
Implementation of a Generic Autonomic Framework
Radu Calinescu

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Radu.Calinescu@comlab.ox.ac.uk

Abstract—Based on insights from the implementation of
commercial products for data-centre resource management, we
identified key challenges in the development of cost-effective
autonomic solutions, and best practices for overcoming these
challenges. In a related paper, we proposed a generic autonomic
framework that complies with these best practices, and suggested
ways in which existing technologies could be used to realise this
framework. In this paper, we describe the actual implementation
of our autonomic framework as a service-oriented architecture,
and we show how the universal policy engine at its core can
be configured to manage the allocation of server capacity to
services of different priorities. This case study demonstrates
the effectiveness of our generic approach to autonomic solution
development in an area of great interest for commercial data
centres, research laboratories and application service providers.

I. INTRODUCTION

Today’s economy is characterised by revolutionary transfor-
mations to the way in which Information and Communication
Technologies (ICT) are used to conduct business and research
and to provide services in all sectors of the society [1]. The
ability to accomplish more, faster and on a broader scale
through expert use of ICT is at the core of today’s scientific
discoveries, newly emerged electronic services and everyday
life. Due to unprecedented advances in ICT, business needs
are attended to by ever more sophisticated and feature-rich
systems and systems of systems [2]. Notwithstanding the
benefits of such developments, the spiralling complexity of
these systems led to unsustainable increases in the cost and
expertise required for their management. In an attempt to
address this problem, autonomic computing was proposed as a
technology for delegating the management of complex systems
to the machines themselves [3]. Over the past few years,
significant progress has been made in defining what autonomic
systems should look like [4], [5], [6] and in successfully
implementing domain-specific autonomic solutions [7], [8],
[9], [10].

Several such solutions [8] were implemented using a com-
mercial autonomic system for policy-based resource man-
agement that was co-developed by the author [11]. Multiple
challenges were encountered in this work, including [12]:

• The lack of standardisation in ICT resource interfaces.
Despite an increasing trend to add management interfaces
to new ICT components and devices, and to make ex-
isting interfaces public, autonomic system development
is hindered by the broad diversity of architectures and
technologies these interfaces are based upon.

• The tendency to hardcode ICT resource metadata within
the control component of the autonomic system. Man-
agement frameworks are often intended for handling
particular types of resources, and the properties of these
resource types are hardcoded in the control element
of the system. With careful design, complex systems
consisting of supported resources can be successfully
managed, however adding in support for additional types
of resources cannot be achieved in a cost-effective way.

• The complexity of business policies. Policy design for au-
tonomic solutions is a complex, error-prone and iterative
process. A high level of expertise is required to devise
and fine-tune the set of policies for a complete autonomic
solution.

• The high scalability expectations. As simple, small ICT
systems are easy to manage by low-skilled human op-
erators, autonomic solutions are required in areas where
the systems to manage are complex and comprise large
numbers of resources.

Based on best practices identified while addressing these chal-
lenges [12], we proposed a generic autonomic framework for
developing cost-effective autonomic solutions, and suggested
ways in which existing technologies could be used to realise
this framework [13].

In this paper, we describe the actual implementation of
our autonomic framework as a service-oriented architecture
(SOA), and we show how the universal policy engine at its
core can be configured to manage the allocation of server
capacity to services. A SOA solution was chosen as the target
for the prototype implementation of the framework in order
to leverage web service technology benefits such as platform
independence, loose coupling and security support—all of
which are of uttermost importance in an autonomic solution.

The choice of server capacity allocation for our initial
case study was motivated by the importance that this real-
world application has had since the release of server-level
capacity control APIs such as [14], [15]. Additionally, our
prior experience with data-centre resource management [11]
helped significantly during the implementation of the solution,
and in the interpretation of the case study results.

