UN L ge
OXFORD

LACL Seminar
16 March 2009

Online Quantitative Verification
Capabilities and Challenges

Radu Calinescu

Computing Laboratory, University of Oxford

LACL Seminar
16 March 2009

Outline

@ Introduction

Motivation
Approach

@ Background

Quantitative verification with PRISM

Autonomic computing policies
® Framework

Self-* system development
Policy implementation
@ Challenges

UNIVER

@® Summary

OXFORD

LACL Seminar
16 March 2009

Quantitative verification

Formal technique for establishing quantitative properties of
systems that exhibit probabilistic or real-time behaviour

e probability of system being up > 99.9% of the time
e expected length of request queue for a disk drive

UNIVERS:

OXFORD

LACL Seminar
16 March 2009

UNIVERSITY OF

OXFORD

Quantitative verification

Formal technique for establishing quantitative properties of
systems that exhibit probabilistic or real-time behaviour

e probability of system being up > 99.9% of the time
e expected length of request queue for a disk drive

precise mathematical
model of real-world
system

true/false
— probability
formal specification expected value

of quantitative

. exhaustive
system properties

analysis

LACL Seminar
16 March 2009

UNIVERSITY OF

OXFORD

Online quantitative verification

Verification of required/desirable quantitative properties is
performed at runtime

e analysed model selected based on actual system state
e verification results used to adjust system configuration

running system instance <

parameterised family
of finite-state
system models \ true/false

— probability —»

expected value
required /desirable /

quantitative exhaustive system
system properties analysis reconfiguration

LACL Seminar
16 March 2009

UNIVERS

OXFORD

Predictable system adaptiveness

(IT) systems required to self-adapt in predictable ways to
rapid changes in their workload, environment and objectives

e guaranteed levels of performance and dependability
e compliance with strict constrains

... properties that are traditionally established using (offline)
quantitative verification

LACL Seminar
16 March 2009

Predictable system adaptiveness

(IT) systems required to self-adapt in predictable ways to
rapid changes in their workload, environment and objectives

e context awareness

¢ synthesis of reconfiguration “policies” from high-level,
multi-objective goals

UNIVERS

OXFORD

LACL Seminar
16 March 2009

Approach

Integrate existing quantitative verification tool (PRISM) into
the standard autonomic computing architecture

) Knowledge
A |
I |
v
¥

’ Manageability adaptor
Managed IT components

UNIVERSITY OF

OXFORD

LACL Seminar
16 March 2009

Approach

Integrate existing quantitative verification tool (PRISM) into
the standard autonomic computing architecture

N Knowledge
A |
i |
v
™4

’ Manageability adaptor
Managed IT components

UNIVERSITY OF

OXFORD

LACL Seminar
16 March 2009

UNIVERS

OXFORD

The probabilistic model checker PRISM

Developed by the Oxford Quantitative Analysis and
Verification Group

Supports multiple types of probabilistic models
e discrete-time Markov chains
e continuous-time Markov chains
e Markov decision processes
plus extensions of these models with costs and rewards

Used to analyse systems from a wide range of application
domains

LACL Seminar
16 March 2009

Discrete-/continuous-time Markov chains

DTMC = (S, Sinits P, L)

labelling function, L : § — 247

transition probability matrix, P:S xS —[0,1]
initial state, sii; € S

finite set of states

UNIVER

OXFORD

LACL Seminar
16 March 2009

Discrete-/continuous-time Markov chains

DTMC = <S7 Sinit s P7 L)

labelling function, L : § — 247

transition probability matrix, P:S xS —[0,1]
initial state, sii; € S
finite set of states

CTMC = (Sa Sinit» R; L)

UNIVER

OXFORD

transition rate matrix, R: x5 — R,

LACL Seminar
16 March 2009

Example: dynamic power management

|P0wer manager (PM)|

State State-transition
information commands
- Service provider (SP)
oquester—_LTTT1]—
requester
~—
0 < g < Qmax

Request queue (RQ)

UNIVERSITY OF

OXFORD

LACL Seminar
16 March 2009

Example: dynamic power management

|Power manager (PM)|

State State-transition
information commands

Service provider (SP)

Service
requester :I:I:D:D -
H/_/
0 < ¢ < Qmax
Request queue (RQ)

module RQ
q : [0..Qmax]; / Request queue states
/l State transitions
[request] true —> 1000/interArrivalTime : (q’=min(q+1,Qmax));
[serve] q>1 —> (q’=q-1);
endmodule

