Towards a Generic Autonomic Architecture
for Legacy Resource Management

Radu Calinescu
Computing Laboratory, University of Oxford, Wolfs@&uilding, Parks Road, Oxford OX1 3QD, UK

Abstract Half a decade has passed since the objectives drahefits
of autonomic computing were stated, yet even the tizst system
designs and deployments exhibit only limited and ddated
elements of autonomic functionality. From an autonmic
computing standpoint, all computing systems — oldhew or under
development — are legacy systems, and will continde be so for
some time to come. In this paper, we propose a geite
architecture for developing fully-fledged autonomicsystems out of
legacy, non-autonomic components, and we investigathow
existing technologies can be used to implement thaschitecture.

|. INTRODUCTION

The vision of autonomic computing [1] set an unpdanted
number of engineering and scientific challengesdjgécted at
a single goal: the development of self-managing maing

through VII describe in detail the components ofe th
architecture, and investigate the extent to whictisting
technologies can be used for their implementatién.
preliminary specification of the managed system ehaded to
configure the policy engine is proposed, and sarpplécies
based on this model are presented in these sectidaghen
describe the requirements for the policy engind, tae criteria
used to distinguish between its different realmai Section
VIII summarises our findings and the next stepthefproject.

Il. AUTONOMIC ARCHITECTURE FOR_LEGACY RESOURCE
MANAGEMENT

A large number of projects have investigated isnlaispects
related to the development of autonomic computipstesns

systems. Since the launch of the autonomic comgutiput of non-autonomic components. Some of theseepi®j

manifesto over five years ago, tremendous resounraes been
dedicated to solving these challenges, yet systdha
“manage themselves according to an administragwas” [3]
are far from ubiquitous.

The limited adoption of autonomic solutions is kEggdue to
the fact that existing IT system components exhiily
restricted and isolated elements of autonomic fanatity.

addressed the standardisation of the policy inftionamodel,
with the Policy Core Information Model (PCIM) [7,] 8
representing the most prominent outcome of thiskwBecent
efforts such as Oasis’ Web Services Distributed afgment
(WSDM) project were directed at the standardisatidérthe
interfaces through which the manageability of aovese is
made available to manageability consumers [9]. ®egrated

Based on insights from the development of a comialeradevelopment environment for the implementation oBHW-
framework for the autonomic management of data reengompliant interfaces is currently available fronMB10].

resources [4] and on best practices presented separate
paper [5], we propose a generic autonomic architedor the

In a different area, expression languages wereqgsexp for
the specification of policy conditions and actioasd used to

development of autonomic systems out of non-autémonimplement a range of policies [11, 5, 12, 3]. Imiéidn to the

components. This approach differs significantly nfrather
autonomic frameworks that target the management
autonomic-enabled components, e.g., applicatiopéeimented
to use the API of the autonomic framework exphlci8].

The core component of our architecture ipdicy engine
that enforces a set of user-specified businessipsli The
policy engine can be configured to manage resowdesse
types are unknown at implementation time. This igumhtion
is achieved by means of a model of the manage@rsysind
allows the integration of the policy engine intostems
comprising a heterogeneous mix of legacy resour&gsin,
this represents a major improvement over existragnéworks
that are dedicated to the management of a spdyifie of
resource [6, 7, 8]. Another novel feature of oumeyé
autonomic architecture is the policy engine’s &pild expose
the collection of IT resources it manages as amiatohigher-
level resource. This enables the integration ofaatonomic
system as an individual resource into another imt&teof the
same architecture, thus supporting the developmeit
hierarchical systems-of-systems [9].

The remainder of the paper is organised as foll@estion
Il introduces our generic autonomic architecturd aantrasts
it with existing autonomic computing frameworkscgens Ill

development of standards and technologies,
a@ftonomic computing solutions have been producedntty

[4, 5, 6], typically for the management of spec#icstems, and
with limited ability to function in different scerias from

those they were originally intended for.