II. RELATED WORK

The autonomic infrastructure proposed in [16] is retrofitting
autonomic functionality onto legacy systems by using sensors
to collect resource data, gauges to interpret these data and
controllers to decide the “adaptations” to be enforced on



the managed systems through effectors. This infrastructure
was successfully used to monitor, analyse and control legacy
systems in applications such as spam detection, instant mes-
saging quality-of-service management and load balancing for
geographical information systems [17]. Our generic autonomic
framework addresses several key areas that are not supported
by the approach in [16], [17]. By using a system model
for the configuration of its policy engine, our architecture
can be used for the autonomic management of heterogeneous
types of resources. Moreover, our managed system can include
resources beyond the software components handled by the
infrastructure in [16].

In [18], the authors define an autonomic architecture meta-
model that extends IBM’s autonomic computing blueprint
[19], and use a model-driven process to partly automate the
generation of instances of this meta-model. Each instance is a
special-purpose organic computing system that can handle the
use cases defined by the model used for its generation. Our
general-purpose autonomic architecture eliminates the need for
the 19-step generation process described in [18] by using a
universal policy engine that can be dynamically repurposed to
handle any use cases encoded within its system model and
policy set.

A number of other projects have investigated isolated as-
pects related to the development of autonomic systems out of
non-autonomic components. Some of these projects addressed
the standardisation of the policy information model, with the
Policy Core Information Model [20] representing the most
prominent outcome of this work. Recent efforts such as Oasis’
Web Services Distributed Management (WSDM) project were
directed at the standardisation of the interfaces through which
the manageability of a resource is made available to other ap-
plications [21]. An integrated development environment for the
implementation of WSDM-compliant interfaces is currently
available from IBM [22].

In a different area, expression languages were proposed for
the specification of policy conditions and actions, and used to
implement a range of policies [23], [24], [25], [26]. In addition
to the development of standards and technologies, complete
autonomic computing solutions have been produced recently
[14], [11], [15], typically for the management of specific
systems, and with limited ability to function in different
scenarios from those they were originally intended for.

III. OVERVIEW OF THE GENERIC AUTONOMIC
FRAMEWORK

Fig. 1 depicts the general-purpose autonomic architecture
used by our framework. This architecture, originally intro-
duced in [13], is designed around a reconfigurable, model-
driven policy engine that organises heterogeneous collections
of legacy and autonomic ICT resources into self-managing
systems. In order to support the great diversity of existing and
future ICT resources encountered in real-world applications,
the policy engine is capable of handling resources whose types
are unknown at implementation and deployment time. This
unique (re)purposing capability is achieved through runtime

Fig. 1. General-purpose autonomic architecture.

configuration: a comprehensive specification (or model) of
the system to be managed is supplied to the policy engine
for this purpose. The engine will then implement the high-
level goals given by a set of user-specified policies that
are expressed in a declarative language, and which make
reference to the resources defined in the system model. The
policy engine performs this task by monitoring the state of
the managed resources and controlling their configuration
parameters accordingly, while resource-specific manageability
adaptors ensure that this is achieved without any modification
to existing ICT resources.

The generality of the architecture allows the implementation
of the engine using different technologies, e.g., as a software
agent running on a data-centre server or a physical device
incorporated into a factory automation equipment or a mobile
phone. A full description of this novel autonomic framework
is provided in [13].

IV. PROTOTYPE POLICY ENGINE

The prototype policy engine and the manageability adap-
tors enabling its interoperation with legacy resources were
implemented as web services in order to leverage the platform
independence, loose coupling and security features of this
technology. The runtime reconfiguration of the policy engine
necessitated the extensive use of techniques available only in
an object-oriented environment:

• dynamic data type generation was required to support new
types of resources when the policy engine was repurposed
through configuration with a new system model;



Fig. 2. UML meta-model of a managed system

• runtime generation of web service proxies was required
to enable the policy engine to interoperate with new,
resource-specific manageability adaptors;

• reflection was heavily used to access the values of the re-
source properties, both to read their values once the policy
engine obtained them from the manageability adaptors
and to set new values for the modifiable properties;

• generics were used to encode most of the functionality
of manageability adaptors in a base abstract class, and
to obtain resource-specific manageability adaptors by
parameterising this abstract class with the resource data
types.

