
1

Towards a Generic Autonomic Architecture
for Legacy Resource Management

Radu Calinescu

Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract Half a decade has passed since the objectives and benefits
of autonomic computing were stated, yet even the latest system
designs and deployments exhibit only limited and isolated
elements of autonomic functionality. From an autonomic
computing standpoint, all computing systems – old, new or under
development – are legacy systems, and will continue to be so for
some time to come. In this paper, we propose a generic
architecture for developing fully-fledged autonomic systems out of
legacy, non-autonomic components, and we investigate how
existing technologies can be used to implement this architecture.

I. INTRODUCTION

The vision of autonomic computing [1] set an unprecedented
number of engineering and scientific challenges [2] directed at
a single goal: the development of self-managing computing
systems. Since the launch of the autonomic computing
manifesto over five years ago, tremendous resources have been
dedicated to solving these challenges, yet systems that
“manage themselves according to an administrator’s goals” [3]
are far from ubiquitous.

The limited adoption of autonomic solutions is largely due to
the fact that existing IT system components exhibit only
restricted and isolated elements of autonomic functionality.
Based on insights from the development of a commercial
framework for the autonomic management of data centre
resources [4] and on best practices presented in a separate
paper [5], we propose a generic autonomic architecture for the
development of autonomic systems out of non-autonomic
components. This approach differs significantly from other
autonomic frameworks that target the management of
autonomic-enabled components, e.g., applications implemented
to use the API of the autonomic framework explicitly [6].

The core component of our architecture is a policy engine
that enforces a set of user-specified business policies. The
policy engine can be configured to manage resources whose
types are unknown at implementation time. This configuration
is achieved by means of a model of the managed system, and
allows the integration of the policy engine into systems
comprising a heterogeneous mix of legacy resources. Again,
this represents a major improvement over existing frameworks
that are dedicated to the management of a specific type of
resource [6, 7, 8]. Another novel feature of our generic
autonomic architecture is the policy engine’s ability to expose
the collection of IT resources it manages as an atomic, higher-
level resource. This enables the integration of an autonomic
system as an individual resource into another instance of the
same architecture, thus supporting the development of
hierarchical systems-of-systems [9].

The remainder of the paper is organised as follows. Section
II introduces our generic autonomic architecture and contrasts
it with existing autonomic computing frameworks. Sections III

through VII describe in detail the components of the
architecture, and investigate the extent to which existing
technologies can be used for their implementation. A
preliminary specification of the managed system model used to
configure the policy engine is proposed, and sample policies
based on this model are presented in these sections. We then
describe the requirements for the policy engine, and the criteria
used to distinguish between its different realisations. Section
VIII summarises our findings and the next steps of the project.

II. AUTONOMIC ARCHITECTURE FOR LEGACY RESOURCE

MANAGEMENT

A large number of projects have investigated isolated aspects
related to the development of autonomic computing systems
out of non-autonomic components. Some of these projects
addressed the standardisation of the policy information model,
with the Policy Core Information Model (PCIM) [7, 8]
representing the most prominent outcome of this work. Recent
efforts such as Oasis’ Web Services Distributed Management
(WSDM) project were directed at the standardisation of the
interfaces through which the manageability of a resource is
made available to manageability consumers [9]. An integrated
development environment for the implementation of WSDM-
compliant interfaces is currently available from IBM [10].

In a different area, expression languages were proposed for
the specification of policy conditions and actions, and used to
implement a range of policies [11, 5, 12, 3]. In addition to the
development of standards and technologies, complete
autonomic computing solutions have been produced recently
[4, 5, 6], typically for the management of specific systems, and
with limited ability to function in different scenarios from
those they were originally intended for.

The generic autonomic computing architecture depicted in
Fig. 1 builds on all these recent developments, and generalises
the author’s previous work on policy-based resource
management [5]. The policy engine at the core of the
architecture is a generic module that can be configured to
manage heterogeneous systems comprising components that
vary from traditional computing resources such as servers and
software applications to application servers, virtual machines
and devices including load balancers, switches and PDAs.

The use of a generic policy engine across such a broad
variety of domains requires that the engine configuration is
done by means of a model of the system to be managed. This
model has to specify the relevant system resources, alongside
with their characteristics and relationships. A rich and
expressive meta-model of managed systems is required to
ensure that the manageability capabilities of all types of
systems, whether small and simple or large and complex, can
be specified as a model that the policy engine understands.