The generic autonomic computing architecture dedidh
Fig. 1 builds on all these recent developments, gamnkralises
the author's previous work on policy-based
management [5]. The policy engine at the core of th
architecture is a generic module that can be card to
manage heterogeneous systems comprising compotietts
vary from traditional computing resources suchewseys and
software applications to application servers, wttmachines
and devices including load balancers, switchesRiD#4s.

The use of a generic policy engine across suchoadbr
variety of domains requires that the engine cométan is
done by means of a model of the system to be manaddes
model has to specify the relevant system resouaiesagside
with their characteristics and relationship8. rich and
expressive meta-model of managed systems is rehuoe
ensure that the manageability capabilities of glhes of
systems, whether small and simple or large and tompan
be specified as a model that the policy engine rataieds.

complete

resource

id Model-driven autonomic-camputing system /
[high-leswel [high-lewel
umaodel documents [L0= " oC «documentn5]
managed system model policy set
O Policy
corfiguration engine external database
monltor/J\ lsoMrDl
sensors 4 ;:',.— tanl
O‘é‘ O‘f‘ sensorig/ sens%(‘j}ho
| ‘ ectars | EffEC‘tC‘FS ‘ effectors
Manageability Autonomic- Manageability
adaptor/ enabled adaptor/
Managed resource/ Managed
resource 1 Managed resource N
E resource 2
O Legasy | Legacy
resource resource
Legacy Legacy
resource resource

Fig. 1: The generic autonomic architecture for tgasource management

A configured instance of the policy engine is cdpabf

reading in and applying the set of policies on \uHic base its

decisions in the management of the system. Thelsggsoare

presented to the policy engine in a declarativgylage that

makes references to the resources defined in theageal
system model. They specify how the engine is reguito
monitor the resources, aggregate them into
collections, report their state and act upon themenforce
higher-level business policies.

The managed system can include both legacy resowitie
no or limited autonomic capabilities, as well atoaomic-
enabled resources. The legacy resources are exjpostg:
engine through a management-enabling layer witimdsial
sensors(i.e., interfaces for gathering state informatiimout

« Physical servers and clusters of servers with tiéttJ,
memory and disk resources, and the applicationsimgn
on them. Starting/stopping, monitoring, reporting,
allocating CPU, memory and disk service-level
agreements to applications, and powering serveranah
off in response to variations in load, failureandi of
day/week and other business policies are among the
activities covered by the autonomic management of a
traditional IT system [5].

» Networks, collections of networks and the consuntieas
make use of them. Quality-of-service management,
dynamic admission and provisioning control in the
presence of variable demand, failures and changing
business policies are the typical targets of armsealfaged
network [13].

Analogous but less traditional IT resources that benefit
from being part of a self-managed system include:

« Application servers with their web applications.tt®eg
application service levels and access to the resswf the
underlying hardware, monitoring, reporting and all
functionality that is normally expected from a ciasl IT
system will eventually be extended to these platfor

« Virtualisation environments and the virtual mackiribey
provide.

Some of the devices that will become increasinglsent in
autonomic systems are:

» Devices that are typical components of a standdrd |
system—oprinters, backup systems, switches, load
balancers and power supplies. The latest modelallof
these devices exhibit interfaces that provide amwrev
increasing scope for automation.

» Common household devices—televisions, home cinemas,
telephones, home security devices.

resource

IV. MANAGEABILITY ADAPTORS

Despite an increasing trend to add managementfaots to
new computing components and devices, and to mekéng
ones public, achieving self-management in even Ismal
computing systems is hindered by the broad diwersit
architectures and technologies these interfacelased upon.

resources) andffectors(i.e., resource control interfaces). The The generic autonomic architecture requires thstaadard

autonomic-enabled resources can be accessed ylitactihe
engine. In particular, an implementation of the eyén
autonomic architecture can become a resource iargen
instance of the same architecture.