Based on these requirements, J2EE and .NET were selected
as candidate development environments for the prototype
engine, with .NET being eventually preferred due to its better
handling of dynamic proxy generation and slightly easier-to-
use implementation of reflection.

A model was developed for the system model used to
supply a specification of the ICT resources to be managed
to the policy engine. As shown in Fig. 2, this meta-model of
a managed system specifies a managed system as a named
set of resource definitions. Each resource definition (i.e.,
resourceDefinition in the UML diagram) comprises a unique
identifier ID, a description and a set of resource properties
with their characteristics. A resource property has a data type
(i.e., propertyDataType), and is associated a unique ID and
the metadata repository URL where its definition is available.

Several other property characteristics are exposed:
• modifiability—taken from the WS-ResourceMetadata-

Descriptor (WS-RMD) 1.0 specification [27], specifies if
the property is “read-only” or “read-write”;

• mutability—the WS-RMD MutabilityType [27] specifies
if the property is “constant”, “mutable” or “appendable”;

• subscribeability—specifies whether a client such as the
policy engine can subscribe to receive notifications when
the value of this property changes;

• primaryKey—indicates whether the property is part of the
property set used to identify a resource instance among
all resource instances of the same type.

The prototype policy engine (class policyEngine in Fig. 3)
was implemented itself as an instance of a resourceDefinition
from the system meta-model in Fig. 2, such that an instance
of the engine can be configured to manage other policy engine
instances. The four properties of the policy engine are:

1) the policy evaluation period (i.e., ’period’);
2) the set of policies to implement (’policySet’);
3) the locations of the resources to manage (’re-

sourceUrls’), which for the current version of the proto-
type are set explicitly (the use of a discovery technique
[28] is intended for future versions);

4) the model of the managed system (’system’); note
that the type of the ’system’ property is precisely our
managed-system meta-model (Fig. 2).

The prototype supports operators for the manipulation of
primitive data types and a few of the more sophisticated
operators recommended in [12] (e.g., set comprehension and
scheduling). Support for additional operators is added on a
regular basis as new case studies are being explored.

The policy engine reconfiguration is achieved through an
instance of the PolicyEngine class in Fig. 3. PolicyEngine is
a subclass of ManagedResource<>, a generic abstract class
that is the base class for the manageability adaptors in our
architecture and which comprises three web methods:

• SupportedResource returns the ID of the supported re-
source type.

• GetResources returns the list of all available resource
instances. The method takes as argument a list of resource
property IDs, and only the values of these properties
are assessed and returned to the caller, thus preventing
unnecessary resource property evaluation.

• SetResources takes as argument a list of resources of the
supported type, and assigns any new values specified by
the caller for the resource properties declared modifiable
in the system model. The resources whose properties need
to be modified are uniquely identified by the value of the
resource properties marked as “primary key” components
in the system model.

These three web methods rely on resource-specific methods
that are declared abstract in ManagedResource<>, and which
any of its subclasses (including PolicyEngine) implements:

• GetRawResources builds a list of all available resource
instances. The values of the resource properties need not



Fig. 3. The prototype policy engine—class diagram

be provided by this method.
• GetResourceProperty takes as arguments a resource in-

stance and the ID of a resource property, and ensures
that the property value is set in the resource object. The
method is used by GetResources to fill in the required
property values after obtaining a “raw” resource list from
GetRawResources.

• SetResourceProperties takes a resource object and en-
sures that the modifiable properties of the corresponding
real-world resource are assigned any new values specified
in the resource object.