2

Fig. 1: The generic autonomic architecture for legacy resource management

A configured instance of the policy engine is capable of

reading in and applying the set of policies on which to base its
decisions in the management of the system. These policies are
presented to the policy engine in a declarative language that
makes references to the resources defined in the managed
system model. They specify how the engine is required to
monitor the resources, aggregate them into resource
collections, report their state and act upon them to enforce
higher-level business policies.

The managed system can include both legacy resources with
no or limited autonomic capabilities, as well as autonomic-
enabled resources. The legacy resources are exposed to the
engine through a management-enabling layer with standard
sensors (i.e., interfaces for gathering state information about
resources) and effectors (i.e., resource control interfaces). The
autonomic-enabled resources can be accessed directly by the
engine. In particular, an implementation of the generic
autonomic architecture can become a resource in a larger
instance of the same architecture.

The next sections describe each part of the architecture in
detail, specifying its required and desirable characteristics.
Existing standards and technologies that can contribute to the
realisation of the architecture are overviewed, together with
their benefits and limitations.

III. L EGACY RESOURCES

The legacy resources that the generic autonomic architecture
should support include a heterogeneous mix of “traditional” IT
resources, recent types of IT resources, and devices. Typical
traditional IT resources include:

• Physical servers and clusters of servers with their CPU,
memory and disk resources, and the applications running
on them. Starting/stopping, monitoring, reporting,
allocating CPU, memory and disk service-level
agreements to applications, and powering servers on and
off in response to variations in load, failures, time of
day/week and other business policies are among the
activities covered by the autonomic management of a
traditional IT system [5].

• Networks, collections of networks and the consumers that
make use of them. Quality-of-service management,
dynamic admission and provisioning control in the
presence of variable demand, failures and changing
business policies are the typical targets of a self-managed
network [13].

Analogous but less traditional IT resources that will benefit
from being part of a self-managed system include:

• Application servers with their web applications. Setting
application service levels and access to the resources of the
underlying hardware, monitoring, reporting and all
functionality that is normally expected from a classical IT
system will eventually be extended to these platforms.

• Virtualisation environments and the virtual machines they
provide.

Some of the devices that will become increasingly present in
autonomic systems are:

• Devices that are typical components of a standard IT
system—printers, backup systems, switches, load
balancers and power supplies. The latest models of all
these devices exhibit interfaces that provide an ever
increasing scope for automation.

• Common household devices—televisions, home cinemas,
telephones, home security devices.

IV. MANAGEABILITY ADAPTORS

Despite an increasing trend to add management interfaces to
new computing components and devices, and to make existing
ones public, achieving self-management in even small
computing systems is hindered by the broad diversity of
architectures and technologies these interfaces are based upon.

The generic autonomic architecture requires that a standard
interface is used to expose the manageability of all types of
resources presented in the previous section in a uniform way.
The manageability interface comprises:

• Sensors for accessing the state of the managed resources.
The sensors should support both explicit reading of
specific state information, and a notification mechanism
that the policy engine can use to subscribe and receive
notifications of certain state changes.

• Effectors for configuring the resource parameters in line
with the policies supplied to the policy engine.

The interface is solely responsible for the interoperability of a
diverse spectrum of resources with the universal policy engine.
To achieve this, the interface needs to be simple and flexible,
and to associate only limited semantics to the state information
and configuration parameters it exposes. Resource properties
such as state variables and configuration parameters are
uniquely labelled and strongly typed, but their roles and

3

relationships are specified instead in the system model, as
described in the next section.

A very good approach at defining a manageability interface
standard that satisfies these requirements is represented by the
Web Services Distributed Management (WSDM) standard. The
Management Using Web Services (MUWS) component of
WSDM [9] leverages web service technology benefits such as
platform independence, loose coupling and security support to
define a web service architecture enabling the management of
generic distributed resources. The MUWS specification
describes a standard way in which manageable resources can
expose their capabilities, and defines a number of built-in
capabilities that resources should provide (e.g., ResourceId,
Description and Version). Resource-specific capabilities can be
provided and listed as elements of the Manageability-
Characteristics built-in capability. The WSDM/MUWS
standard specifies ways for accessing resource capabilities by
means of web services, and requires that a “resource properties
document” XML schema is provided as a basic model of the
managed resources. As a result, an implementation of the
standard [10] provides a superset of the functionality required
for a managed resource from our architecture.