The next sections describe each part of the anthi in
detail, specifying its required and desirable cbtnmastics.

Existing standards and technologies that can dartito the

realisation of the architecture are overviewed,etbgr with
their benefits and limitations.

Ill. LEGACY RESOURCES

The legacy resources that the generic autonomisitacture
should support include a heterogeneous mix of iti@eal” IT
resources, recent types of IT resources, and devitgpical
traditional IT resources include:

interface is used to expose the manageability lofyaes of
resources presented in the previous section inifaramway.
The manageability interface comprises:

« Sensors for accessing the state of the managedreceso
The sensors should support both explicit reading of
specific state information, and a notification maeism
that the policy engine can use to subscribe andivec
notifications of certain state changes.

 Effectors for configuring the resource parametaerdinie
with the policies supplied to the policy engine.

The interface is solely responsible for the interability of a
diverse spectrum of resources with the universitpengine.
To achieve this, the interface needs to be simpte flexible,
and to associate only limited semantics to thes stdbrmation
and configuration parameters it exposes. Resourcpepies
such as state variables and configuration parametee
uniquely labelled and strongly typed, but theiresland

relationships are specified instead in the systeodeh as
described in the next section.

A very good approach at defining a manageabilitgriace
standard that satisfies these requirements is septed by the
Web Services Distributed Management (WSDM) standBine
Management Using Web Services (MUWS) component
WSDM [9] leverages web service technology beneditsh as
platform independence, loose coupling and secstipport to
define a web service architecture enabling the gament of
generic distributed resources.
describes a standard way in which manageable res®uran
expose their capabilities, and defines a numbembuwft-in
capabilities that resources should provide (eResourceld

The prototypemeta-model of a managed systemFig. 2
satisfies these requirements and is the preliminesult of a
project to generalise the author’s previous work pmticy-
based resource management [5]. The meta-modelfigiseai
managed system as a named sequence of one orlsevera
@fsource definitions. Each resource definition .(i.e
resourceDefinitionin the UML diagram) comprises a unique
identifier, a description and a set of resourceppriies with
their characteristics. These properties should rbevidl from a

The MUWS specificati controlled metadata repository for the IT areandéiiest. Each

property has a data typpropertyDataTypg and is associated
a unique ID and the URL within the metadata repogitvhere
its definition is located. The following propertharacteristics

DescriptionandVersior). Resource-specific capabilities can bare exposed by the current version of the meta-imode

provided and listed as elements of tidanageability-
Characteristics built-in capability. The WSDM/MUWS
standard specifies ways for accessing resourcebiiiga by
means of web services, and requires that a “resquiaperties
document” XML schema is provided as a basic modehe
managed resources. As a result, an implementatfothe
standard [10] provides a superset of the functipnadquired
for a managed resource from our architecture.

V. MANAGED SYSTEM MODEL

The system model used to configure the policy emgiust
specify all resources to be managed and all thelevant
properties. As the policy engine can always be nmégored
using new versions of the model, resources andureso
properties not referred to in the policies needb®specified.
The model should also provide details about theazharistics
of the resource properties, thus allowing the usad®quate
operators in the policies and reducing the amo@intark by
the policy engine. Finally, to enable the reuse noddel
components and policies, standardised
resource (property) definitions must be used imtioglel.

cd MarnagedSystem

whSheomplexTypan aenumerationzs
relationship walueType
wrSDeomplexTypes || won itk ute + cumulative:
managed System + ID: sting + iregular
XZDelement

XSDelement
+ name: string

+ matchingPropery: string

To.”

7

. wrSDhcomplexTypeas
1 property
HED lexT
* S e>.< lyr.pe» L5Delement
re=sourceDefinition .
18|t comment: string
B % + defin.i?ion.L_lrI: string -
+ description: tring + rnnd|f|fa!:-|llty: l.msrmd:Mon:!lflablllt;rType
SO attibute + rnutablllltu. .mfsrmd.hﬂutabllltﬂype
+ 1D string + subscribeability: boolean
' + propertyCataType: anyType
FEDattribute
+ D string

Fig. 2: Prototype meta-model of a managed system

terminology a

< modifiability the ModifiabilityType from the
WSResourceMetadataDescriptor (WS-RMD) 1.0
specification [14] is used to state if the valusoz$ated
with this property is “read-only” or “read-write”.