UNIVERSITY OF

OXFORD

LACL Seminar
16 March 2009

Example: dynamic power management

|Power manager (PM)|

State State-transition
information commands

- Service provider (SP)
cquester| — _LTTTT]—
requester sleepyy idle g busy
~—

0 < ¢ < Qmax sp=0 sp=1 sp=2

Request queue (RQ)

module SP
sp : [0..2]; // SP states: 0 — sleep, 1 —idle, 2 — busy

Il State transitions

[sleep2idle] sp=0 & q=0 —> sleep2idleRate : (sp’=1);
[sleep2idle] sp=0 & q>0 —> sleep2idleRate : (sp’=2);
[idle2sleep] sp=1 & q=0 —> idle2sleepRate : (sp’=0);
[request] sp=1 —> (sp’=2);

[request] !sp=1 —> true;

[serve] sp=2 & q>1—> serviceRate : (sp’=2);

[serve] sp=2 & q=1 —> serviceRate : (sp’=1);

UNIVERSITY OF enamo le
OXFORD dmodu

LACL Seminar
16 March 2009

Example: dynamic power management

|Power manager (PM)|

State State-transition
information commands

Service
requester :I:I:D:D -
H/_/
0 < ¢ < Qmax sp=0 sp=1 sp=2
Request queue (RQ)

module PM
p: [0..1]; // PM states: O — sleep to idle, 1 — idle to sleep

/I State transitions

[serve] q=1 —> switchToSleepProbability : (p’=1);
[serve] q=1 —> 1—switchToSleepProbability : (p’=0);
[serve] g>1 —> true;

[request] true —> (p’=0);

[sleep2idle] g=Qmax —> (p’=p);

[idle2sleep] p=1 —> (p’=0);

UNIVERSITY C;I' endmOdUIe

(0),4:(0)23D) T

Service provider (SP)

sleeppe idle pgbusy

LACL Seminar
16 March 2009

Cost/reward extensions

DTMC = <S7 Sinit» Pv L)

labelling function, L : § — 247

transition probability matrix, P:S xS — |0, 1]
initial state, spi; € S

finite set of states

CTMC = (S, Sinit, R, L)

transition rate matrix, R: xS — R,
reward structure=(p, r)

f

UNIVER

transition reward function, r:Sx .S — R,
state reward function, p: S — IRy
(0),4:(0)23D)

[m]

=

LACL Seminar
16 March 2009

Example: power utilisation

Power manager (PM)

State State-transition
information commands
Service provider (SP)

Service
requester :D:D:D - w
H/_/

0 < ¢ < Qmax sp=0 sp=1 sp=2

Request queue (RQ)

rewards “power”

sp=0:0.13; /1 0.13W in ’sleep’ state
sp=1:0.95; //0.95W in ’idle’ state
sp=2: 2.15; /1 2.15W in ’busy’ state

[sleep2idle] true : 7.0; /17] *sleep” — ’idle
[idle2sleep] true : 0.067; //0.067] ’idle’ — ’sleep’
endrewards

UNIVERSITY OF

OXFORD

LACL Seminar
16 March 2009

Quantitative property specification

PCTL—Probabilistic Computational Tree Logic for DTMCs*
CSL—Continuous Stochastic Logic for CTMCs*

UN ITY O
OXFORD

LACL Seminar
16 March 2009

Quantitative property specification

PCTL—Probabilistic Computational Tree Logic for DTMCs*
CSL—Continuous Stochastic Logic for CTMCs*

WP is true with

+ PCTL syntax: / probability ~p
— b = truelal|dAd| D | o [w] (state formulas)
—p =Xd | odUskd | dUD (path formulas)

' A
:-‘ T ;,..-..E, “ bo un ded E“I:‘ t .,.;“.E

until” -

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,>}, k e N

UNIVER

OXFORD

LACL Seminar
16 March 2009

UNIVERS

OXFORD

Quantitative property specification

PCTL—Probabilistic Computational Tree Logic for DTMCs*
CSL—Continuous Stochastic Logic for CTMCs*

* augmented with costs/rewards

expected
reward is ~r

PR TWT PR IIERT [R [CH]T | R, [F]

AN I

‘ “instantaneous” | | “cumulative” | i “reachability”

wherere R_ g, ~ € {<,> =<,z}, ke N

LACL Seminar
16 March 2009

Example: power use; request queue length

Power manager (PM)

State
information

Service
m -
H/—/
0 < ¢ < Qmax
Request queue (RQ)

State-transition
commands

Service provider (SP)

sp=0 sp=1 sp=2

| -+ interArrivalTine=200ms - inter ArrivalTime=500ms|

(W]

Expected power

-
[
th

1.00

0.73

0.50

i

B
'_.'