A web administration client was implemented to set the
properties of the prototype policy engine (Fig. 4). This client
uses the three web methods of PolicyEngine to read and
to modify the policy engine parameters. In particular, the
SetResources web method is used to (re)configure the engine:

• Changes to the system model result in a repurposing of
the policy engine for the management of new types of
ICT resources, which involves the dynamic generation
of new data types, and of proxies for the manageability
adaptors specific to the new resource types.

• Changes to the resource URLs trigger the engine to con-
tact the manageability adaptors at the specified locations
in order to establish the type of resources they expose.

• Policy changes lead to re-analysis of the new policies and
to their parsing into an internal format that makes the pe-
riodical evaluation of policies computationally efficient.

• The web client can also be used to alter the policy
evaluation period.

V. CASE STUDY

In a realistic case study, we configured the policy engine
to allocate the CPU capacity of a server to a set of services
of different priority and subjected to variable workloads. The
only resource defined in the server model was ’service’ with
the properties:

• name—a string used to distinguish among services;
• priority—an integer value;
• cpuAllocation—the percentage of the server CPU allo-

cated to the service;
• cpuUtilisation—the amount of CPU utilised by the ser-

vice, expressed as a percentage of its CPU allocation.
The policy depicted in Fig. 4 allocates a percentage of the CPU
capacity of the server to each ’service’ resource, as selected

Fig. 4. Snapshot of the web client used to configure the policy engine

by the policy scope. The ’TRUE’ policy condition requires
that the policy action is applied at all times (i.e., in line
with the policy evaluation period of the engine). The policy
action is specified by means of an expression that uses the
SCHEDULE(R, ordering, property, capacity, min, max,
optimal) operator that

• sorts the resources in R in non-increasing order of the
comparable expressions in ordering;

• in the sorted order, sets the specified resource property
to a value never smaller than min or larger than max,
and as close to optimal as possible;

• ensures that the overall sum of all property values does
not exceed the available capacity.

Accordingly, the policy action

SCHEDULE(service, 〈service.priority〉,
service.cpuAllocation, 100, 15, 85, service.cpuAllocation+
5 ∗ HYSTERESIS(service.cpuUtilisation, 55, 80))

in Fig. 4 will set the cpuAllocation property of all services
to a value between 15% and 100% subject to the overall CPU
allocation staying within the 100% available capacity. Opti-
mally, the cpuAllocation should be left unchanged if the 55 ≤



Fig. 5. The server manageability adaptor

cpuUtilisation ≤ 85, decrease by 5(%) if cpuUtilisation <
55 and increase by 5(%) if cpuUtilisation > 85.1

Like the policy engine itself, the manageability adaptor
used to interface the engine with the server simulator was
implemented as a sub-class of ManagedResource<>—Fig. 5.

The policy engine was configured to manage remotely a
server simulator running a high-priority ’premier’ service and
a lower-priority ’standard’ service. The two services handled
simulated user requests with normally-distributed CPU utili-
sation and exponentially-distributed inter-arrival time. Fig. 6
shows the change in the system parameters when the request
inter-arrival time of the two services was varied to simulate
different workloads, and the policy engine was configured to
implement the policy described earlier in this section:

a Both services are lightly loaded (5000µs request inter-
arrival time) and have the minimum amount of CPU
allocated (i.e., 15% each).

b The load increases for the standard service, and its allo-
cated CPU is increased by the policy engine accordingly.

c For a brief period of time, the standard service uses its
allocated CPU completely; no requests timeout though as
its CPU allocation is increased swiftly.

d The premium service workload starts to increase, and the
policy engine grows its CPU allocation. Accordingly, the
standard service starts to get less CPU.

e As the workload for the premium service peaks and the
policy engine schedules additional CPU capacity for this
service, the standard service is allocated insufficient CPU
and some of its client requests time out.2

f The inter-arrival time for the premium service increases,
and some of the CPU capacity allocated to it during the
previous time interval is re-deployed by the policy engine
to the standard service. No more requests time out.

g Under constant workload, the CPU allocation is mostly
stable.

h To explore the role of the hysteresis, we replaced
the hysteresis term in the policy action with
HYSTERESIS(service.cpuUtilisation, 80, 80),
basically eliminating the hysteresis. This led to
significant oscillations in the CPU capacity allocated to

1The HYSTERESIS(val, lower, upper) operator used to achieve this
behaviour returns -1, 0 or 1 if val < lower, lower ≤ val ≤ upper or
upper < val, respectively.

