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Nonlinear problems

Consider a nonlinear elliptic problem, such as

∇ · (D(u)∇u) + f = 0

with boundary conditions

u = 0 on Γ1

D(u)∇u · n = g on Γ2

Computing the weak form as before, we obtain: find u ∈ V0 satisfying∫
Ω

(D(u)∇u) ·∇v dV −
∫

Ω

fv dV −
∫

Γ2

gv dS = 0 ∀v ∈ V0

Write this as: find u ∈ V0 satisfying

F(u, v) = 0 ∀v ∈ V0
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Nonlinear problems

The finite element problem is obtained as before: find uh ∈ Vh
0 satisfying

F(uh, v) = 0 ∀v ∈ Vh
0

i.e. find coefficients U1, . . . ,UN of uh =
∑

Uiφi such that

F(uh, φi ) = 0 for i = 1, . . . ,N

This is a general N-dimensional nonlinear system.

An iterative approach is required to solve nonlinear systems. Let uk
h

(equivalently, Uk = [Uk
1 , . . . ,U

k
N ]) be the current guess. Then the vector Fk

defined by
F k
i = F(uk

h , φi )

is known as the k-th residual vector. We require a guess satisfying

‖Fk‖ < TOL
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Newton’s method

Suppose we want to solve the nonlinear set of N equations

F(U) = 0

Given an initial guess U0, Newton’s method is: let Uk+1 = Uk + δUk+1, where
δUk+1 satisfies the linear system

J(Uk) δUk+1 = −F(Uk)

where Jij = ∂Fi
∂Uj

.

Newton’s method provides quadratic convergence when the current guess is
‘close enough’ to the true solution. To avoid initial divergence however, it may
be necessary to use damping

Uk+1 = Uk + skδUk+1

for some sk generally smaller than 1. (There are various ways to go about
choosing sk , the simplest is to pick one from a small list of possibilities which
leads to the smallest ‖F‖).
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Alternative nonlinear solvers

There are other methods for solving nonlinear systems, for example solve
x = f (x) using fixed point iterations: xn+1 = f (xn).

For F(U) = 0, this is
Un+1 = Un + F(Un)

Very loosely speaking, methods which use the Jacobian will be more
effective.

If used, the Jacobian can be either provided analytically (if so, has to be
calculated on paper on paper and coded up); or estimated numerically
(slow).
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Simplifications with time-dependent problems

Nonlinear problems that are time-dependent can sometimes be dealt with
straightforwardly. Consider, for example, a nonlinear diffusion equation:

ut = ∇ · (D(u)∇u)

Consider some time-discretisations. The following is fully-explicit so will suffer
from stability problems:

un+1 − un

∆t
= ∇ · (D(un))∇un)

However, this next discretisation is semi-implicit and no longer nonlinear (linear
in un+1)

un+1 − un

∆t
= ∇ · (D(un))∇un+1)
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Solving nonlinear problems with finite elements and Newton’s method

Firstly, decide whether the Jacobian (if used) is to be computed numerically or
analytically. If the latter, both the residual and Jacobian need to be
‘assembled’ in a finite element manner.

Choose a (good!) initial guess U0

Compute the initial residual F0 = F(U0) (loop over elements, compute
elemental contribution, add to full vector).

While ‖Fk‖ > TOL

Compute J(Uk ) (loop over elements, compute elemental contribution, add
to full matrix).
Solve J δU = −Fk .
Set Uk+1 = Uk + s δU, choosing s appropriately.
Compute Fk+1 (loop over elements, compute elemental contribution, add to
full vector). [Now increment k]
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Summary

ODEs

Various solvers possible, which differ in their order of convergence and
stability properties

Explicit solvers are fast, implicit solvers are stable.

