n$ matrix and **b** an *n*-vector.

Direct solvers

- One approach is to compute A^{-1} and calculate $\mathbf{x} = A^{-1}\mathbf{b}$
- Gaussian elimination is an algorithm that is often used and is essentially equivalent to computing A^{-1}
- These approaches get too costly (in time and memory) for large n
- For $n \leq 10000$ (maybe even 50000) this may be the best approach.

Solving linear systems

Consider the general problem of solving the linear system

 $A\mathbf{x} = \mathbf{b}$

where A is an $n \times n$ matrix and **b** an *n*-vector.

Direct solvers

- One approach is to compute A^{-1} and calculate $\mathbf{x} = A^{-1}\mathbf{b}$
- Gaussian elimination is an algorithm that is often used and is essentially equivalent to computing A^{-1}
- These approaches get too costly (in time and memory) for large n
- ullet For $n\leq 10000$ (maybe even 50000) this may be the best approach

Solving linear systems

Consider the general problem of solving the linear system

 $A\mathbf{x} = \mathbf{b}$

where A is an $n \times n$ matrix and **b** an *n*-vector.

Direct solvers

- One approach is to compute A^{-1} and calculate $\mathbf{x} = A^{-1}\mathbf{b}$
- Gaussian elimination is an algorithm that is often used and is essentially equivalent to computing A^{-1}
- These approaches get too costly (in time and memory) for large n

• For $n \leq 10000$ (maybe even 50000) this may be the best approach

Solving linear systems

Consider the general problem of solving the linear system

 $A\mathbf{x} = \mathbf{b}$

where A is an $n \times n$ matrix and **b** an *n*-vector.

Direct solvers

- One approach is to compute A^{-1} and calculate $\mathbf{x} = A^{-1}\mathbf{b}$
- Gaussian elimination is an algorithm that is often used and is essentially equivalent to computing A^{-1}
- These approaches get too costly (in time and memory) for large n
- For $n \leq 10000$ (maybe even 50000) this may be the best approach

Iterative solvers

- Often A is sparse
- This means that computing Ay for given y is cheap.
- Choose initial guess x₀
- \bullet An iterative solver takes in a current guess x_n and provides an improved solution $x_{n+1},$ just using matrix-vector products
- Common iterative solvers are *conjugate gradients* (for when A is symmetric and positive-definite) and *GMRES*.

Preconditioning

- (i) does $x_i \rightarrow x$ and (i) how fast does $x_i \rightarrow x$ and (i) how fast does $x_i \rightarrow x^2$
 - \sim For any non-singular matrix P_i the system

PAx = Pb

- is equivalent to the original system Ar == b.
- By choosing P-appropriately, can obtain (massively) improved server process process differences

Iterative solvers

- Often A is sparse
- This means that computing Ay for given y is cheap.
- Choose initial guess x₀
- An iterative solver takes in a current guess x_n and provides an improved solution x_{n+1} , just using matrix-vector products
- Common iterative solvers are *conjugate gradients* (for when A is symmetric and positive-definite) and *GMRES*.

Preconditioning

- Question is then: (i) does $x_n \rightarrow x$ and (ii) how fast does $x_n \rightarrow x$?
- For any non-singular matrix P; the system

Pb = Pb

- is equivalent to the original system Ax = b.
- By choosing P-appropriately, can obtain (massively) improved convergence—preconditioning

Iterative solvers

- Often A is sparse
- This means that computing Ay for given y is cheap.
- Choose initial guess x₀
- An iterative solver takes in a current guess **x**_n and provides an improved solution **x**_{n+1}, just using matrix-vector products
- Common iterative solvers are *conjugate gradients* (for when A is symmetric and positive-definite) and *GMRES*.

Preconditioning

- Question is then: (i) does $x_n \rightarrow x$ and (ii) how fast does $x_n \rightarrow x$?
- For any non-singular matrix P, the system

$$PA\mathbf{x} = P\mathbf{b}$$

- is equivalent to the original system Ax = b.
- By choosing P appropriately, can obtain (massively) improved convergence—proconditioning

Iterative solvers

- Often A is sparse
- This means that computing Ay for given y is cheap.
- Choose initial guess x₀
- An iterative solver takes in a current guess \mathbf{x}_n and provides an improved solution \mathbf{x}_{n+1} , just using matrix-vector products
- Common iterative solvers are *conjugate gradients* (for when A is symmetric and positive-definite) and *GMRES*.