2Requests time out after spending T=5s in a service request queue.

the services. The reinstatement of the original policy
after this time interval brings the system back into a
stable state.

The policy evaluation period was set to 3 seconds for this
experiment, so that the system could self-adapt to the rapid
variation in the workload of the two services. This allowed
us to measure the CPU overhead of the policy engine, which
was under 1% with the engine service running on a 1.8 GHz
Windows XP machine. In a real scenario, such variations
in the request inter-arrival time are likely to happen over
longer intervals of time, and the system would successfully
self-configure with far less frequent policy evaluations. Note
also that since the policy engine service is implemented as a
managed resource, its policy evaluation period can be adjusted
by another policy engine instance, so that it stays in step with
the rate of change in the request inter-arrival time—a scenario
that we are in the process of experimenting with.

VI. CONCLUSION

This paper described the SOA-based implementation of the
general-purpose autonomic architecture originally introduced
in [13]. Based on previous commercial work [11], [12] and on
recent advances in autonomic computing [16], [23], [26], our
implementation can be used to build policy-based autonomic
systems out of non-autonomic ICT resources. Experimental
work was carried out to validate the effectiveness of the
implementation in an application to allocate server capacity to
services of different priorities and varying workloads. The ex-
perimental results showed that our general-purpose framework
could perform the planned management task successfully, and
similarly to a dedicated commercial system for data-centre
resource management [8], [11]. However, unlike the commer-
cial resource-management system, our novel approach has the
unique ability to handle resources whose types are unknown
at implementation and deployment time, therefore enabling
the cost-effective development of autonomic solutions across
a broad variety of application domains.

Work is in progress to extend the prototype policy engine
with operators supporting the implementation of “utility func-
tion” policies [29], and with functionality that takes advantage
of the notification mechanism permitted by the system model
used for its configuration. Additional case studies will be
carried out to validate the applicability of the framework to a
broader spectrum of use cases related to data-centre resource
management in the first instance, and to other application
domains in the longer term.

REFERENCES

[1] T. Lenard and D. Britton, The Digital Economy Factbook. The Progress
and Freedom Foundation, 2006.

[2] Y. Bar-Yam et al., “The characteristics and emerging behaviors of
system-of-systems,” New England Complex Systems Institute, 2004.

[3] IBM Corporation, “Autonomic computing: IBM’s perspective on the
state of information technology,” October 2001.

[4] J. Kephart and D. Chess, “The vision of autonomic computing,” IEEE
Computer Journal, vol. 36, no. 1, pp. 41–50, January 2003.

[5] R. Murch, Autonomic Computing. IBM Press, 2004.



Fig. 6. Snapshot of a typical server simulation experiment

[6] M. Parashar and S. Hariri, “Autonomic computing: An overview,” in
Unconventional Programming Paradigms, ser. LNCS, vol. 3566, 2005,
pp. 257–269.

[7] C. Lefurgy et al., “Server-level power control,” in Proc. 4th IEEE Intl.
Conf. Autonomic Computing, Jacksonville, Florida, June 2007.

[8] B. McColl, “Intelligent, policy-driven orchestration of sensors and
effectors across the data center in real-time,” Sychron Inc,” White paper,
April 2004, http://hosteddocs.ittoolbox.com/BM042304.pdf.

[9] W.-S. Li et al., “Load balancing for multi-tiered database systems
through autonomic placement of materialized views,” in Proc. 22nd
IEEE Intl. Conf. Data Engineering, Atlanta, Georgia, April 2006.

