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Quantitative verification

Formal technique for establishing quantitative properties of
systems that exhibit probabilistic or real-time behaviour

e probability of system being up > 99.9% of the time
e expected length of request queue for a disk drive
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Quantitative verification

Formal technique for establishing quantitative properties of
systems that exhibit probabilistic or real-time behaviour

e probability of system being up > 99.9% of the time
e expected length of request queue for a disk drive

precise mathematical
model of real-world
system

true/false
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Online quantitative verification

Verification of required/desirable quantitative properties is
performed at runtime

e analysed model selected based on actual system state
e verification results used to adjust system configuration

running system instance <

parameterised family
of finite-state
system models \ true/false

— probability —»

expected value
required /desirable /

quantitative exhaustive system
system properties analysis reconfiguration
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Predictable system adaptiveness

(IT) systems required to self-adapt in predictable ways to
rapid changes in their workload, environment and objectives

e guaranteed levels of performance and dependability
e compliance with strict constrains

... properties that are traditionally established using (offline)
quantitative verification
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Predictable system adaptiveness

(IT) systems required to self-adapt in predictable ways to
rapid changes in their workload, environment and objectives

e context awareness

¢ synthesis of reconfiguration “policies” from high-level,
multi-objective goals
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Approach

Integrate existing quantitative verification tool (PRISM) into
the standard autonomic computing architecture
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Approach

Integrate existing quantitative verification tool (PRISM) into
the standard autonomic computing architecture
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The probabilistic model checker PRISM

Developed by the Oxford Quantitative Analysis and
Verification Group

Supports multiple types of probabilistic models
e discrete-time Markov chains
e continuous-time Markov chains
e Markov decision processes
plus extensions of these models with costs and rewards

Used to analyse systems from a wide range of application
domains
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Discrete-/continuous-time Markov chains

DTMC = (S, Sinits P, L)

labelling function, L : § — 247

transition probability matrix, P:S xS —[0,1]
initial state, sii; € S

finite set of states
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Discrete-/continuous-time Markov chains

DTMC = <S7 Sinit s P7 L)

labelling function, L : § — 247

transition probability matrix, P:S xS —[0,1]
initial state, sii; € S
finite set of states

CTMC = (Sa Sinit» R; L)
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transition rate matrix, R: x5 — R,
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Example: dynamic power management

|P0wer manager (PM)|

State State-transition
information commands
- Service provider (SP)
oquester—_LTTT1]—
requester
~—
0 < g < Qmax

Request queue (RQ)
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Example: dynamic power management

|Power manager (PM)|

State State-transition
information commands

Service provider (SP)

Service
requester :I:I:D:D -
H/_/
0 < ¢ < Qmax
Request queue (RQ)

module RQ
q : [0..Qmax]; / Request queue states
/l State transitions
[request] true —> 1000/interArrivalTime : (q’=min(q+1,Qmax));
[serve] q>1 —> (q’=q-1);
endmodule

UNIVERSITY OF
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Example: dynamic power management

|Power manager (PM)|

State State-transition
information commands

- Service provider (SP)
cquester| — _LTTTT]—
requester sleepyy idle g busy
~—

0 < ¢ < Qmax sp=0 sp=1 sp=2

Request queue (RQ)

module SP
sp : [0..2]; // SP states: 0 — sleep, 1 —idle, 2 — busy

Il State transitions

[sleep2idle] sp=0 & q=0 —> sleep2idleRate : (sp’=1);
[sleep2idle] sp=0 & q>0 —> sleep2idleRate : (sp’=2);
[idle2sleep] sp=1 & q=0 —> idle2sleepRate : (sp’=0);
[request] sp=1 —> (sp’=2);

[request] !sp=1 —> true;

[serve] sp=2 & q>1—> serviceRate : (sp’=2);

[serve] sp=2 & q=1 —> serviceRate : (sp’=1);

UNIVERSITY OF enamo le
OXFORD dmodu
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Example: dynamic power management

|Power manager (PM)|

State State-transition
information commands

Service
requester :I:I:D:D -
H/_/
0 < ¢ < Qmax sp=0 sp=1 sp=2
Request queue (RQ)

module PM
p: [0..1]; // PM states: O — sleep to idle, 1 — idle to sleep

/I State transitions

[serve] q=1 —> switchToSleepProbability : (p’=1);
[serve] q=1 —> 1—switchToSleepProbability : (p’=0);
[serve] g>1 —> true;

[request] true —> (p’=0);

[sleep2idle] g=Qmax —> (p’=p);

[idle2sleep] p=1 —> (p’=0);

UNIVERSITY C;I' endmOdUIe

(0),4:(0)23D) T

Service provider (SP)

sleeppe idle pgbusy
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Cost/reward extensions

DTMC = <S7 Sinit» Pv L)

labelling function, L : § — 247

transition probability matrix, P:S xS — |0, 1]
initial state, spi; € S

finite set of states

CTMC = (S, Sinit, R, L)

transition rate matrix, R: xS — R,
reward structure=(p, r)

f

UNIVER

transition reward function, r:Sx .S — R,
state reward function, p: S — IRy
(0),4:(0)23D)

