
Under consideration for publication in J. Functional Programming 1

F U N C T I O N A L P E A R L S

The Bird tree

RALF HINZE
Computing Laboratory, University of Oxford

Wolfson Building, Parks Road, Oxford, OX1 3QD, England
ralf.hinze@comlab.ox.ac.uk

1 Introduction

Sadly, Richard Bird is stepping down as the editor of the ‘Functional Pearls’ column. As
a farewell present, I would like to dedicate a tree to him. A woody plant is appropriate for
at least two reasons: Richard has been preoccupied with trees in many of his pearls, and
where else would you find a bird’s nest? Actually, there is a lot of room for nests, as the tree

1/1

1/2

2/3

3/5

5/8
4/7

3/4

4/5
5/7

1/3

1/4

2/7
1/5

2/5

3/7
3/8

2/1

3/1

5/2

8/3
7/3

4/1

5/1
7/2

3/2

4/3

7/5
5/4

5/3

7/4
8/5

Fig. 1. The Bird tree

is infinite. Figure 1 displays the first five levels. The Bird Tree, whose nodes are labelled
with rational numbers, enjoys several remarkable properties.

Firstly, it is a fractal object, in the sense that parts of it are similar to the whole. The Bird
Tree can be transformed into its left subtree by first incrementing and then reciprocalising
the elements. To obtain the right subtree, we have to interchange the order of the two steps:
the elements are first reciprocalised and then incremented. This description can be nicely
captured by a co-recursive definition, given in the purely functional programming language
Haskell (Peyton Jones 2003):

bird :: Tree Rational
bird = Node 1 (1/ (bird +1)) ((1/bird)+1).

The definitions that make this work are introduced in the next section. For the moment, it
suffices to know that the arithmetic operations are lifted pointwise to trees. For instance,
bird +1 is the same as map (+1) bird.

2 R. Hinze

Returning to the tree properties, the picture suggests that mirroring the tree yields its
reciprocal, mirror bird = 1 / bird, and this is indeed the case. Furthermore, consider the
sequence of rationals along the left (or the right) spine of the Bird Tree. We discover some
old friends: each fraction consists of two consecutive Fibonacci numbers. In other words,
we approximate the golden ratio φ = (1+

√
5)/2 as we go down the right spine. The tree

also contains the natural numbers. For those, we have to descend in a zigzag fashion: right,
left, right, left and so forth. On the other hand, if we list the numerators (or denominators)
level-wise, we obtain a somewhat obscure sequence, which is not even listed in Sloane’s
‘On-Line Encyclopedia of Integer Sequences’ (2009).1

The most intriguing property of the Bird Tree, however, is the following: Like the
Stern-Brocot tree (Graham et al. 1994) or the Calkin-Wilf tree (Calkin & Wilf 2000),
it enumerates all the positive rationals. In other words, the tree contains every positive
rational exactly once.

The purpose of this pearl is twofold. First, we shall, of course, justify the claims made
above. Sections 2 and 3 work towards this goal, reviewing the main proof technique and
relating recursive and iterative tree definitions. Section 4 then shows that the Bird Tree and
the Stern-Brocot tree are level-wise permutations of each other. Second, we aim to derive
a loopless algorithm for linearising the Bird tree. Section 6 develops a general algorithm,
with Section 5 preparing the ground.

2 Infinite trees, idioms and unique fixed points

In a lazy functional language such as Haskell, infinite trees are easy to define:

data Tree α = Node {root :: α, left :: Tree α,right :: Tree α }.

The type Tree α is a so-called co-inductive datatype. Its definition is similar to the standard
textbook definition of binary trees, except that there is no base constructor, so we cannot
build a finite tree. Since there is no base case, mirror is a one-liner:

mirror :: Tree α→Tree α

mirror (Node a l r) = Node a (mirror r) (mirror l).

The function mirror like many more to come relies critically on lazy evaluation.
The definition of bird uses + and / lifted to trees. We obtain these liftings almost for

free, as Tree is a so-called applicative functor or idiom (McBride & Paterson 2008):

infixl 9 �
class Idiom φ where

pure :: α→φ α

(�) :: φ (α→β)→ (φ α→φ β)

instance Idiom Tree where
pure a = t where t = Node a t t
t �u = Node ((root t) (root u)) (left t � left u) (right t � right u).

1 I have submitted the sequences, numerators and denominators of bird and its bit-reversal
permutation tree (see Section 3), to the ‘On-Line Encyclopedia of Integer Sequences’ (preliminary
A-numbers: A162909–A162912).

Functional pearls 3

The call pure a constructs an infinite tree of as; the idiomatic application � takes a tree of
functions and a tree of arguments to a tree of results.