V. MANAGED SYSTEM MODEL

The system model used to configure the policy engine must
specify all resources to be managed and all their relevant
properties. As the policy engine can always be reconfigured
using new versions of the model, resources and resource
properties not referred to in the policies need not be specified.
The model should also provide details about the characteristics
of the resource properties, thus allowing the use of adequate
operators in the policies and reducing the amount of work by
the policy engine. Finally, to enable the reuse of model
components and policies, standardised terminology and
resource (property) definitions must be used in the model.

Fig. 2: Prototype meta-model of a managed system

The prototype meta-model of a managed system in Fig. 2
satisfies these requirements and is the preliminary result of a
project to generalise the author’s previous work on policy-
based resource management [5]. The meta-model specifies a
managed system as a named sequence of one or several
resource definitions. Each resource definition (i.e.,
resourceDefinition in the UML diagram) comprises a unique
identifier, a description and a set of resource properties with
their characteristics. These properties should be drawn from a
controlled metadata repository for the IT area of interest. Each
property has a data type (propertyDataType), and is associated
a unique ID and the URL within the metadata repository where
its definition is located. The following property characteristics
are exposed by the current version of the meta-model:

• modifiability – the ModifiabilityType from the
WSResourceMetadataDescriptor (WS-RMD) 1.0
specification [14] is used to state if the value associated
with this property is “read-only” or “read-write”.

• mutability – the WS-RMD MutabilityType used specifies
if the property is read-only or can be set. The possible
values for this characteristic are “constant”, “mutable” and
“appendable”.

• subscribeability – this element specifies if a client/agent
such as the policy engine can subscribe to receive
notifications when the value of this property changes.

• valueType – optionally, the model can specify for
numerical properties if their value is cumulative (such the
CPU utilization of a process over the process lifespan) or
the property values follow no pattern.

• relationship – relationships between instances of a
resource can optionally be specified as pairs comprising a
unique ID and the ID of a “matching” property. Two
resource instances are in the relationship if the current
property of the first and the matching property of the
second have the same value.

The sample model in Fig. 3 defines the processes and servers
of an IT system. A policy engine configured to use this model
can handle policies that refer to these two types of resources
and their properties.

Microsoft’s System Definition Model (SDM) is a meta-
model used to create models of distributed systems [15] with a
high degree of detail. The ongoing Dynamic Systems Initiative
programme [16] intends to use these complex models as
enabling elements in the development of manageable systems
that exhibit elements of autonomic behaviour. Given its
complexity, the SDM meta-model is less suited for use in
conjunction with the generic policy engine employed by our
generic architecture. The WSDM/MUWS standard [9] uses the
WS-Resource Metadata Descriptor framework to describe the
metadata for a resource manageability endpoint. This allows
the specification of the properties of specific resource state
variables and parameters, and the definition of resource
relationships and operable collections. The Managed Resource
Document used by version 1.1 of IBM’s Policy Management
for Autonomic Computing (PMAC) framework, and the
combination of web services and autonomic computing
standard specifications that version 1.2 of PMAC uses are
further examples of managed system models [3].

4

Fig. 3: Basic model of an IT system

VI. POLICY SET

A. Overview
Policies tell the policy engine how to manage the underlying
system, and how to expose it to the outside world. Note that
although the former role of policies is the only one considered
by most autonomic computing frameworks, the latter role is
equally important as it allows the architecture as a whole to
become a managed component of a larger managed system.
The policies employed by the autonomic architecture in Fig. 1
achieve these roles by specifying:

• How the modifiable properties of the resources (i.e., the
resource configuration parameters) need to evolve as a
function of the system state and of time.

• The exposed resources of the system, and their properties.
As an example, consider the traditional IT system
introduced in the previous section, whose resources are a
set of servers and the processes running on them. A set of

policies can specify that the policy engine exposes as high-
level resources the applications running on the system, one
property of this “application” resource being the number
of servers on which the application is running.

Note that in a particular instance of the architecture, one or the
other of these roles (but not both) can be missing.

The language used to express policies needs to be
sufficiently flexible to support the use cases below.