[m]

=
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Example: power utilisation

Power manager (PM)

State State-transition
information commands
Service provider (SP)

Service
requester :D:D:D - w
H/_/

0 < ¢ < Qmax sp=0 sp=1 sp=2

Request queue (RQ)

rewards “power”

sp=0:0.13; /1 0.13W in ’sleep’ state
sp=1:0.95; //0.95W in ’idle’ state
sp=2: 2.15; /1 2.15W in ’busy’ state

[sleep2idle] true : 7.0; /17] *sleep” — ’idle
[idle2sleep] true : 0.067; //0.067] ’idle’ — ’sleep’
endrewards

UNIVERSITY OF

OXFORD
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Quantitative property specification

PCTL—Probabilistic Computational Tree Logic for DTMCs*
CSL—Continuous Stochastic Logic for CTMCs*
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Quantitative property specification

PCTL—Probabilistic Computational Tree Logic for DTMCs*
CSL—Continuous Stochastic Logic for CTMCs*

WP is true with

+ PCTL syntax: / probability ~p
— b = truelal|dAd| D | o [w] (state formulas)
—p =Xd | odUskd | dUD (path formulas)

' A
:-‘ T ;,..-..E, “ bo un ded E“I:‘ t .,.;“.E

until” -

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,>}, k e N

UNIVER
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Quantitative property specification

PCTL—Probabilistic Computational Tree Logic for DTMCs*
CSL—Continuous Stochastic Logic for CTMCs*

* augmented with costs/rewards

expected
reward is ~r

PR TWT PR IIERT [ R [CH]T | R, [F]

AN I

‘ “instantaneous” | | “cumulative” | i “reachability”

wherere R_ g, ~ € {<,> =<,z}, ke N
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Example: power use; request queue length

Power manager (PM)

State
information

Service
m -
H/—/
0 < ¢ < Qmax
Request queue (RQ)

State-transition
commands

Service provider (SP)

sp=0 sp=1 sp=2

| -+ interArrivalTine=200ms - inter ArrivalTime=500ms|

(W]

Expected power

-
[
th
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i
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switchToSleepProbability

= 10.0

=]

5

= 7.5

=

2

= 5.0

=

k)

E 2.5
o Length

g 7| R*™c<100]
0.0

0.25 0.50 0.75
switchToSleepProbability



LACL Seminar
16 March 2009

The “knowledge” module

Ki led
Manageability adaptor

A
I
I

A3

|
|
v
K

‘ Managed IT components ‘

Knowledge=(S, C, f)

operational model, f: S x C + S

configuration (modifiable system parameters)

state (“read-only” system parameters)

[m]

=
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Utility-function autonomic policies

Knowledge=(S, C, f)

operational model, f: S x C + S

configuration (modifiable system parameters)
state (“read-only” system parameters)
Given a utility function

utility : S x C' — Ry,

UNIVER

OXFORD

adjust the configurable system parameters such as to
maximise the system utility “at all times”

for sp € S, find ¢ € C s.t. ¢ = argmax utility(f (s, x), x)

xeC }

[m]

=
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Example: multi-objective utility function

= objective;

optirnal  sub-optimal  zerco-utlity

0 I, u, power [mW]

n
utility = Z w;objective;

power-driven objective

200 ..

wjobjective;

2
izt

>

i\\\

\\\\\\\\‘\““\\\\\\\ 1

utility:
=)

2000
1500

1000 power [mW]

500
2 g

% optimal  sub-optimal  zero-utility
..:._'.
S
1
0
0 L i, queue length

Combined utility ( wy=w,=100; 1= 9; uy= 11; 1= 0; uy= 1200)

response-driven objective
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Self-* system development

Markov
chain

autonomic

model manager
transformation [Knowledge configuration| Conﬁgur?d
autonomic
@ % module @
manager

model-driven
generation

o34

Legacy

% policy
specification

adaptor
deployment

IManageable|

component|
adaptors

Generation

Self-*
system

@ components|

Deployment

@ component
discovery

Exploitation

(Rove

step

automated

&%

step

computer-assisted %

manual
step
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Self-* system development

autonomic
model manager L
q policy
Markov transformation Knowledge configuration) S&iﬁi‘;?g % specification
chain @ % module @ manager
A model-driven @% Self-*
generation system
adaptor
Legacy deployment[ -
component| YimeppeElle component
@ components| @ . P
adaptors discovery
Generation Deployment Exploitation
( automated computer-assisted manual )
Key Q step @ % step % step

PRISM discrete-/continuous-time Markov chain
- available from the formal verification of the system
- newly developed
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Self-* system development

model
transformation

Knowledge

Markov
chain

autonomic

module

o34

&%

model-driven
generation

Legacy

policy
specification

%

manager
configuration| Configured
@ autonomic
manager

adaptor
deployment

IManageable|

component|
adaptors

Generation

Self-*
system

@ icomponents|

Deployment

@ component
discovery

Exploitation

CT

step

automated

&%

step

computer-assisted %

manual
step

Automated transformation, except for the partition of
the Markov chain parameters into state and configuration
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Self-* system development