.

"

R B

R [c<100] |

0.25 0.50 075
switchToSleepProbability

= 10.0

=]

5

= 7.5

=

2

= 5.0

=

k)

E 2.5
o Length

g 7| R*™c<100]
0.0

0.25 0.50 0.75
switchToSleepProbability

LACL Seminar
16 March 2009

The “knowledge” module

Ki led
Manageability adaptor

A
I
I

A3

|
|
v
K

‘ Managed IT components ‘

Knowledge=(S, C, f)

operational model, f: S x C + S

configuration (modifiable system parameters)

state (“read-only” system parameters)

[m]

=

LACL Seminar
16 March 2009

Utility-function autonomic policies

Knowledge=(S, C, f)

operational model, f: S x C + S

configuration (modifiable system parameters)
state (“read-only” system parameters)
Given a utility function

utility : S x C' — Ry,

UNIVER

OXFORD

adjust the configurable system parameters such as to
maximise the system utility “at all times”

for sp € S, find ¢ € C s.t. ¢ = argmax utility(f (s, x), x)

xeC }

[m]

=

LACL Seminar
16 March 2009

Example: multi-objective utility function

= objective;

optirnal sub-optimal zerco-utlity

0 I, u, power [mW]

n
utility = Z w;objective;

power-driven objective

200 ..

wjobjective;

2
izt

>

i\\\

\\\\\\\\‘\““\\\\\\\ 1

utility:
=)

2000
1500

1000 power [mW]

500
2 g

% optimal sub-optimal zero-utility
..:._'.
S
1
0
0 L i, queue length

Combined utility (wy=w,=100; 1= 9; uy= 11; 1= 0; uy= 1200)

response-driven objective

LACL Seminar
6 March 2009

Self-* system development

Markov
chain

autonomic

model manager
transformation [Knowledge configuration| Conﬁgur?d
autonomic
@ % module @
manager

model-driven
generation

o34

Legacy

% policy
specification

adaptor
deployment

IManageable|

component|
adaptors

Generation

Self-*
system

@ components|

Deployment

@ component
discovery

Exploitation

(Rove

step

automated

&%

step

computer-assisted %

manual
step

LACL Seminar
6 March 2009

Self-* system development

autonomic
model manager L
q policy
Markov transformation Knowledge configuration) S&iﬁi‘;?g % specification
chain @ % module @ manager
A model-driven @% Self-*
generation system
adaptor
Legacy deployment[-
component| YimeppeElle component
@ components| @ . P
adaptors discovery
Generation Deployment Exploitation
(automated computer-assisted manual)
Key Q step @ % step % step

PRISM discrete-/continuous-time Markov chain
- available from the formal verification of the system
- newly developed

LACL Seminar
6 March 2009

Self-* system development

model
transformation

Knowledge

Markov
chain

autonomic

module

o34

&%

model-driven
generation

Legacy

policy
specification

%

manager
configuration| Configured
@ autonomic
manager

adaptor
deployment

IManageable|

component|
adaptors

Generation

Self-*
system

@ icomponents|

Deployment

@ component
discovery

Exploitation

CT

step

automated

&%

step

computer-assisted %

manual
step

Automated transformation, except for the partition of
the Markov chain parameters into state and configuration

LACL Seminar
6 March 2009

Self-* system development

Markov
chain

autonomic

model manager
transformation [Knowledge configuration| Conﬁgur?d
autonomic
@ % module @
manager

% policy
specification

model-driven @% Self-*
generation system
/ adaptor
Legacy deployment[-
EPTTOETE Mlanageable e
@ components| @ . P
adaptors discovery
Generation Deployment Exploitation
(automated computer-assisted manual)
Key Q step @ % step % step

Off-the-shelf tools (XSLT engine, data type generator)
used to generate most adaptor code

LACL Seminar

~ = Self-* system development

autonomic
model manager 1
B policy
Markov transformation Knowledge it S&I;fjil;?: % specification
et & % module Ly &3
—T manager
m Self-*
— | generation @% system
adaptor
Legacy deployment[-
component Manageable component
@ icomponents| @ . P
adaptors discovery
Generation Deployment Exploitation
(automated computer-assisted manual)
Key Q step @ % step % step