« mutability — the WS-RMD MutabilityType used specifies
if the property is read-only or can be set. Thesjiie
values for this characteristic are “constant”, “ale” and
“appendable”.

« subscribeability —this element specifies if a client/agent
such as the policy engine can subscribe to receive
notifications when the value of this property chesig

« valueType — optionally, the model can specify for
numerical properties if their value is cumulatigi¢h the
CPU utilization of a process over the process piég or
the property values follow no pattern.

« relationship — relationships between instances of a
resource can optionally be specified as pairs ciimgr a
unique ID and the ID of a “matching” property. Two
resource instances are in the relationship if theent
property of the first and the matching property thé
second have the same value.

The sample model in Fig. 3 defines the processgsarvers

of an IT system. A policy engine configured to tisis model

can handle policies that refer to these two typesesources
and their properties.

Microsoft's System Definition Model (SDM) is a meta
model used to create models of distributed sysf{é@&iswith a
high degree of detail. The ongoing Dynamic Systéritgtive
programme [16] intends to use these complex modsls
enabling elements in the development of manageafdtems
that exhibit elements of autonomic behaviour. Givies
complexity, the SDM meta-model is less suited fee un
conjunction with the generic policy engine employed our
generic architecture. The WSDM/MUWS standard [$suthe
WS-Resource Metadata Descriptor framework to desctiie
metadata for a resource manageability endpoints BHows
the specification of the properties of specificowse state
variables and parameters, and the definition ofousse
relationships and operable collections. The Mandgesburce
Document used by version 1.1 of IBM’s Policy Managat
for Autonomic Computing (PMAC) framework, and the
combination of web services and autonomic computing
standard specifications that version 1.2 of PMA@susre
further examples of managed system models [3].

2 = <managedSystem xmins="http:/www.softeng.ox.ac.uk/system" xmins:xsi="|
3 xsizschemalocation="http:/'www.softeng.ox.ac.uk/system
4 <name>|T system</hame=>
5 <description>A set of servers running user applications.</description>
& = <resourceDefinition ID="process">
7 <description=a process run by the operating system.</description>
g <property ID="serverld"> [11 lines]
20 = <property ID="pid">
1 <comment>The process identifier.</comment>
fra <definitionUr=http:iwww.it-metadata.org/process/pid<idefinitionUrl=
23w <propertyDataType>
24 = <xsd:simpleType>
<xsdrestriction base="xsd:positivelnteger” />
</xsd:simpleTypes
<ipropertyDataType>
<mutability>constant</mutability>
<modifiability=read-onhy</modifiability>
<subscribeability>false</subscribeability>
<relationship ID="child">
<matchingPropertdD>=ppid</matchingPropertylD>
<irelationship>
<iproperty=
<property ID="ppid""> [11 lines]
<property ID="name"» [11 lines]
<property ID="uid"> [11 lines]
<property ID="groupld"> [11 lines]
<property ID="cmdline"> [11 lines]
<property ID="cpulltilisation™> [12 lines]
<property ID="memoryltilisation™> [12 lines]
<property ID="cpuallocation"> [11 lines]
<property ID="memoryallocation"> [11 lines]
</resourceDefinition>
<resourceDefinition ID="server">
<description=a physical server is a data centre.<idescription>
<property ID="serverld"> [11 lines]
<property ID="numProcessors™> [11 lines]
<property ID="processorCpu*> [11 lines]
<property ID="memory"> [11 lines]
<property ID="status">
<comment>The status of the server: "active’ or ‘standby’. </comment>
<definitionUr=http:iwww.it-metadata.org/server’status </definitionUr >
<propertyDataType>
<xsdisimpleType>
<xsdrestriction base="xsd:string">»
<xsd:enumeration value="actime"/>
<xsd:enumeration value="standin >
</«sdrestriction>
<xsd:simpleType>
<ipropertyDataType>
<mutability=mutable</mutability>
<modifiability>read-write</imodifiability=
<subscribeability=true</subscribeability=
<iproperty=
<property ID="command"> [11 lines]
<resourceDefinitions
</managedSystem>