Markov
chain

autonomic

model manager
transformation [Knowledge configuration| Conﬁgur?d
autonomic
@ % module @
manager

% policy
specification

model-driven @% Self-*
generation system
/ adaptor
Legacy deployment[ -
EPTTOETE Mlanageable e
@ components| @ . P
adaptors discovery
Generation Deployment Exploitation
( automated computer-assisted manual )
Key Q step @ % step % step

Off-the-shelf tools (XSLT engine, data type generator)
used to generate most adaptor code
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~ = Self-* system development

autonomic
model manager 1
B policy
Markov transformation Knowledge it S&I;fjil;?: % specification
et & % module Ly &3
—T manager
m Self-*
— | generation @% system
adaptor
Legacy deployment[ -
component Manageable component
@ icomponents| @ . P
adaptors discovery
Generation Deployment Exploitation
( automated computer-assisted manual )
Key Q step @ % step % step

Knowledge module supplied at runtime to autonomic
manager instance
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~ = Self-* system development

autonomic
model manager % policy

. configuration| Configured 5 q
I\;Ilaf'kov transformation Knowledge autonomic specification
chain

@ % f"_‘ij‘y @ manager

model-driven @% Self-*
generation system
KLY \
adaptor
Legacy deployment| N rerarecesesitd
component @ icomponents| @ O
adaptors 12 discovery
Generation Deployment Exploitation

automated computer-assisted manual
ste ste
Key Q step @ % 3o) % P

Adaptor deployment leads to automatic component
discovery by the autonomic manager
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~ = Self-* system development

autonomic
model manager .
configuration| Configured % P'Ollcy.
specification

Markov ||transformation[Knowledge ot
chain Q | —v l

Q % module
manager _|H
model-driven @% Self-*
generation H system
adaptor
Legacy deployment| P
component] @ component
lcomponents| .
adaptors discovery
Generation Deployment Exploitation

computer-assisted manual )

t ted
G{ey @ e @ % step step

step

Utility-function policy specified by system administrator
- multi-objective utility function defined in terms of
cost/reward structures from the PRISM Markov chain

» utility function example
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Policy implementation

Periodically and/or when the autonomic manager is notified
about system changes:

1 foreach component c in the policy scope do

2 extract parameterised model of ¢ from the knowledge module
3 get state parameters of ¢ from the manageability adaptors

4  evaluate quantitative properties used in the utility function

5 choose configuration parameters that maximise the utility of ¢
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Example: dynamic power management

200 o

1winhjecliui
g

2
oo

utility

=~ =
%oyﬁmal sub-optimal  zero-utility % optimal  sub-optimal  zero-utility
£ 2
2 2
1 1
| |
| |
| |
0l | Al
0 I, u, power[mW] 0L u, queue length
power-driven objective response-driven objective

500

2 g

Combined utility ( wy=wy=100; [;=9; uy= 11; [,= 0; u,= 1200)

2000

power [mW]

V4
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Example 2: cluster availability management

Multi-objective utility function:
© achieve target availability in the presence of failures
and variations in the number of requested servers
® minimise number of allocated servers

expected availability
oOooooO oooooo

0984 ! Required servers

0.982 =5 =7 =10 =12

456 78 91011121314151617181920212223 242526

UNIVERSITY OF allocated servers
OXFORD
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Challenges: inherited from offline verification

State-space explosion
e new model checking techniques still needed

Expert knowledge required to produce "good" models

e more models should be built as part of the system
development process

UNIVERS:

OXFORD
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Challenges: specific to online verification

Model checkers not typically intended for online use
e use command-line interfaces (lower-level APls better)

Prohibitive analysis time
e pre-compute/cache analysis results; hybrid approaches

Local optima (unless all possible configurations verified)
o offline assessment to ensure solution is effective

Utility-function definition
e close to natural language property/utility specification?
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Summary

Increasing need for IT systems to adapt in predictable, dependable
ways to changes in their state, objectives and environment

Quantitative verification reached a level of maturity that enables its
online use to achieve such adaptiveness in certain scenarios

Interesting research work required to address challenges posed
by online quantitative verification
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Thank you

Questions?

Further reading

R. Calinescu — General-Purpose Autonomic Computing, In: M. Denko et al.,
Autonomic Computing and Networking, Springer, April 2009, pp. 3—-29.

R. Calinescu and M. Kwiatkowska — Using Quantitative Analysis to Implement
Autonomic IT Systems, Proc. 31st Intl. Conf. Software Eng. (ICSE 2009).

[m] [l = =




	Introduction
	Motivation
	Approach

	Background
	Quantitative verification with PRISM
	Autonomic computing policies

	Framework
	Self-* system development
	Policy implementation

	Challenges
	Summary

