
Oxford University Computing Laboratory

Cost-effective development of flexible
self-* applications

Radu Calinescu

Computing Laboratory
University of Oxford

Oxford University Computing Laboratory

Outline

• Motivation

• Generic self-* framework

• Self-* application development

Oxford University Computing Laboratory

Motivation

cost-effective

word
processing

spreadsheets email

flexible

cost-effective

flexible

no general-purpose
architecture &

generic development
approaches for

self-* applications

Oxford University Computing Laboratory

Framework objectives

Significant reduction in development effort/expertise/cost
– component reuse
– off-the-shelf technologies & tools

Major improvement in application flexibility/robustness
– model-based development
– automated code generation

New powerful capabilities
– new classes of policies
– support for system-of-systems development

Oxford University Computing Laboratory

Typical drawbacks of self-* architectures

Oxford University Computing Laboratory

Typical drawbacks of self-* architectures

application-specific metadata hard-coded
within the autonomic manager

Oxford University Computing Laboratory

Typical drawbacks of self-* architectures

resource-specific code

application-specific metadata hard-coded
within the autonomic manager

Oxford University Computing Laboratory

Typical drawbacks of self-* architectures

resource-specific code

application-specific metadata hard-coded
within the autonomic manager

manually-implemented interfaces

Oxford University Computing Laboratory

Typical drawbacks of self-* architectures

statically-defined high-level interfaces

resource-specific code

application-specific metadata hard-coded
within the autonomic manager

manually-implemented interfaces

Oxford University Computing Laboratory

Generic self-* architecture

statically-defined high-level interfaces

resource-specific code

supply the “knowledge” at runtime to
application-oblivious autonomic manager

manually-implemented interfaces

Oxford University Computing Laboratory

Generic self-* architecture

statically-defined high-level interfaces

resource-oblivious code

supply the “knowledge” at runtime to
application-oblivious autonomic manager

manually-implemented interfaces

Oxford University Computing Laboratory

Generic self-* architecture

statically-defined high-level interfaces

resource-oblivious code

supply the “knowledge” at runtime to
application-oblivious autonomic manager

automatic generation of autonomic
manager interfaces & computer-aided
development of resource interfaces

Oxford University Computing Laboratory

Generic self-* architecture

policy-driven, runtime generation of
high-level interfaces

resource-oblivious code

supply the “knowledge” at runtime to
application-oblivious autonomic manager

automatic generation of autonomic
manager interfaces & computer-aided
development of resource interfaces

Oxford University Computing Laboratory

Implementation

Policy engine = (.NET/C#) web service
• platform independence
• standards-based support for security
• loose coupling

Oxford University Computing Laboratory

Implementation

Policy engine = (.NET/C#) web service

Knowledge = XML-encoded model of
resource parameters & behaviour
• off-the-shelf tools to process model

(XSLT engines, XSD code generators)

Oxford University Computing Laboratory

Implementation

Policy engine = (.NET/C#) web service

Knowledge = XML-encoded model of
resource parameters & behaviour

Manageability adaptors = web services
that subclass abstract Adaptor class
• Adaptor class implements the bulk of

the functionality
• several other components generated

automatically from the system model

Policy engine interface = generated
online from model using OO reflection

Oxford University Computing Laboratory

Implementation

Policy engine = (.NET/C#) web service

Knowledge = XML-encoded model of
resource parameters & behaviour

Manageability adaptors = web services
that subclass abstract Adaptor class

Policy engine interface = generated
online from model using OO reflection

High-level interfaces = policy-driven,
automatically generated web services
• expose system to its environment
• specified by “resource definition” policies
• enable system integration into self-*

systems of systems

Oxford University Computing Laboratory

Implementation – hierarchical system of systems

Policy engine = (.NET/C#) web service

Knowledge = XML-encoded model of
resource parameters & behaviour

Manageability adaptors = web services
that subclass abstract Adaptor class

Policy engine interface = generated
online from model using OO reflection

High-level interfaces = policy-driven,
automatically generated web services

Oxford University Computing Laboratory

Implementation – system-of-systems federation

Policy engine = (.NET/C#) web service

Knowledge = XML-encoded model of
resource parameters & behaviour

Manageability adaptors = web services
that subclass abstract Adaptor class

Policy engine interface = generated
online from model using OO reflection

High-level interfaces = policy-driven,
automatically generated web services

Oxford University Computing Laboratory

Application development

DeploymentGeneration Exploitation

generate/implement
application-specific

components

(system developer)

configure policy
engine & deploy new

components

(system administrator)

specify/select
self-* policies

(system user)

Oxford University Computing Laboratory

Application development

DeploymentGeneration Exploitation

generate/implement
application-specific

components

(system developer)

configure policy
engine & deploy new

components

(system administrator)

specify/select
self-* policies

(system user)

Sample self-* application

Allocate data-centre servers to clusters of different priorities &
variable workloads such that they achieve user-defined levels
of availability in the presence of cluster component failures.