Every instance of Idiom must satisfy

pure id �u = u (identity)

pure (◦)�u� v�w = u� (v�w) (composition)

pure f �pure x = pure (f x) (homomorphism)

u�pure x = pure (λ f → f x)�u, (interchange)

which allow us to rewrite every idiom expression into the form pure f � a1 � · · · � an. So
idioms capture the idea of applying a pure function to ‘impure’ arguments.

We single out two special cases that we will need time and again: map f t = pure f � t and
zip g t u = pure g� t�u. The function zip lifts a binary operator to an idiomatic structure; for
instance, (?) = zip (,) turns a pair of trees into a tree of pairs. In general, pure f �a1�· · ·�an

lifts an n-ary function pointwise to an idiomatic structure. Using this ‘idiom’ we can define
a generic instance of Num2:

instance (Idiom φ ,Num α)⇒ Num (φ α) where
(+) = zip (+)
(−) = zip (−)
(∗) = zip (∗)
negate = map negate
fromInteger = pure ◦ fromInteger.

In this pearl, we consider two idioms, infinite trees and streams. In both cases, the familiar
arithmetic laws also hold for the lifted operators.

Every structure comes equipped with structure-preserving maps; so do idioms: a map
h :: φ α→ψ α is an idiom homomorphism iff

h (pure a) = pure a (1)

h (x� y) = h x�h y. (2)

The map mirror is an example of an idiom homomorphism; it is even an idiom isomor-
phism, since mirror ◦ mirror = id. This fact greatly simplifies reasoning, as we can, for
instance, effortlessly rewrite mirror ((1/bird)+1) = mirror (pure (+)�(pure (/)�pure 1�
bird)�pure 1) to pure (+)�(pure (/)�pure 1�mirror bird)�pure 1 = (1/mirror bird)+1.

This is all very well, but how do we prove the idiom and the homomorphism laws in the
first place? It turns out that the type of infinite trees enjoys an attractive and easy-to-use
proof principle. Consider the recursion equation x = Node a l r, where l and r possibly
contain the variable x but not the expressions root x, left x or right x. Equations of this
syntactic form possess a unique solution. (Rutten (2003) shows an analogous statement
for streams; the proof, however, can be readily adapted to infinite trees.) Uniqueness can
be exploited to prove that two infinite trees are equal: if they satisfy the same recursion

2 Unfortunately, this doesn’t quite work with the Standard Haskell libraries, as Num has two super-
classes, Eq and Show, which can’t sensibly be defined generically.

4 R. Hinze

equation, then they are. The proof of 1/bird = mirror bird illustrates the idea:

1/bird

= { definition of bird }
1/Node 1 (1/ (bird +1)) ((1/bird)+1)

= { arithmetic }
Node 1 ((1/ (1/bird))+1) (1/ ((1/bird)+1))

⊂ { x = Node 1 ((1/ x)+1) (1/ (x+1)) has a unique solution }
Node 1 ((1/mirror bird)+1) (1/ (mirror bird +1))

= { mirror is an idiom homomorphism }
Node 1 (mirror ((1/bird)+1)) (mirror (1/ (bird +1)))

= { definition of mirror and bird }
mirror bird.

The link ⊂ indicates that the proof rests on the unique fixed-point principle; the recursion
equation is given within the curly braces. The upper part shows that 1 / bird satisfies the
equation x = Node 1 ((1 / x)+ 1) (1 / (x + 1)); the lower part establishes that mirror bird
satisfies the same equation. The symbol ⊂ links the two parts, effectively proving the
equality of both expressions. As regards contents, the proof relies on the facts that 1 is
a fixed point of the reciprocal function and that reciprocal is an involution.

Exercise 1 Using the unique fixed-point principle, show that ‘Tree’ satisfies the idiom laws
and that ‘mirror’ is an idiom homomorphism.

3 Recursion and iteration

The combinator recurse captures recursive or top-down tree constructions; the functions f
and g are repeatedly mapped over the whole tree:

recurse :: (α→α)→ (α→α)→ (α→Tree α)
recurse f g a = t where t = Node a (map f t) (map g t).

Thus, an alternative definition of bird is recurse (recip ◦ succ) (succ ◦ recip) 1, where recip
is the reciprocal function and succ is the successor function.

We can also construct a tree in an iterative or bottom-up fashion; the functions f and g
are repeatedly applied to the given initial seed a:

iterate :: (α→α)→ (α→α)→ (α→Tree α)
iterate f g a = loop a where loop x = Node x (loop (f x)) (loop (g x)).

The type α can be seen as a type of states and the infinite tree as an enumeration of the state
space. One could argue that iterate is more natural than recurse. This intuition is backed
up by the fact that map h ◦ iterate f g is the unfold of the Tree co-datatype.