B. Resource group specification
Policies are about resources of the managed system and their
properties. Therefore, the policy language needs to allow the
specification of the set of resources to which the policies apply.
Specifying the scope of policies typically organises system
resources into groups that are regarded as a single entity from
the standpoint of a policy or set of policies. Resources grouped
together for this purpose can be exposed as a higher-level
resource by the policy engine. To illustrate this with an
example, consider the IT system defined in Section V. The
XML fragment below shows how the transitive closure of the
child process relationship applied to all processes whose name
is ’httpd’ can be used to group the processes of an Apache
web server and all their descendents:

 <resourceGroup ID="Apache">
 <includes resource="process">
 child*(name=="httpd")
 </includes>
 <resourceGroup>

C. Higher-level resource definition
Policies can specify higher-level resources that the policy
engine exposes to the outside world, e.g., to present system
administrators with a summary of the state of the managed
system or to enable its integration into a larger managed
system. The example below instructs the policy engine to
expose an ‘application’ as a higher-level resource:

 <resourceDefinition ID="application">
 <description>
 A software application.
 </description>
 <property ID="name"> [...]
 <property ID="numServers"> [...]
 </resourceDefinition>
 <exportedResourcePolicy type="application">
 <policyScope>
 <resourceGroup ID="Apache"/>
 </policyScope>
 <policyCondition>TRUE</policyCondition>
 <policyAction>
 <property>
 <name>name</name>
 <value>Apache web server</value>
 </property>
 <property>
 <name>numServers</name>
 <value>COUNT(p:process|p.serverId)</value>
 </property>
 </policyAction>
 </exportedResourcePolicy>

D. Resource configuration
Policies specify the desired value of modifiable resource
properties as a function of the state of the managed system and
of time. The following sample policy illustrates how between
8:00 and 18:00 the processes in a resource group are allocated
80% of the CPU power of their servers:

5

 <resourceConfigurationPolicy>
 <policyScope>
 <resourceGroup ID="Apache"/>
 </policyScope>
 <policyValue>100</policyValue>
 <policyCondition>Hour IN 8..18</policyCondition>
 <policyAction applyTo="EACH(process.pid)">
 <property>
 <name>groupId</name>
 <value>1</value>
 </property>
 </policyAction>
 <policyAction applyTo="EACH(process.serverId)">
 <property>
 <name>cpuAllocation</name>
 <value>80%</value>
 </property>
 </policyAction>
 </resourceConfigurationPolicy>

Other policies can be used to define how these resources
should be managed outside this time interval, or policies with a
higher policy value can enforce different actions between 8:00
and 18:00 on certain week days.

E. Resource scheduling
In resource scheduling, system capacity specified by resource
properties are allocated to resource groups. Similar to other
policies, this involves setting the value of specific resource
properties. For instance, in our basic IT system scheduling
policies could be used to specify how the server CPU and
memory is to be partitioned among software applications. This
may involve setting the “cpuAllocation” property of processes
to allocate CPU to running groups of processes, and/or using
the “command” and “state” properties of servers to start/stop
applications and power on/off servers, respectively [5].

F. Workflow
Each configuration policy is a simple, one-step workflow.
More complex workflows are often needed in which a
sequence of actions is performed, with well-defined delays and
state validations between successive actions in the sequence.
Although this behaviour could potentially be simulated using a
number of configuration policies and supporting additional
resource properties, this approach would unnecessarily
complicate the implementation of the manageability layer, the
system model and the policies themselves. The use of BPEL
workflows [17] represents a significantly more effective
approach to expressing and handling workflow policies.

Fig. 4: Policies encountered in a generic autonomic architecture

G. Summary
Fig. 4 summarises the types of policies described in this
section, illustrating how policy components are formulated in
terms of expressions that depend on the resource properties of
the managed system. These expressions vary in complexity
from the very simple to the sophisticated, and the effectiveness
of the policies supported by a realisation of the architecture is
dependent on the power of its underlying expression language.
Several autonomic computing expression languages have been
proposed in the recent years. The language used by the policy-
based resource allocation framework in [5] enables the
specification of policies for resource monitoring and
management in a data centre through the use of combinations
of arithmetic and logic operators, pre-defined functions that
can be applied to resource properties and built-in variables.
While this works well for the system that the framework is
targeting, the use of system-specific pre-defined variables such
as PercCpuUtilServer (i.e., the percentage of CPU that an
application is using on a given server) and
AbsCpuHeadroomServer (i.e., the amount of CPU unused on a
given server) is not generic enough for our system. However,
the built-in variables used by the system-specific approach in
[5] suggest the type of operators that would be needed in a
realisation of the generic autonomic architecture.