Preconditioning

- Question is then: (i) does $\mathbf{x}_n \to \mathbf{x}$ and (ii) how fast does $\mathbf{x}_n \to \mathbf{x}$?
- For any non-singular matrix P, the system

$$PA\mathbf{x} = P\mathbf{b}$$

is equivalent to the original system $A\mathbf{x} = \mathbf{b}$.

• By choosing *P* appropriately, can obtain (massively) improved convergence—preconditioning

Iterative solvers

- Often A is sparse
- This means that computing Ay for given y is cheap.
- Choose initial guess x₀
- An iterative solver takes in a current guess \mathbf{x}_n and provides an improved solution \mathbf{x}_{n+1} , just using matrix-vector products
- Common iterative solvers are *conjugate gradients* (for when A is symmetric and positive-definite) and *GMRES*.

Preconditioning

- Question is then: (i) does $\mathbf{x}_n \to \mathbf{x}$ and (ii) how fast does $\mathbf{x}_n \to \mathbf{x}$?
- For any non-singular matrix P, the system

$$PA\mathbf{x} = P\mathbf{b}$$

is equivalent to the original system $A\mathbf{x} = \mathbf{b}$.

 By choosing P appropriately, can obtain (massively) improved convergence—preconditioning

Iterative solvers

- Often A is sparse
- This means that computing Ay for given y is cheap.
- Choose initial guess x₀
- An iterative solver takes in a current guess \mathbf{x}_n and provides an improved solution \mathbf{x}_{n+1} , just using matrix-vector products
- Common iterative solvers are *conjugate gradients* (for when A is symmetric and positive-definite) and *GMRES*.

Preconditioning

- Question is then: (i) does $\mathbf{x}_n \to \mathbf{x}$ and (ii) how fast does $\mathbf{x}_n \to \mathbf{x}$?
- For any non-singular matrix P, the system

$$PA\mathbf{x} = P\mathbf{b}$$

is equivalent to the original system $A\mathbf{x} = \mathbf{b}$.

• By choosing *P* appropriately, can obtain (massively) improved convergence—**preconditioning**

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

FEM stages

Solve:

$$\nabla^2 \mathbf{u} + f = 0$$

subject to boundary conditions

$$u = u^*$$
 on Γ_1
 $(\nabla u) \cdot \mathbf{n} = g$ on Γ_2

Set up the mesh and choose basis functions

2 Compute the matrix K and vector **b**:

$$\begin{aligned} \mathcal{K}_{jk} &= \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot \boldsymbol{\nabla} \phi_k \, \mathrm{d} V \\ \boldsymbol{b}_j &= \int_{\Omega} f \phi_j \, \mathrm{d} V + \int_{\Gamma_2} \boldsymbol{g} \phi_j \, \mathrm{d} S \end{aligned}$$

3 Alter linear system $K \mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs

Solve linear system

This gives the solution $u_h(\mathbf{x}) = U_1\phi_1(\mathbf{x}) + \dots U_N\phi_N(\mathbf{x})$

<□ > < @ > < E > < E > E のQ @

The finite element method: assembly

Numerical quadrature

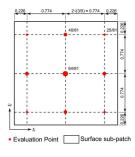
Suppose we want to compute

$$\int_{\text{unit square}} F(x, y) \, \mathrm{d}x \mathrm{d}y$$

We can use the approximation

$$\int_{\text{unit square}} F(x, y) \, \mathrm{d}x \mathrm{d}y \approx \sum_{i} w_i F(x_i, y_i)$$

where (x_i, y_i) are the quadrature points, and w_i the weights



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Numerical quadrature

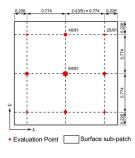
Suppose we want to compute

$$\int_{\text{unit square}} F(x, y) \, \mathrm{d}x \mathrm{d}y$$

We can use the approximation

$$\int_{\text{unit square}} F(x, y) \, \mathrm{d}x \mathrm{d}y \approx \sum_{i} w_{i} F(x_{i}, y_{i})$$

where (x_i, y_i) are the quadrature points, and w_i the weights



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

・ロット (雪) (日) (日) (日)

Computing a finite element matrix/vector by *assembly*

Consider computing the mass matrix $M_{jk} = \int_{\Omega} \phi_j \phi_k \, \mathrm{d}V$, an N by N matrix say, and let's suppose (for clarity only) that we are in 2D.