[10] C. Ghanbari et al., “Adaptive learning of metric correlations for
temperature-aware database provisioning,” in Proc. 4th IEEE Intl. Conf.
Autonomic Computing, Jacksonville, Florida, June 2007.

[11] R. Calinescu and J. M. D. Hill, “System providing methodology for
policy-based resource allocation,” July 2004, united States Patent Ap-
plication no. 10/710322.

[12] R. Calinescu, “Challenges and best practices in policy-based autonomic
architectures,” in Proc. 3rd IEEE Intl. Symp. Dependable, Autonomic
and Secure Computing, Columbia, Maryland, USA, 2007, pp. 65–74.

[13] ——, “Model-driven autonomic architecture,” in Proc. 4th IEEE Intl.
Conf. Autonomic Computing, Jacksonville, Florida, June 2007.

[14] Microsoft Corporation, “Windows System Resource Manager (WSRM)
White Paper,” August 2003.

[15] Sun Microsystems, Inc, “SunTM Grid Compute Utility—Reference
guide,” June 2006, http://www.sun.com/service/sungrid/SunGridUG.pdf.

[16] J. Parekh et al., “Retrofitting autonomic capabilities onto legacy sys-
tems,” Cluster Computing, vol. 9, no. 2, pp. 141–159, April 2006.

[17] G. Kaiser et al., “Kinesthetics extreme: An external
infrastructure for monitoring distributed legacy systems,” in
Proc. 5th Intl. Active Middleware Workshop, June 2003,
http://www.psl.cs.columbia.edu/ftp/psl/CUCS-019-03.pdf.

[18] H. Kasinger and B. Bauer, “Towards a model-driven software engineer-
ing methodology for organic computing systems,” in Proc. 4th IASTED
Intl. Conf. Computational Intelligence, Calgary, Alberta, Canada, July
2005, pp. 141–146.

[19] IBM Corporation, “An architectural blueprint for autonomic computing,”
2004, http://www-03.ibm.com/autonomic/pdfs/ACBP2 2004-10-04.pdf.

[20] B. Moore, “Policy Core Information Model (pcim) extensions,” January
2003, iETF RFC 3460, http://www.ietf.org/rfc/rfc3460.txt.

[21] B. Murray et al., “Web Services Distributed Management: MUWS
primer,” February 2006, OASIS WSDM Committee Draft.

[22] IBM Corporation, “Autonomic integrated development environment,”
April 2006, http://www.alphaworks.ibm.com/ tech/aide.

[23] D. Agrawal et al., “Autonomic Computing Expression
Language (ACEL) 1.2: User’s Guide,” 2005, http://www-
128.ibm.com/developerworks/edu/ac-dw-ac-acel-i.html.

[24] R. Anthony, “A policy-definition language and prototype implementation
library for policy-based autonomic systems,” in Proc. 3rd IEEE Intl.
Conf. Autonomic Computing, Dublin, Ireland, June 2006, pp. 265–276.

[25] N. Damianou et al., “The Ponder policy specification language,” in
Policies for Distributed Systems and Networks, ser. LNCS, vol. 1995,
Bristol, UK, 2001, pp. 18–38.

[26] IBM Corporation, “Policy Management for Autonomic
Computing,” 2005, http://dl.alphaworks.ibm.com/technologies/pmac/
PMAC12 sdd.pdf.

[27] OASIS, “Web Services Resource Metadata 1.0,” November 2006.
[28] R. Harbird et al., “Adaptive resource discovery for ubiquitous com-

puting,” in Proc. 2nd Workshop Middleware for Pervasive and Ad-hoc
Computing, Toronto, Canada, October 2004, pp. 155–160.

[29] S. R. White et al., “An architectural approach to autonomic computing,”
in Proc. 1st IEEE Intl. Conf. Autonomic Computing. 2004, pp. 2–9.