The Windows System Resource Manager [4] uses regular
expressions, logical and string operators, and built-in time
variables to specify the process-matching criteria that define
the WSRM policy scope, as well as the policy conditions and
actions. The Autonomic Computing Expression Language
(ACEL) [12] used by IBM’s PMAC framework [3] supports a
wide variety of primitive types (e.g., Boolean, several integer
and float types, and String), and a selection of complex data
types—Calendar, Composite and Collection. The standard
operators are employed to combine resource properties and
constants of these types into expressions. The extensive
operator set in ACEL covers most of the use cases envisaged
by the architecture described in this paper, although some very
useful (albeit more complex) operators such as set
comprehension and transitive closure are not supported.

VII. POLICY ENGINE

The core component of the autonomic architecture implements
a set of policies by monitoring and controlling the sensors and
effectors of the managed resources, respectively. The “high
level” resources of the managed system are exposed through
the (high-level) sensors interface, enabling the inclusion of the
system into another instance of the same architecture, a key
requirement for the design of manageable systems of systems
[1]. As indicated in Fig. 1, the engine is expected to make use
of an external database for storing its internal state, e.g., the
managed system model, the active policies and historical
resource property values. To keep the architecture generic, we
do not propose any particular way in which the policy engine
should learn about the actual set of resources it is responsible
for. Possible options include direct configuration, the use of a
discovery technique [25] or a combination of the two.

Internally, the engine comprises modules for evaluating the
expressions in the four policy components, an internal clock for
time-based expressions, and an implementation-dependent set

6

of schedulers, linear programming solvers and other
optimisers, workflow engines, etc. An internal cache can
optionally be used in addition to the external database for the
rapid retrieval of state information. To keep the architecture
generic, we are not going to propose a particular way in which
the policy engine should be informed about the actual set of
resources it is responsible for. Possible options include a static
configuration by means of the policy set itself, the use of a
discovery technique [19] or a combination of the two.

Given the generality of its specification, the engine can be
implemented using a number of very different technologies,
including standalone software applications/agents, a web
services, or hardware appliances. As the field progresses and
agreement is reached on a standard specification for the
universal policy engine, its largely interchangeable
implementations will differ in:

• The presence or absence of certain areas of functionality.
The management of certain legacy resources may not
require the use of scheduling and/or workflow policies. In
this case, the use of a fast, off-the-shelf hardware
appliance that does not support these parts of the
specification could be ideal.

• The “quality” (i.e., the complexity and effectiveness) of
the algorithms and heuristics involved. For instance, some
implementations may use suboptimal, fast scheduling
heuristics, while others may provide optimal decision
making but a longer response time. Each of these
implementations may be suitable for use in some systems
but not in others.

• The total cost of ownership (TCO). Open-source and
proprietary implementations of the engine will inevitably
come with different TCO and TCO breakdowns. An open-
source solution may involve no initial expenditure but
significant effort to integrate and configure. Conversely,
commercial implementations will require a major initial
investment but offer the guarantee of a high-quality
documentation and support over a long period of time.

VIII. CONCLUSIONS

Starting from a policy-based management framework targeted
at data-centre resources [4, 5] and building on recent advances
in autonomic computing [2, 3, 13, 16, 19, 23], we proposed a
generic autonomic architecture and a universal policy engine
for autonomic solution development. Our policy engine can be
configured to monitor and control a wide variety of systems
comprising heterogeneous mixes of legacy resources. The
policy engine is configured by presenting it with a model of the
system to be managed, i.e., a formal specification of the legacy
resources in the system and of their relevant properties.

The components of the generic autonomic architecture were
defined, and their requirements were discussed in the paper.
Existing technologies that could be used to build these
components were briefly analysed, and possible approaches to
implementing the architecture were outlined.