We **do not** write out the full basis functions explicitly in computing this integral. Instead: firstly, we break the integral down into an integral over elements:

$$M_{jk} = \sum_{\mathcal{K}} \int_{\mathcal{K}} \phi_j \phi_k \,\mathrm{d}V$$

Consider $\int_{\mathcal{K}} \phi_j \phi_k \, dV$. Key point: The only basis functions with are non-zero in the triangle are the 3 basis functions corresponding to the 3 nodes of the element.

Therefore: compute the **elemental contribution to the mass matrix**, a 3 by 3 matrix of the form $\int_{\mathcal{K}} \phi_j \phi_k \, dV$ for 3 choices of j and k only.

Computing a finite element matrix/vector by *assembly*

Consider computing the mass matrix $M_{jk} = \int_{\Omega} \phi_j \phi_k \, \mathrm{d}V$, an N by N matrix say, and let's suppose (for clarity only) that we are in 2D.

We **do not** write out the full basis functions explicitly in computing this integral. Instead: firstly, we break the integral down into an integral over elements:

$$M_{jk} = \sum_{\mathcal{K}} \int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d}V$$

Consider $\int_{\mathcal{K}} \phi_j \phi_k \, dV$. **Key point**: The only basis functions with are non-zero in the triangle are the 3 basis functions corresponding to the 3 nodes of the element.

Therefore: compute the **elemental contribution to the mass matrix**, a **3 by 3** matrix of the form $\int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d}V$ for *3 choices of j and k only*.

Computing a finite element matrix/vector by *assembly*

Consider computing the mass matrix $M_{jk} = \int_{\Omega} \phi_j \phi_k \, \mathrm{d}V$, an N by N matrix say, and let's suppose (for clarity only) that we are in 2D.

We **do not** write out the full basis functions explicitly in computing this integral. Instead: firstly, we break the integral down into an integral over elements:

$$M_{jk} = \sum_{\mathcal{K}} \int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d}V$$

Consider $\int_{\mathcal{K}} \phi_j \phi_k \, dV$. **Key point**: The only basis functions with are non-zero in the triangle are the 3 basis functions corresponding to the 3 nodes of the element.

Therefore: compute the **elemental contribution to the mass matrix**, a **3 by 3** matrix of the form $\int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d}V$ for *3 choices of j and k only*.

Computing a finite element matrix/vector by *assembly*

Consider computing the mass matrix $M_{jk} = \int_{\Omega} \phi_j \phi_k \, dV$, an N by N matrix say, and let's suppose (for clarity only) that we are in 2D.

We **do not** write out the full basis functions explicitly in computing this integral. Instead: firstly, we break the integral down into an integral over elements:

$$M_{jk} = \sum_{\mathcal{K}} \int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d}V$$

Consider $\int_{\mathcal{K}} \phi_j \phi_k \, dV$. **Key point**: The only basis functions with are non-zero in the triangle are the 3 basis functions corresponding to the 3 nodes of the element.

Therefore: compute the **elemental contribution to the mass matrix**, a 3 by 3 matrix of the form $\int_{\mathcal{K}} \phi_j \phi_k \, dV$ for 3 choices of j and k only.

Computing a finite element matrix/vector by *assembly*

Consider computing the mass matrix $M_{jk} = \int_{\Omega} \phi_j \phi_k \, \mathrm{d}V$, an N by N matrix say, and let's suppose (for clarity only) that we are in 2D.

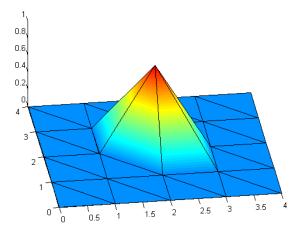
We **do not** write out the full basis functions explicitly in computing this integral. Instead: firstly, we break the integral down into an integral over elements:

$$M_{jk} = \sum_{\mathcal{K}} \int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d}V$$

Consider $\int_{\mathcal{K}} \phi_j \phi_k \, dV$. **Key point**: The only basis functions with are non-zero in the triangle are the 3 basis functions corresponding to the 3 nodes of the element.