TV V¥V VTV VWV

-

184

| v wvwvw

210
211
223
224

Fig. 3: Basic model of an IT system

VI. PoLicy SET

A. Overview

Policies tell the policy engine how to manage thelarlying
system, and how to expose it to the outside waxlote that
although the former role of policies is the onlyearonsidered
by most autonomic computing frameworks, the lattde is
equally important as it allows the architectureaashole to

become a managed component of a larger manageensyst

The policies employed by the autonomic architectarkig. 1
achieve these roles by specifying:
» How the modifiable properties of the resources,,(itlee

policies can specify that the policy engine expasehigh-
level resources the applications running on théesysone
property of this “application” resource being thember
of servers on which the application is running.
Note that in a particular instance of the architeztone or the
other of these roles (but not both) can be missing.
The
sufficiently flexible to support the use cases helo

B. Resource group specification

Policies are about resources of the managed syatehtheir
properties. Therefore, the policy language needslltaw the

specification of the set of resources to whichgbkcies apply.
Specifying the scope of policies typically orgasisgystem
resources into groups that are regarded as a simgky from

the standpoint of a policy or set of policies. Reses grouped
together for this purpose can be exposed as a rhighel

resource by the policy engine. To illustrate thighwan

example, consider the IT system defined in SecWorThe

XML fragment below shows how the transitive closofethe

child process relationship applied to all processkese name

is 'ht t pd’ can be used to group the processes of an Apache

web server and all their descendents:

<resource& oup | D="Apache" >
<i ncl udes resource="process">
chil d*(name=="htt pd")
</i ncl udes>
<r esour ceG oup>

C. Higher-level resource definition

Policies can specify higher-level resources tha golicy
engine exposes to the outside world, e.g., to ptesgstem
administrators with a summary of the state of thenaged
system or to enable its integration into a largeanaged
system. The example below instructs the policy magio
expose an ‘application’ as a higher-level resource:

<resourceDefinition | D="application">
<descri ption>
A software application
</ descri ption>
<property |ID="name"> [...]
<property | D="nunBServers"> [...]
</ resourceDefinition>
<export edResour cePolicy type="application">
<pol i cyScope>
<resourceG oup | D="Apache"/ >
</ pol i cyScope>
<pol i cyCondi ti on>TRUE</ pol i cyCondi ti on>
<pol i cyActi on>
<property>
<name>nane</ nane>
<val ue>Apache web server</val ue>
</ property>
<property>
<name>nunter ver s</ nane>
<val ue>COUNT(p: process| p. server|d) </ val ue>
</ property>
</ pol i cyActi on>
</ export edResour cePol i cy>

resource configuration parameters) need to evol/ea aD. Resource configuration

function of the system state and of time.
* The exposed resources of the system, and theiepiep.

Policies specify the desired value of modifiablesoerce
properties as a function of the state of the mashagstem and

As an example, consider the traditional IT systenf time. The following sample policy illustratesvhdetween

introduced in the previous section, whose resouacesa
set of servers and the processes running on theset Af