Knowledge module supplied at runtime to autonomic
manager instance

LACL Seminar

~ = Self-* system development

autonomic
model manager % policy

. configuration| Configured 5 q
I\;Ilaf'kov transformation Knowledge autonomic specification
chain

@ % f"_‘ij‘y @ manager

model-driven @% Self-*
generation system
KLY \
adaptor
Legacy deployment| N rerarecesesitd
component @ icomponents| @ O
adaptors 12 discovery
Generation Deployment Exploitation

automated computer-assisted manual
ste ste
Key Q step @ % 3o) % P

Adaptor deployment leads to automatic component
discovery by the autonomic manager

LACL Seminar

~ = Self-* system development

autonomic
model manager .
configuration| Configured % P'Ollcy.
specification

Markov ||transformation[Knowledge ot
chain Q | —v l

Q % module
manager _|H
model-driven @% Self-*
generation H system
adaptor
Legacy deployment| P
component] @ component
lcomponents| .
adaptors discovery
Generation Deployment Exploitation

computer-assisted manual)

t ted
G{ey @ e @ % step step

step

Utility-function policy specified by system administrator
- multi-objective utility function defined in terms of
cost/reward structures from the PRISM Markov chain

» utility function example

LACL Seminar
16 March 2009

UNIVER OF

OXFORD

Policy implementation

Periodically and/or when the autonomic manager is notified
about system changes:

1 foreach component c in the policy scope do

2 extract parameterised model of ¢ from the knowledge module
3 get state parameters of ¢ from the manageability adaptors

4 evaluate quantitative properties used in the utility function

5 choose configuration parameters that maximise the utility of ¢

LACL Seminar
16 March 2009

Example: dynamic power management

200 o

1winhjecliui
g

2
oo

utility

=~ =
%oyﬁmal sub-optimal zero-utility % optimal sub-optimal zero-utility
£ 2
2 2
1 1
| |
| |
| |
0l | Al
0 I, u, power[mW] 0L u, queue length
power-driven objective response-driven objective

500

2 g

Combined utility (wy=wy=100; [;=9; uy= 11; [,= 0; u,= 1200)

2000

power [mW]

V4

LACL Seminar
16 March 2009

Example 2: cluster availability management

Multi-objective utility function:
© achieve target availability in the presence of failures
and variations in the number of requested servers
® minimise number of allocated servers

expected availability
oOooooO oooooo

0984 ! Required servers

0.982 =5 =7 =10 =12

456 78 91011121314151617181920212223 242526

UNIVERSITY OF allocated servers
OXFORD

LACL Seminar
16 March 2009

Challenges: inherited from offline verification

State-space explosion
e new model checking techniques still needed

Expert knowledge required to produce "good" models

e more models should be built as part of the system
development process

UNIVERS:

OXFORD

LACL Seminar
16 March 2009

UNIVERS

OXFORD

Challenges: specific to online verification

Model checkers not typically intended for online use
e use command-line interfaces (lower-level APls better)

Prohibitive analysis time
e pre-compute/cache analysis results; hybrid approaches

Local optima (unless all possible configurations verified)
o offline assessment to ensure solution is effective

Utility-function definition
e close to natural language property/utility specification?

LACL Seminar
16 March 2009

UNIVE

OXFO

OF
RD

Summary

Increasing need for IT systems to adapt in predictable, dependable
ways to changes in their state, objectives and environment

Quantitative verification reached a level of maturity that enables its
online use to achieve such adaptiveness in certain scenarios

Interesting research work required to address challenges posed
by online quantitative verification

LACL Seminar
16 March 2009

Thank you

Questions?

Further reading

R. Calinescu — General-Purpose Autonomic Computing, In: M. Denko et al.,
Autonomic Computing and Networking, Springer, April 2009, pp. 3—-29.

R. Calinescu and M. Kwiatkowska — Using Quantitative Analysis to Implement
Autonomic IT Systems, Proc. 31st Intl. Conf. Software Eng. (ICSE 2009).

[m] [l = =

	Introduction
	Motivation
	Approach

	Background
	Quantitative verification with PRISM
	Autonomic computing policies

	Framework
	Self-* system development
	Policy implementation

	Challenges
	Summary