Therefore: compute the **elemental contribution to the mass matrix**, a 3 by 3 matrix of the form $\int_{\mathcal{K}} \phi_j \phi_k \, dV$ for 3 choices of j and k only.

Assembly

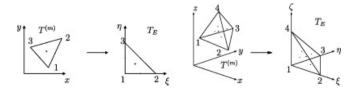


Computing an elemental contribution

We have reduced the problem to computing small matrices/vectors, for example the 3 by 3 matrix

where $\phi_j, \ \phi_k$ are the 3 basis functions corresponding to the 3 nodes of the mesh.

 $\int \phi_j \phi_k \,\mathrm{d} V$



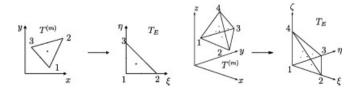
Next, map to the **reference triangle** (also known as the canonical triangle), \mathcal{K}_{ref} , the triangle with nodes (0,0), (0,1), (1,0).

Computing an elemental contribution

We have reduced the problem to computing small matrices/vectors, for example the 3 by 3 matrix

where $\phi_{j}, \ \phi_{k}$ are the 3 basis functions corresponding to the 3 nodes of the mesh.

 $\int \phi_j \phi_k \,\mathrm{d} V$



Next, map to the **reference triangle** (also known as the canonical triangle), \mathcal{K}_{ref} , the triangle with nodes (0,0), (0,1), (1,0).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Reference element (also called the canonical element)

We now need to be able to compute

$$\int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d} \mathsf{x} \mathsf{d} \mathsf{y} = \int_{\mathcal{K}_{\mathrm{ref}}} \phi_j \phi_k \, \mathrm{det} \, J \, \mathrm{d} \xi \mathsf{d} \eta$$

where J is the Jacobian of the mapping from the true element to the canonical element.

The basis functions on the reference triangle are easy to write down

$$\begin{aligned} \phi_1(\xi,\eta) &= 1 - \xi - \eta \\ \phi_2(\xi,\eta) &= \xi \\ \phi_3(\xi,\eta) &= \eta \end{aligned}$$

Computing an elemental contribution

J is also required if $\nabla \phi_i$ is needed (for example, in computing the stiffness matrix), since $\nabla \phi_i = J \nabla_{\xi} N_i$.

Consider the mapping from an element with nodes x_1 , x_2 , x_3 , to the canonical element. The inverse mapping can in fact be easily written down using the basis functions.

$$\mathbf{x}(\xi,\eta) = \sum_{j=1}^{3} \mathbf{x}_j N_j(\xi,\eta)$$

from which it is easy to show that J is the following function of nodal positions

$$J = \operatorname{inv} \begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix}$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

(日) (日) (日) (日) (日) (日) (日) (日)

Computing an elemental contribution

J is also required if $\nabla \phi_i$ is needed (for example, in computing the stiffness matrix), since $\nabla \phi_i = J \nabla_{\xi} N_i$.

Consider the mapping from an element with nodes x_1 , x_2 , x_3 , to the canonical element. The inverse mapping can in fact be easily written down using the basis functions.

$$\mathbf{x}(\xi,\eta) = \sum_{j=1}^{3} \mathbf{x}_{j} N_{j}(\xi,\eta)$$

from which it is easy to show that J is the following function of nodal positions

$$J = \operatorname{inv} \left[\begin{array}{ccc} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{array} \right]$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

FEM stages

Solve:

$$\nabla^2 \mathbf{u} + f = \mathbf{0}$$

subject to boundary conditions

$$u = u^*$$
 on Γ_1
 $(\nabla u) \cdot \mathbf{n} = g$ on Γ_2

Set up the mesh and choose basis functions

2 Compute the matrix K and vector **b**:

$$\begin{aligned} \mathcal{K}_{jk} &= \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot \boldsymbol{\nabla} \phi_k \, \mathrm{d} V \\ b_j &= \int_{\Omega} f \phi_j \, \mathrm{d} V + \int_{\Gamma_2} \mathbf{g} \phi_j \, \mathrm{d} S \end{aligned}$$

