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Framework objectives

Significant reduction in development effort/expertise/cost
– component reuse
– off-the-shelf technologies & tools

Major improvement in application flexibility/robustness
– model-based development
– automated code generation

New powerful capabilities
– new classes of policies
– support for system-of-systems development
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Generic self-* architecture

policy-driven, runtime generation of
high-level interfaces

resource-oblivious code

supply the “knowledge” at runtime to
application-oblivious autonomic manager

automatic generation of autonomic 
manager interfaces & computer-aided 
development of resource interfaces
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Implementation

Policy engine = (.NET/C#) web service
• platform independence
• standards-based support for security 
• loose coupling



Oxford University Computing Laboratory

Implementation

Policy engine = (.NET/C#) web service

Knowledge = XML-encoded model of
resource parameters & behaviour
• off-the-shelf tools to process model

(XSLT engines, XSD code generators)
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resource parameters & behaviour

Manageability adaptors = web services
that subclass abstract Adaptor class
• Adaptor class implements the bulk of

the functionality
• several other components generated

automatically from the system model

Policy engine interface = generated 
online from model using OO reflection
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Implementation

Policy engine = (.NET/C#) web service

Knowledge = XML-encoded model of
resource parameters & behaviour

Manageability adaptors = web services
that subclass abstract Adaptor class

Policy engine interface = generated 
online from model using OO reflection

High-level interfaces = policy-driven,
automatically generated web services
• expose system to its environment
• specified by “resource definition” policies
• enable system integration into self-*

systems of systems
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Implementation – hierarchical system of systems

Policy engine = (.NET/C#) web service

Knowledge = XML-encoded model of
resource parameters & behaviour

Manageability adaptors = web services
that subclass abstract Adaptor class

Policy engine interface = generated 
online from model using OO reflection

High-level interfaces = policy-driven,
automatically generated web services
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Implementation – system-of-systems federation

Policy engine = (.NET/C#) web service

Knowledge = XML-encoded model of
resource parameters & behaviour

Manageability adaptors = web services
that subclass abstract Adaptor class

Policy engine interface = generated 
online from model using OO reflection

High-level interfaces = policy-driven,
automatically generated web services



Oxford University Computing Laboratory

Application development

DeploymentGeneration Exploitation

generate/implement
application-specific 

components

(system developer)

configure policy 
engine & deploy new 

components

(system administrator)

specify/select 
self-* policies 

(system user)
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Application development

DeploymentGeneration Exploitation

generate/implement
application-specific 

components

(system developer)

configure policy 
engine & deploy new 

components

(system administrator)

specify/select 
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Sample self-* application

Allocate data-centre servers to clusters of different priorities &
variable workloads such that they achieve user-defined levels 
of availability in the presence of cluster component failures.
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• Build XML model describing the 
system resources, their parameters 
and behaviour

• Instance of pre-defined XML schema 
(meta-model )

(XML) system
model

Generation
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Online quantitative analysis in self-* systems

The allocation of data-centre 
servers to clusters is managed 
automatically, based on high-level 
system objectives specified by 
data-centre administrators.

Sample self-* application: summary
user-specified
target availabilities

monitored
workload

server allocation
decisions

Autonomic manager
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