We haven’t discussed adaptive solvers, which tend to be the best type

PDEs

Finite differences is easy to implement and appropriate for simple
equations & regular geometries & no Neumman boundary conditions

Finite elements is better for more complicated problems

For finite elements: set up weak problem (on paper), then: choose
mesh/basis functions, assemble linear system, solve linear system
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Summary

Nonlinear problems

Best method is usually Newton’s method

Really need to analytically calculate the Jacobian though, which can be
painful

Other options: numerical Jacobian, fixed point, semi-implicit discretisation
for time-dependent problems

Linear systems

Direct solvers / Gaussian elimination is appropriate for smaller problems

Iterative solvers are used for larger problems

Preconditioning the system is important for iterative methods
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Summary

Computing integrals

Numerical quadrature rules make this easy

Transform integral to reference triangle or unit square - evaluate function
at quad points and sum

Just need to look up quadrature points and weights
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An overview of alternative methods for solving PDEs (not
lectured)
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Finite volume methods

Very commonly used for hyperbolic PDEs (for which the FE method tends
to have trouble) and in computational fluid dynamics

As with FE, FV is based on integral formulations.

The domain is broken down into control volumes (similar to ‘elements’).

One unknown computed per element (i.e. no need for ‘node’)—this can be
considered to be the average value of u in the control volume.

Consider the advection equation ut +∇ · f(u) = 0. Integrate over a control
volume Ωi of volume Vi :∫

Ωi

ut dV =

∫
Ωi

−∇ · f(u) dV = −
∫
∂Ωi

f(u) · ndS

Using an explicit time-discretisation, and
∫

Ωi
Un dV ≈ ViU

n
i , we obtain

Un+1
i = Un

i −
∆t

Vi

∫
∂Ωi

f(un) · ndS

See eg http://www.comp.leeds.ac.uk/meh/Talks/FVTutorial.pdf for
more details
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Methods of weighted residuals

In FE we used an integral formulation of the PDE, eg: find u ∈ V such that:∫
Ω

∇u ·∇v dV =

∫
Ω

fv dV +

∫
Γ2

gv dS ∀v ∈ V

Write this as: find u ∈ V such that: a(u, v) = l(v) ∀v ∈ V

To discretise the integral equation, we replace V by finite-dimensional
subspaces (of dimension N): find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

Choosing bases:

W1 = span{φ1, . . . , φN}
W2 = span{χ1, . . . , χN}

(ie uapprox =
∑
αiφi ), we can obtain N equations for N unknowns.

Different methods are based on different choices of W1 and W2.
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Methods of weighted residuals

Find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

with:

W1 = span{φ1, . . . , φN}.
W2 = span{χ1, . . . , χN}

Galerkin methods: use φ = χ, i.e. W1 =W2

Collocation methods: use δ-functions for χ’s (i.e. replace integrals with
point evaluations (at N collocation points x1, x2, . . . , xN)
(Continuous) Galerkin FEM: use W1 =W2 and take the φi to be
continuous and piecewise polynomial on element

As we know in practice we just consider 1 canonical element and define the
basis functions on this (the shape functions)
Elements could be tetrahedral/hexahedral, shape functions could be linear,
quadratic, cubic Hermite and more...

Discontinuous Galerkin FEM: φi piecewise polynomial but no longer
continuous across elements

Spectral methods: φk globally continuous and infinitely differentiable (for
example, φk(x) = exp(ikx))
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Elements could be tetrahedral/hexahedral, shape functions could be linear,
quadratic, cubic Hermite and more...

Discontinuous Galerkin FEM: φi piecewise polynomial but no longer
continuous across elements

Spectral methods: φk globally continuous and infinitely differentiable (for
example, φk(x) = exp(ikx))
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Spectral methods

There are both spectral-collocation methods (work with the strong form)
or spectral-Galerkin methods (work with the weak form)

Various choices of basis functions (W1) are possible, for example

For problems with periodic boundary conditions, use φk(x) = exp(ikx)
i.e. uapprox =

∑
αkφk approximates u with a cut-off Fourier series

For problems with non-periodic boundary conditions: use a set of
‘orthogonal polynomials’ for φk , such a Legendre or Chebychev
polynomials

For problems with smooth data (initial condition, boundary conditions,
forces etc are smooth functions), spectral methods give exceptional rates
of convergence.

For more info, see e.g. http://www.lorene.obspm.fr/palma.pdf

http://www.lorene.obspm.fr/palma.pdf
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