- **③** Alter linear system $K \mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

This gives the solution $u_h(\mathbf{x}) = U_1\phi_1(\mathbf{x}) + \dots U_N\phi_N(\mathbf{x})$

Write

$$b_j = \int_{\Omega} f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

- Set up the computational mesh and choose basis functions
- **2** Compute the matrix *K* and vector **b**:
 - Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - For this, need to compute Jacobian J for this element, and loop over quadrature points
 - **@** Add $K_{
 m elem}$ and ${f b}_{
 m elem}^{
 m vol}$ to K and ${f b}^{
 m vol}$ appropriately
 - Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surface}_{elem} (a 2-vector).
 - Add b^{surf} to b^{surf} appropriately
- O Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

Write

$$b_j = \int_{\Omega} f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

- Set up the computational mesh and choose basis functions
- Occupie the matrix K and vector b:
 - Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - For this, need to compute Jacobian *J* for this element, and loop over quadrature points
 - ② Add $K_{
 m elem}$ and ${f b}_{
 m elem}^{
 m vol}$ to K and ${f b}^{
 m vol}$ appropriately
 - Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{elem} (a 2-vector).
 - Add **b**^{surf} to **b**^{surf} appropriately
- Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

Write

$$b_j = \int_\Omega f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

- Set up the computational mesh and choose basis functions
- Occupie the matrix K and vector b:
 - Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - $\bullet\,$ For this, need to compute Jacobian J for this element, and loop over quadrature points
 - ② Add $K_{
 m elem}$ and ${f b}_{
 m elem}^{
 m vol}$ to K and ${f b}^{
 m vol}$ appropriately
 - Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{alem} (a 2-vector).
 - Similar to integrals over elements, again use quadrature
 - Add b^{surf} to b^{surf} appropriately
- Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

Write

$$b_j = \int_\Omega f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

- Set up the computational mesh and choose basis functions
- Occupie the matrix K and vector b:
 - Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - $\bullet\,$ For this, need to compute Jacobian J for this element, and loop over quadrature points
 - **2** Add K_{elem} and $\mathbf{b}_{\text{elem}}^{\text{vol}}$ to K and \mathbf{b}^{vol} appropriately
 - Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{elem} (a 2-vector).
 - Similar to integrals over elements, again use quadrati
 - **a** Add $\mathbf{b}_{ ext{elem}}^{ ext{surf}}$ to $\mathbf{b}^{ ext{surf}}$ appropriately
- Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

Write

$$b_j = \int_\Omega f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

as $\mathbf{b} = \mathbf{b}^{\text{vol}} + \mathbf{b}^{\text{surf}}$

Set up the computational mesh and choose basis functions

Occupie the matrix K and vector b:

- Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - For this, need to compute Jacobian J for this element, and loop over quadrature points
- **2** Add K_{elem} and $\mathbf{b}_{\text{elem}}^{\text{vol}}$ to K and \mathbf{b}^{vol} appropriately
- Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{alem} (a 2-vector).
 - Similar to integrals over elements, again use quadrature

Add b^{surf} to b^{surf} appropriately

• Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs

Solve linear system

FEM stages - full algorithm

Write

$$b_j = \int_\Omega f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

- Set up the computational mesh and choose basis functions
- Occupie the matrix K and vector b:
 - Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - $\bullet\,$ For this, need to compute Jacobian J for this element, and loop over quadrature points
 - **2** Add K_{elem} and $\mathbf{b}_{\text{elem}}^{\text{vol}}$ to K and \mathbf{b}^{vol} appropriately
 - Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{alem} (a 2-vector).
 - Similar to integrals over elements, again use quadrature
 - (a) Add \mathbf{b}_{elem}^{surf} to \mathbf{b}^{surf} appropriately
- If $\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

Write

$$b_j = \int_{\Omega} f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

as $\mathbf{b} = \mathbf{b}^{\text{vol}} + \mathbf{b}^{\text{surf}}$

Set up the computational mesh and choose basis functions

Occupie the matrix K and vector b:

- Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - $\bullet\,$ For this, need to compute Jacobian J for this element, and loop over quadrature points
- **2** Add K_{elem} and $\mathbf{b}_{\text{elem}}^{\text{vol}}$ to K and \mathbf{b}^{vol} appropriately
- Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{elem} (a 2-vector).
 - Similar to integrals over elements, again use quadrature
- (a) Add \mathbf{b}_{elem}^{surf} to \mathbf{b}^{surf} appropriately
- **(a)** Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs

Solve linear system

FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

- We consider *one possible* approach the appropriate design will depend fundamentally on the precise nature of the solver required (eg, a solver for a particular equation versus a general solver of several)
- Purple represents an abstract class/method, red represents a concrete class or implemented method, blue represents a self-contained class (no inheritance).
- Important members or methods of the classes will be given, but obvious extra methods will be omitted, such as Get/Set methods

FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

- We consider *one possible* approach the appropriate design will depend fundamentally on the precise nature of the solver required (eg, a solver for a particular equation versus a general solver of several)
- Purple represents an abstract class/method, red represents a concrete class or implemented method, blue represents a self-contained class (no inheritance).
- Important members or methods of the classes will be given, but obvious extra methods will be omitted, such as Get/Set methods

FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

- We consider *one possible* approach the appropriate design will depend fundamentally on the precise nature of the solver required (eg, a solver for a particular equation versus a general solver of several)
- Purple represents an abstract class/method, red represents a concrete class or implemented method, blue represents a self-contained class (no inheritance).
- Important members or methods of the classes will be given, but obvious extra methods will be omitted, such as Get/Set methods

Object-oriented design

What are the self-contained 'concepts' (objects) that form the overall simulation code, and what functionality should each of these objects have?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Geometry

Node

Member var: mLocation ▷ a vector Member var: mIsBoundaryNode ▷ a boolean (true/false)

Element

Member var: mNodes (Pointers to) the 3 nodes (assuming a 2d simulation) of this element Method: ComputeJacobian()

Method: ComputeJacobianDeterminant()

SurfaceElement

Member var: mNodes

 \triangleright (Pointers to) the 2 nodes of this element

 \triangleright Also has corresponding methods to the Jacobian methods above

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometry

Mesh	
mNodes	
⊳ a li	st of Node objects
mElements	
⊳ a li.	st of Element objects
mBoundaryElements	
ho a list of surface elements (SurfaceElement) on the boundary	
Method:	ReadFromFile(filename)
Method:	GenerateRegularMesh(width,height,stepsize)
Method:	Refine()

Note

• Here, boundary nodes/elements represent the *entire* boundary—'mesh' concept is self-contained and **not** dependent on PDE problem being solved.

Boundary conditions

- There are various ways this could be implemented
- Key point: the implementation requires that
 - Dirichlet BCs be defined at boundary nodes
 - Neumann BCs be defined on boundary elements (ie element interiors)

BoundaryConditions<DIM>

mDirichletBoundaryNodes mDirichletValues mNeumannBoundaryElements mNeumannValues

AddDirichletBoundaryCondition(node,dirichletBcValue) AddNeumannBoundaryCondition(boundaryElement,neumannBcValue)

A simple solver

Suppose we want to write a solver for Poisson's equation $\nabla^2 u = f$ for general forcing terms $f(\mathbf{x})$ and general boundary conditions. The solver class could be self-contained, and look like:

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

- Initialise a matrix K and vector b
- (a) Set up stiffness matrix $K_{ij} = \int_{\Omega} \phi_i \phi_j \, \mathrm{d}V$

- Similarly, loop over elements and assemble $b^{\text{vol}} = \int_{-\infty}^{\infty} f \phi_i \, dV$
- Loop over Neumann boundary elements (using boundaryConditions) and assemble $b_i^{\text{surf}} = \int_{\Gamma_2} g \phi_i \, \mathrm{d}S$
- Alter the linear system KU = b^{vol} + b^{surf} to take the Dirichlet BCs into account (using boundaryConditions again).
- Solve the linear system

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

- **(**) Initialise a matrix K and vector **b**
- **2** Set up stiffness matrix $K_{ij} = \int_{\Omega} \phi_i \phi_j \, \mathrm{d}V$