The goal of this section is to turn a recursive definition, such as the one for bird, into
an iterative one, which can be executed manually to grow a tree. Before we tackle this

Functional pearls 5

[]

[0]

[0,0]

[0,0,0] [0,0,1]

[0,1]

[0,1,0] [0,1,1]

[1]

[1,0]

[1,0,0] [1,0,1]

[1,1]

[1,1,0] [1,1,1]

(a) recurse ([0]++) ([1]++) []

[]

[0]

[0,0]

[0,0,0] [1,0,0]

[1,0]

[0,1,0] [1,1,0]

[1]

[0,1]

[0,0,1] [1,0,1]

[1,1]

[0,1,1] [1,1,1]

(b) iterate ([0]++) ([1]++) []

Fig. 2. A tree that contains all bit strings and its bit-reversal permutation tree.

problem, we note that both recurse and iterate satisfy a fusion law:

map h ◦ recurse f1 g1 = recurse f2 g2 ◦ h

⇑
h ◦ f1 = f2 ◦ h ∧ h ◦ g1 = g2 ◦ h

⇓
map h ◦ iterate f1 g1 = iterate f2 g2 ◦ h.

Exercise 2 Prove the fusion laws, and then use fusion to give an alternative proof that
1/bird = mirror bird.

How are recurse f g a and iterate f g a related? Consider Figure 2, which displays the
trees recurse ([0]++) ([1]++) [] and iterate ([0]++) ([1]++) []. Since f and g are applied
in different orders — inside out and outside in — each level of recurse f g a is the bit-
reversal permutation of the corresponding level of iterate f g a. For brevity’s sake, one tree
is called the bit-reversal permutation tree of the other. Can we transform an instance of
recurse into an instance of iterate? Yes, if the two functions are pre- or post-multiplications
of elements of some given monoid. Let us introduce a suitable type class:

infixr 5 ·
class Monoid α where

ε :: α

(·) :: α→α→α.

The recursion-iteration lemma then states

recurse (a·) (b·) ε = iterate (·a) (·b) ε, (3)

6 R. Hinze

where a and b are elements of some monoid (M, ·,ε). To establish the lemma, we show
that iterate (·a) (·b) ε satisfies the defining equation of recurse (a·) (b·) ε , that is t =
Node ε (map (a·) t) (map (b·) t):

iterate (·a) (·b) ε

= { definition of iterate }
Node ε (iterate (·a) (·b) (ε ·a)) (iterate (·a) (·b) (ε ·b))

= { ε · x = x = x · ε }
Node ε (iterate (·a) (·b) (a · ε)) (iterate (·a) (·b) (b · ε))

= { fusion: (x·) ◦ (·y) = (·y) ◦ (x·) }
Node ε (map (a·) (iterate (·a) (·b) ε)) (map (b·) (iterate (·a) (·b) ε)).

At first sight, it seems that the applicability of the lemma is somewhat hampered by the
requirement on the form of the two arguments. However, since endomorphisms, functions
of type τ→ τ for some τ , form a monoid, we can easily rewrite an arbitrary instance of
recurse into the required form (� is function application below, the ‘apply’ of the identity
idiom):

recurse (recip ◦ succ) (succ ◦ recip) 1

= { fusion: id � x = x and (�x) ◦ (f ◦) = f ◦ (�x) }
recurse (recip ◦ succ ◦) (succ ◦ recip ◦) id �1

= { recursion-iteration lemma }
iterate (◦ recip ◦ succ) (◦ succ ◦ recip) id �1.

Hooray, we have succeeded in transforming bird into an iterative form! Well, not quite;
one could argue that using functions as the ‘internal state’ is cheating. Fortunately, we
can provide a concrete representation of these functions by viewing a rational as a pair of
numbers. To this end, we introduce a type of vectors:

data Vector =
(

Integer
Integer

)
; i =

(
1
1

)
.

The function rat maps the concrete to the abstract representation:

rat :: Vector→Rational

rat
(

a
b

)
= a÷b,

where ÷ constructs a rational from two integers.
Both recip and succ can be easily expressed as vector transformations. In fact, since they

correspond to linear transformations, we can phrase them as matrix multiplications:

data Matrix =
(

Integer Integer
Integer Integer

)
.

We assume the standard vector and matrix operations and take the opportunity to introduce
a handful of matrices that we need later on:

I =
(

1 0
0 1

)
; F =

(
0 1
1 0

)
; =

(
0 1
1 1

)
; =

(
1 0
1 1

)
; =

(
1 1
0 1

)
; =

(
1 1
1 0

)
.