4

8:00 and 18:00 the processes in a resource graupllacated
80% of the CPU power of their servers:

language used to express policies needs to be

<resour ceConfi gurationPolicy>
<pol i cyScope>
<resourceG oup | D="Apache"/>
</ pol i cyScope>
<pol i cyVal ue>100</ pol i cyVal ue>
<pol i cyCondi ti on>Hour | N 8..18</policyCondition>
<pol i cyAction appl yTo="EACH(pr ocess. pi d)">
<property>
<nane>gr oupl d</ nanme>
<val ue>1</val ue>
</ property>
</ pol i cyActi on>
<pol i cyAction appl yTo="EACH(process. serverld)">
<property>
<nane>cpuAl | ocat i on</ nane>
<val ue>80%/ val ue>
</ property>
</ pol i cyActi on>
</ resourceConfigurationPolicy>

Other policies can be used to define how theseuress
should be managed outside this time interval, dicigs with a

higher policy value can enforce different actiomsween 8:00
and 18:00 on certain week days.

E. Resource scheduling

In resource scheduling, system capacity specifiedelsource
properties are allocated to resource groups. Sindaother

policies, this involves setting the value of spiecifesource
properties. For instance, in our basic IT systeredaling

policies could be used to specify how the servet)Cind

memory is to be partitioned among software appbcat This

may involve setting the “cpuAllocation” property pfocesses
to allocate CPU to running groups of processes/oangsing

the “command” and “state” properties of serversstart/stop
applications and power on/off servers, respectij&ly

F. Workflow
Each configuration policy is a simple, one-step kftoxv.

More complex workflows are often needed in which P

sequence of actions is performed, with well-defidethys and
state validations between successive actions insétggience.
Although this behaviour could potentially be sinmathusing a
number of configuration policies and supporting iaddal
resource properties,
complicate the implementation of the manageabitifyer, the
system model and the policies themselves. The G&P&L
workflows [17] represents a significantly more etiee
approach to expressing and handling workflow pesici

cd Policy Types &

Paolicy

policyScope: ResourceGroupExpression [1.7]
policyfalue: ArithmeticExpression
policyCondition: BooleanExpression
policyfction: ProperyfssignExpression [1..7]

N SN

Resource Wior kfl oo
Definition Paolicy Policy

+ + + +

Corfiguration
Folicy

Scheduling
Policy

Fig. 4: Policies encountered in a generic auton@rtbitecture

this approach would unnedbssar

G. Summary

Fig. 4 summarises the types of policies describedthis
section, illustrating how policy components arenfalated in
terms of expressions that depend on the resounyeepres of
the managed system. These expressions vary in eaitypl
from the very simple to the sophisticated, anddffiectiveness
of the policies supported by a realisation of theh#ecture is
dependent on the power of its underlying expreskioguage.
Several autonomic computing expression languages baen
proposed in the recent years. The language usedebgyolicy-
based resource allocation framework in [5] enabthe
specification of policies for resource monitoringnda
management in a data centre through the use of ioatrdns
of arithmetic and logic operators, pre-defined fiows that
can be applied to resource properties and builtanables.
While this works well for the system that the framoek is
targeting, the use of system-specific pre-definedables such
as PercCpuUtilServer (i.e., the percentage of CR&t &an
application is using on a given server) and
AbsCpuHeadroomServer (i.e., the amount of CPU uhosea
given server) is not generic enough for our systdowever,
the built-in variables used by the system-spea@fiproach in
[5] suggest the type of operators that would bededein a
realisation of the generic autonomic architecture.

The Windows System Resource Manager [4] uses regula
expressions, logical and string operators, andt-buitime
variables to specify the process-matching criténiat define
the WSRM policy scope, as well as the policy cdondi& and
actions. The Autonomic Computing Expression Languag
(ACEL) [12] used by IBM’'s PMAC framework [3] suppera
wide variety of primitive types (e.g., Boolean, smal integer
and float types, and String), and a selection ohmlex data
types—Calendar, Composite and Collection. The stahd
operators are employed to combine resource pregegnd
nstants of these types into expressions. Thensixge
operator set in ACEL covers most of the use casgsaged
by the architecture described in this paper, atthosome very
useful (albeit more complex) operators such as set
comprehension and transitive closure are not stiggor