- Similarly, loop over elements and assemble $b_i^{\mathsf{vol}} = \int_\Omega f \phi_i \, \mathrm{d} V$
- Loop over Neumann boundary elements (using boundaryConditions) and assemble $b_i^{surf} = \int_{\Gamma_2} g \phi_i \, \mathrm{d}S$
- Alter the linear system KU = b^{vol} + b^{surf} to take the Dirichlet BCs into account (using boundaryConditions again).
- Solve the linear system

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

- **(**) Initialise a matrix K and vector **b**
- **2** Set up stiffness matrix $K_{ij} = \int_{\Omega} \phi_i \phi_j \, \mathrm{d}V$
 - Loop over elements of mesh ("mesh.GetNumElements()", "mesh.GetElement(i)")
 - For each element set-up the elemental stiffness matrix loop over quadrature points, call element.GetJacobian() etc
 - Add elemental contribution to K
- ② Similarly, loop over elements and assemble $b_i^{\mathsf{vol}} = \int_\Omega f \phi_i \, \mathrm{d} V$
- Loop over Neumann boundary elements (using boundaryConditions) and assemble $b_i^{surf} = \int_{\Gamma_2} g \phi_i \, \mathrm{d}S$
- Alter the linear system KU = b^{vol} + b^{surf} to take the Dirichlet BCs into account (using boundaryConditions again).
- Solve the linear system

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

- **(**) Initialise a matrix K and vector **b**
- 2 Set up stiffness matrix $K_{ij} = \int_{\Omega} \phi_i \phi_j \, \mathrm{d}V$
 - Loop over elements of mesh ("mesh.GetNumElements()", "mesh.GetElement(i)")
 - For each element set-up the elemental stiffness matrix loop over quadrature points, call element.GetJacobian() etc
 - \bigcirc Add elemental contribution to K
- igle Similarly, loop over elements and assemble $b_i^{
 m vol}=\int_\Omega f\phi_i\,{
 m d} V$
- Loop over Neumann boundary elements (using boundaryConditions) and assemble $b_i^{surf} = \int_{\Gamma_2} g \phi_i \, \mathrm{d}S$
- Alter the linear system KU = b^{vol} + b^{surf} to take the Dirichlet BCs into account (using boundaryConditions again).
- Solve the linear system

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

- **(**) Initialise a matrix K and vector **b**
- 2 Set up stiffness matrix $K_{ij} = \int_{\Omega} \phi_i \phi_j \, \mathrm{d}V$
 - Loop over elements of mesh ("mesh.GetNumElements()", "mesh.GetElement(i)")
 - Por each element set-up the elemental stiffness matrix loop over quadrature points, call element.GetJacobian() etc
 - Add elemental contribution to K
- ② Similarly, loop over elements and assemble $b_i^{\mathsf{vol}} = \int_\Omega f \phi_i \, \mathrm{d} V$
- Loop over Neumann boundary elements (using boundaryConditions) and assemble $b_i^{\text{surf}} = \int_{\Gamma_2} g \phi_i \, \mathrm{d}S$
- Alter the linear system KU = b^{vol} + b^{surf} to take the Dirichlet BCs into account (using boundaryConditions again).
- Solve the linear system

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

- **(**) Initialise a matrix K and vector **b**
- 2 Set up stiffness matrix $K_{ij} = \int_{\Omega} \phi_i \phi_j \, \mathrm{d}V$
 - Loop over elements of mesh ("mesh.GetNumElements()", "mesh.GetElement(i)")
 - Por each element set-up the elemental stiffness matrix loop over quadrature points, call element.GetJacobian() etc
 - \bigcirc Add elemental contribution to K
- ② Similarly, loop over elements and assemble $b^{\mathsf{vol}}_i = \int_\Omega f \phi_i \, \mathrm{d} V$
- Loop over Neumann boundary elements (using boundaryConditions) and assemble $b_i^{surf} = \int_{\Gamma_2} g \phi_i \, \mathrm{d}S$
- Alter the linear system KU = b^{vol} + b^{surf} to take the Dirichlet BCs into account (using boundaryConditions again).
- Solve the linear system