Oxford University Computing Laboratory

• Build XML model describing the
system resources, their parameters
and behaviour

• Instance of pre-defined XML schema
(meta-model)

(XML) system
model

Generation

Oxford University Computing Laboratory

(XML) system
model

Generation

Oxford University Computing Laboratory

(XML) system
model

Generation

Oxford University Computing Laboratory

(XML) system
model

G2: XSL
transformation

System (XML)
schema

Generation

Oxford University Computing Laboratory

(XML) system
model

G2: XSL
transformation

System (XML)
schema

G3: XSD code
generation

System data
types (classes)

Generation

Oxford University Computing Laboratory

(XML) system
model

G2: XSL
transformation

System (XML)
schema

G3: XSD code
generation

System data
types (classes)

G4: generic service
subclassing

Manageability
adaptor

Generation

Oxford University Computing Laboratory

• Use web
client to
supply model
to the policy
engine

D1: policy
engine

configuration

Configured
policy engine

Deployment

(XML) system
model

G2: XSL
transformation

System (XML)
schema

G3: XSD code
generation

System data
types (classes)

G4: generic service
subclassing

Manageability
adaptor

Generation

Oxford University Computing Laboratory

• Use web
client to
supply model
to the policy
engine

D1: policy
engine

configuration

Configured
policy engine

Deployment

(XML) system
model

G2: XSL
transformation

System (XML)
schema

G3: XSD code
generation

System data
types (classes)

G4: generic service
subclassing

Manageability
adaptor

Generation

Oxford University Computing Laboratory

D1: policy
engine

configuration

D2:adaptor
deployment

Manageable
resources

Configured
policy engine

Deployment

(XML) system
model

G2: XSL
transformation

System (XML)
schema

G3: XSD code
generation

System data
types (classes)

G4: generic service
subclassing

Manageability
adaptor

Generation

Oxford University Computing Laboratory

D1: policy
engine

configuration

D2:adaptor
deployment

Manageable
resources

Configured
policy engine

Deployment

(XML) system
model

G2: XSL
transformation

System (XML)
schema

G3: XSD code
generation

System data
types (classes)

G4: generic service
subclassing

Manageability
adaptor

Generation

Self-*
system

Exploitation

E2: resource discovery

Oxford University Computing Laboratory

D1: policy
engine

configuration

D2:adaptor
deployment

Manageable
resources

Configured
policy engine

Deployment

(XML) system
model

G2: XSL
transformation

System (XML)
schema

G3: XSD code
generation

System data
types (classes)

G4: generic service
subclassing

Manageability
adaptor

Generation

E1: policy
specification

Self-*
system

Exploitation

E2: resource discovery

Oxford University Computing Laboratory

Utility-function policy

Oxford University Computing Laboratory

Utility-function policy

Oxford University Computing Laboratory

Utility-function policy

Oxford University Computing Laboratory

Utility-function policy

Oxford University Computing Laboratory

Online quantitative analysis in self-* systems

The allocation of data-centre
servers to clusters is managed
automatically, based on high-level
system objectives specified by
data-centre administrators.

Sample self-* application: summary
user-specified
target availabilities

monitored
workload

server allocation
decisions

Autonomic manager

Oxford University Computing Laboratory

so
ftw

ar
e

ha
rd

war
e

da
ta

leg
ac

y
au

to
no

m
ic-

en
ab

led

Allocation of
CPU capacity

Goal-driven
CPU sched.

Disk drive
DPM

Ctrl. of cluster
availability

Dynamic gen.
of web content

m
ain

 se
lf-

*
fu

nc
tio

na
l a

re
as

ac
tio

n
go

al
ut

ili
ty

-fu
nc

tio
n

re
so

ur
ce

-d
ef

in
iti

on

application domainResource type self-* areas & policy type

√

√

√

√

√

√

√

√√

√

√√ √ √ √

√

√

√

√

self-monitoring
self-optimisation

self-monitoring
self-optimisation

dynamic power
management

CPU capacity
allocation

CPU capacity
allocation

availability
management

online report
generation

self-monitoring
self-adaptation

self-configuration
self-protection

self-monitoring
self-generation

Case study summary

	HP_February_2009
	Cost-effective development of flexible self-* applications��Radu Calinescu����Computing Laboratory�University of Oxford�
	Slide Number 2
	Motivation
	Framework objectives
	Typical drawbacks of self-* architectures
	Typical drawbacks of self-* architectures
	Typical drawbacks of self-* architectures
	Typical drawbacks of self-* architectures
	Typical drawbacks of self-* architectures
	Generic self-* architecture
	Generic self-* architecture
	Generic self-* architecture
	Generic self-* architecture
	Implementation
	Implementation
	Implementation
	Implementation
	Implementation – hierarchical system of systems
	Implementation – system-of-systems federation
	Application development
	Application development
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Utility-function policy
	Utility-function policy
	Utility-function policy
	Utility-function policy
	Online quantitative analysis in self-* systems
	Case study summary