VII. PoLICY ENGINE

The core component of the autonomic architectupgeéments
a set of policies by monitoring and controlling #ensors and
effectors of the managed resources, respectivehg "high
level” resources of the managed system are exptisedgh
the (high-level) sensors interface, enabling tledusion of the
system into another instance of the same archieesctu key
requirement for the design of manageable systensysiEms
[1]. As indicated in Fig. 1, the engine is expectednake use
of an external database for storing its internateste.g., the
managed system model, the active policies and riiato
resource property values. To keep the architegareric, we
do not propose any particular way in which the @okngine
should learn about the actual set of resources riésponsible
for. Possible options include direct configuratitime use of a
discovery technique [25] or a combination of the.tw
Internally, the engine comprises modules for eualgathe
expressions in the four policy components, an iratkeclock for
time-based expressions, and an implementation-deperset

of schedulers, linear programming solvers and otheolicies to define the high-level resources expobgdthe
optimisers, workflow engines, etc. An internal cachan policy engine so that an instance of the architectan be
optionally be used in addition to the external Hate for the integrated as a managed resource into a systeystaiss [18].
rapid retrieval of state information. To keep thehitecture In the future, this work will continue in conjunati with the
generic, we are not going to propose a particulsy im which development of an IT metadata repository from whibke
the policy engine should be informed about the alcset of models used to configure the policy engine will vdréheir
resources it is responsible for. Possible optiowkide a static resource property definitions. In the longer tethis should
configuration by means of the policy set itselfe thse of a allow the definition of reusable policies and pyliemplates
discovery technique [19] or a combination of the.tw that will ease the adoption of the architecture.

Given the generality of its specification, the emgican be
implemented using a number of very different tedbgies,
including standalone software applications/agerds,web
services, or hardware appliances. As the field mmsges and (m
agreement is reached on a standard specificationtie 2]
universal policy engine, its largely interchangeab[

implementations will differ in: 4 A § " " .
. : o 3] J.O. Kephart and D.M. Chess. The vision of autoeornimputing. IEEE
The presence or absence of certain areas of funaditip Computer Journal, 36(1):41-50, January 2003.

The _management of Cert_ain legacy resources may 9t R. Calinescu and J.M. D. Hill. System providing huetology for policy-
require the use of scheduling and/or workflow gekc In based resource allocation, July 2004. United Statent Application no.

this case, the use of a fast, off-the-shelf hardwar éO/Z:l??ZZ- chall d Best Practices iePBised Autonom
H . Calinescu. allenges an es ractices IIT Se utonomic
appllglnce_ that does_ not support these parts of Architectures. In: Proc. 3rd I|EEE International $@sium on
Spec'ﬁcat'pn CQU|d be ideal. _ _ Dependable, Autonomic and Secure Computing, ColamiiD, USA,

e The “quality” (i.e., the complexity and effectives® of September 2007, pages 65-74.
the algorithms and heuristics involved. For insgrspme [©]

REFERENCES

IBM Corporation: Autonomic computing: IBM’s persjiize on the state
of information technology, October 2001.

M. Parashar and S. Hariri. Autonomic computing: Awerview. In:
Unconventional Programming Paradigms, volume 356BNELS, pages
257-269, 2005.

IBM Corporation. Policy Management for Autonomic r@uuting,
. . . . i . . http://dl.alph ks.ibm. hnologi
implementations may use suboptimal, fast scheduling version 1.2, 2005 ttp://dl.alphaworks.ibm.com/technologies/
heuristics, while others may provide optimal dewisi [7]

making but a longer response time. Each of these

implementations may be suitable for use in soméesys (€]
but not in others. [9
The total cost of ownership (TCO). Open-source ané

pmac/PMAC12sdd.pdf

Microsoft Corporation. Windows System Resource Mgna(WSRM)
White Paper, August 2003.