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

- **()** Initialise a matrix K and vector **b**
- 2 Set up stiffness matrix $K_{ij} = \int_{\Omega} \phi_i \phi_j \, \mathrm{d}V$
 - Loop over elements of mesh ("mesh.GetNumElements()", "mesh.GetElement(i)")
 - Por each element set-up the elemental stiffness matrix loop over quadrature points, call element.GetJacobian() etc
 - **③** Add elemental contribution to K
- **③** Similarly, loop over elements and assemble $b_i^{\text{vol}} = \int_{\Omega} f \phi_i \, \mathrm{d}V$
- Loop over Neumann boundary elements (using boundaryConditions) and assemble $b_i^{\text{surf}} = \int_{\Gamma_2} g\phi_i \, \mathrm{d}S$
- Alter the linear system KU = b^{vol} + b^{surf} to take the Dirichlet BCs into account (using boundaryConditions again).
- Solve the linear system

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

- **(**) Initialise a matrix K and vector **b**
- 2 Set up stiffness matrix $K_{ij} = \int_{\Omega} \phi_i \phi_j \, \mathrm{d}V$
 - Loop over elements of mesh ("mesh.GetNumElements()", "mesh.GetElement(i)")
 - Por each element set-up the elemental stiffness matrix loop over quadrature points, call element.GetJacobian() etc
 - \bigcirc Add elemental contribution to K
- **③** Similarly, loop over elements and assemble $b_i^{\text{vol}} = \int_{\Omega} f \phi_i \, \mathrm{d}V$
- Loop over Neumann boundary elements (using boundaryConditions) and assemble $b_i^{\text{surf}} = \int_{\Gamma_2} g \phi_i \, \mathrm{d}S$
- Alter the linear system KU = b^{vol} + b^{surf} to take the Dirichlet BCs into account (using boundaryConditions again).
- Solve the linear system

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

- **(**) Initialise a matrix K and vector **b**
- 2 Set up stiffness matrix $K_{ij} = \int_{\Omega} \phi_i \phi_j \, \mathrm{d}V$
 - Loop over elements of mesh ("mesh.GetNumElements()", "mesh.GetElement(i)")
 - Por each element set-up the elemental stiffness matrix loop over quadrature points, call element.GetJacobian() etc
 - \bigcirc Add elemental contribution to K
- **3** Similarly, loop over elements and assemble $b_i^{\text{vol}} = \int_{\Omega} f \phi_i \, \mathrm{d}V$
- Loop over Neumann boundary elements (using boundaryConditions) and assemble $b_i^{\text{surf}} = \int_{\Gamma_2} g \phi_i \, \mathrm{d}S$
- Alter the linear system $K\mathbf{U} = \mathbf{b}^{\text{vol}} + \mathbf{b}^{\text{surf}}$ to take the Dirichlet BCs into account (using boundaryConditions again).

Solve the linear system

PoissonEquationSolver:

Solve(mesh,abstractForce,boundaryConditions)

- **(**) Initialise a matrix K and vector **b**
- 2 Set up stiffness matrix $K_{ij} = \int_{\Omega} \phi_i \phi_j \, \mathrm{d}V$
 - Loop over elements of mesh ("mesh.GetNumElements()", "mesh.GetElement(i)")
 - Por each element set-up the elemental stiffness matrix loop over quadrature points, call element.GetJacobian() etc
 - **③** Add elemental contribution to K
- **③** Similarly, loop over elements and assemble $b_i^{\text{vol}} = \int_{\Omega} f \phi_i \, \mathrm{d}V$
- Loop over Neumann boundary elements (using boundaryConditions) and assemble $b_i^{\text{surf}} = \int_{\Gamma_2} g \phi_i \, \mathrm{d}S$
- Alter the linear system $K\mathbf{U} = \mathbf{b}^{\text{vol}} + \mathbf{b}^{\text{surf}}$ to take the Dirichlet BCs into account (using boundaryConditions again).
- Solve the linear system

A simple solver

A (possible) more complete interface

PoissonEquationSolver:

```
PoissonEquationSolver(mesh,abstractForce,boundaryConditions)
Solve()
PlotSolution()
PlotForce()
ComputeQOI()
WriteSolutionToFile(filename)
```