Work is underway to validate the proposed system meta-
model and the types of policies supported by the universal
policy engine in data-centre resource management scenarios
similar to those addressed by the commercial framework in [4].
The project is currently investigating the best way to use

policies to define the high-level resources exposed by the
policy engine so that an instance of the architecture can be
integrated as a managed resource into a system of systems [18].
In the future, this work will continue in conjunction with the
development of an IT metadata repository from which the
models used to configure the policy engine will draw their
resource property definitions. In the longer term, this should
allow the definition of reusable policies and policy templates
that will ease the adoption of the architecture.

REFERENCES

[1] IBM Corporation: Autonomic computing: IBM’s perspective on the state

of information technology, October 2001.
[2] M. Parashar and S. Hariri. Autonomic computing: An overview. In:

Unconventional Programming Paradigms, volume 3566 of LNCS, pages
257–269, 2005.

[3] J.O. Kephart and D.M. Chess. The vision of autonomic computing. IEEE
Computer Journal, 36(1):41–50, January 2003.

[4] R. Calinescu and J.M. D. Hill. System providing methodology for policy-
based resource allocation, July 2004. United States Patent Application no.
10/710322.

[5] R. Calinescu. Challenges and Best Practices in Policy-Based Autonomic
Architectures. In: Proc. 3rd IEEE International Symposium on
Dependable, Autonomic and Secure Computing, Columbia, MD, USA,
September 2007, pages 65–74.

[6] IBM Corporation. Policy Management for Autonomic Computing,
version 1.2, 2005. http://dl.alphaworks.ibm.com/technologies/
pmac/PMAC12sdd.pdf.

[7] Microsoft Corporation. Windows System Resource Manager (WSRM)
White Paper, August 2003.

[8] Sun Microsystems. Inc. SunTM Grid Compute Utility—Reference guide,
June 2006. http://www.sun.com/service/sungrid/SunGridUG.pdf.

[9] Y. Bar-Yam et al. The characteristics and emerging behaviors of system-
of-systems. Technical report, New England Complex Systems Institute,
January 2004.

[10] J. Strassner, B. Moore, E. Ellesson and A. Westerinen, Policy Core
Information Model—version 1 specification, February 2001. IETF RFC
3060, http://www.ietf.org/rfc/rfc3060.txt.

[11] B. Moore. Policy Core Information Model (PCIM) extensions, January
2003. IETF RFC 3460, http://www.ietf.org/rfc/rfc3460.txt.

[12] B. Murray et al. Web Services Distributed Management: MUWS primer,
February 2006. OASIS WSDM Committee Draft, http://www.oasisopen.
org/committees/download.php/17000/wsdm-1.0-muws-primer-cd-01.doc.

[13] IBM Corporation. Autonomic integrated development environment, April
2006. http://www.alphaworks.ibm.com/tech/aide.

[14] N. Damianou et al. The Ponder policy specification language. In: Policies
for Distributed Systems and Networks, volume 1995 of LNCS, pages 18–
38, Bristol, UK, 2001.

[15] D. Agrawal et al. Autonomic Computing Expression Language 1.2:
User’s Guide, 2005. http://www-128.ibm.com/developerworks/edu/acdw-
ac-acel-i.html.

[16] A. Bandara et al. Policy refinement for diffserv quality of service
management. IEEE eTransactions on Network and Service Management,
3(2):2–13, 2006.

[17] OASIS. Web Services Resource Metadata 1.0, November 2006.
[18] Microsoft Corporation. System definition model overview, April 2004.

http://download.microsoft.com/download/b/3/8/b38239c7-2766-4632-
b13-33cf08fad522/sdmwp.doc.

[19] Microsoft Corporation. Microsoft Dynamic Systems Initiative Overview,
March 2005. http://download.microsoft.com/download/8/7/8/
8783b65ed619-46d7-a8d-b4f13a97eeb0/DSIoverview.doc.

[20] M.B. Juric et al. Business Process Execution Language for Web Services.
Packt Publishing, 2004.

[21] R. Harbird et al. Adaptive resource discovery for ubiquitous computing.
In: Proc. 2nd workshop on middleware for pervasive and ad-hoc
computing, volume 77 of ACM Intl. Conference Proceeding Series, pages
155–160, Toronto, Canada, October 2004.

[22] D. Hornby and K. Pepple. Consolidation in the Data Center. Sun
Blueprints. Sun Microsystems Press, 2003.

[23] Murch, R.: Autonomic Computing. IBM Press, 2004.