Sun Microsystems. Inc. Slh Grid Compute Utility—Reference guide,
June 2006http://www.sun.com/service/sungrid/SunGridUG.pdf

Y. Bar-Yam et al. The characteristics and emergielgaviors of system-
of-systems. Technical report, New England Complggt&ns Institute,

January 2004.

J. Strassner, B. Moore, E. Ellesson and A. WesgrirPolicy Core

Information Model—version 1 specification, Febru&@01. IETF RFC

3060, http://www.ietf.org/rfc/rfc3060.txt

[11] B. Moore. Policy Core Information Model (PCIM) emtgons, January
2003. IETF RFC 346Mttp://www.ietf.org/rfc/rfc3460.txt

E12] B. Murray et al. Web Services Distributed ManagemBtUWS primer,
February 2006. OASIS WSDM Committee Drdfttp://www.oasisopen.
org/committees/download.php/17000/wsdm-1.0-muwsiericd-01.doc

[13] IBM Corporation. Autonomic integrated developmenvieonment, April
2006.http://www.alphaworks.ibm.com/tech/aide

[14] N. Damianou et al. The Ponder policy specificataomguage. In: Policies

for Distributed Systems and Networks, volume 19BENCS, pages 18—

38, Bristol, UK, 2001.

D. Agrawal et al. Autonomic Computing Expressionngaage 1.2:

User's Guide, 2005ttp://www-128.ibm.com/developerworks/edu/acdw-

ac-acel-i.html

[16] A. Bandara et al. Policy refinement for diffservatjty of service
management. IEEE eTransactions on Network and &eManagement,
3(2):2-13, 2006.

[17] OASIS. Web Services Resource Metadata 1.0, Nove20iS.

[18] Microsoft Corporation. System definition model oview, April 2004.
http://download.microsoft.com/download/b/3/8/b382B2766-4632-
b13-33cf08fad522/sdmwp.doc

[19] Microsoft Corporation. Microsoft Dynamic Systemstiltive Overview,
March 2005. http://download.microsoft.com/download/8/7/8/
8783b65ed619-46d7-a8d-b4f13a97eeb0/DSloverview.doc

[20] M.B. Juric et al. Business Process Execution Lagguiar Web Services.

Packt Publishing, 2004.

R. Harbird et al. Adaptive resource discovery foiquitous computing.

In: Proc. 2nd workshop on middleware for pervasaed ad-hoc

computing, volume 77 of ACM Intl. Conference Pratieg Series, pages

155-160, Toronto, Canada, October 2004.

[22] D. Hornby and K. Pepple. Consolidation in the D&anter. Sun
Blueprints. Sun Microsystems Press, 2003.

[23] Murch, R.: Autonomic Computing. IBM Press, 2004.

proprietary implementations of the engine will iitalaly
come with different TCO and TCO breakdowns. An Gpeﬁlo
source solution may involve no initial expenditupet
significant effort to integrate and configure. Cersely,
commercial implementations will require a majortiai
investment but offer the guarantee of a high-quali
documentation and support over a long period oétim

VIIl. CONCLUSIONS

Starting from a policy-based management framewargeted

at data-centre resources [4, 5] and building oemeadvances [15]
in autonomic computing [2, 3, 13, 16, 19, 23], weppsed a
generic autonomic architecture and a universalcpadingine
for autonomic solution development. Our policy emgcan be
configured to monitor and control a wide variety syfstems
comprising heterogeneous mixes of legacy resourtés
policy engine is configured by presenting it witmadel of the
system to be managed, i.e., a formal specificaifaihe legacy
resources in the system and of their relevant ptigse

The components of the generic autonomic architeciwere
defined, and their requirements were discussedcénpaper.
Existing technologies that could be used to builese
components were briefly analysed, and possiblecambies to 21]
implementing the architecture were outlined.

Work is underway to validate the proposed systentame
model and the types of policies supported by th&veusal
policy engine in data-centre resource managemesmnasios
similar to those addressed by the commercial fraonkewn [4].
The project is currently investigating the best way use

6