Functional pearls 7

Now, the concrete counterpart of recip is (F∗) and that of succ is (∗). Here, ∗ is matrix
multiplication. As an aside, F is mnemonic for flip, as F ∗X flips X vertically, and X ∗F
flips X horizontally:

rat ◦ (F∗) = recip ◦ rat (4)

rat ◦ (∗) = succ ◦ rat. (5)

Since square matrices with matrix multiplication form a monoid, we can redo the deriva-
tion above in more concrete terms:

recurse (recip ◦ succ) (succ ◦ recip) 1

= { fusion: rat i = 1, (4) and (5) }
map rat (recurse ((F∗) ◦ (∗)) ((∗) ◦ (F∗)) i)

= { (X∗) ◦ (Y∗) = ((X∗Y)∗), F∗ = and ∗F = }
map rat (recurse (∗) (∗) i)

= { fusion: I∗v = v and (∗v) ◦ (X∗) = (X∗) ◦ (∗v) }
map rat (map (∗i) (recurse (∗) (∗) I))

= { functor and define mediant = rat ◦ (∗i) }
map mediant (recurse (∗) (∗) I)

= { recursion-iteration lemma }
map mediant (iterate (∗) (∗) I) .

If we unfold the definition of mediant, we obtain

mediant :: Matrix→Rational

mediant
(

a b
c d

)
= (a+b)÷ (c+d).

The rational a+b/c+d is the so-called mediant of a/c and b/d , hence the name of the function.

The matrix
(

a b
c d

)
can be seen as representing the interval (a/c,

b/d), which contains the

mediant if a/c 6 b/d .
The iterative formulation of bird explains why the Fibonacci numbers appear on the two

spines. The initial state is
(

1 0
0 1

)
; the state is updated as follows:

(
b a+b
d c+d

)
=

(
a b
c d

)
∗ ← [

(
a b
c d

)
7→

(
a b
c d

)
∗ =

(
a+b a
c+d c

)
.

Each row implements the iterative Fibonacci algorithm, which maintains two consecutive
Fibonacci numbers. After n steps, we obtain

n =
(

Fn−1 Fn
Fn Fn+1

)
n =

(
Fn+1 Fn
Fn Fn−1

)
,

where Fn is the nth Fibonacci number with F−n = (−1)n+1 ∗Fn.

Exercise 3 Formalise the claim above. You may want to peek at Section 5 first, which
introduces infinite lists. (Hint: define a function spine ::Tree α→Stream α that maps a tree
on to its left or right spine.)

8 R. Hinze

1/1

1/2

1/3

1/4

1/5
2/7

2/5

3/8
3/7

2/3

3/5

4/7
5/8

3/4

5/7
4/5

2/1

3/2

4/3

5/4
7/5

5/3

8/5
7/4

3/1

5/2

7/3
8/3

4/1

7/2
5/1

Fig. 3. The Stern-Brocot tree

4 The Stern-Brocot tree

There are many ways to enumerate the positive rationals. Probably the oldest method was
found around 1850 by the German mathematicians Eisenstein and Stern. It is deceptively
simple: start with the two ‘boundary rationals’ 0/1 and 1/0, which are not included in the
enumeration, and then repeatedly insert the mediant a+b/c+d between two adjacent rationals
a/c and b/d .

Since the number of inserted rationals doubles with every step, the process can be
pictured by an infinite binary tree, the so-called Stern-Brocot tree3 (see Figure 3). Quite
remarkably, each level shown is a permutation of the corresponding level of the Bird Tree.
The purpose of this section is to verify this observation, which implies that the Bird Tree
also contains every positive rational once.

Before we work out the relationship, let us turn the informal description of the Stern-
Brocot tree into a program. This is most easily accomplished if we first construct a tree of
intervals, represented by 2×2 matrices, and then map the intervals to their mediants. The
start interval is now

(
0 1
1 0

)
; the interval is updated as follows:

(
a b
c d

)
∗ =

(
a a+b
c c+d

)
←[

(
a b
c d

)
7→

(
a+b b
c+d d

)
=

(
a b
c d

)
∗ .

The left bound of the left descendent is the original left bound; the right bound is the
mediant of the two original bounds. Likewise for the right descendent.

So the verbal description corresponds to an iterative construction, in which the state is
an interval. Using a derivation inverse to the one in the preceding section, we can turn the
verbal description into a compact co-recursive definition:

map mediant (iterate (∗) (∗) F)

= { fusion: I∗F = F, F∗ = ∗F and F∗ = ∗F }
map mediant (map (∗F) (iterate (∗) (∗) I))

= { functor and mediant ◦ (∗F) = mediant }
map mediant (iterate (∗) (∗) I)

3 The French clockmaker Brocot discovered the method around 1860, independently of Eisenstein
and Stern.

Functional pearls 9

= { recursion-iteration lemma }
map mediant (recurse (∗) (∗) I)

= { fusion: I∗v = v and (∗v) ◦ (X∗) = (X∗) ◦ (∗v) }
map rat (recurse (∗) (∗) i)

= { F∗ ∗F = }
map rat (recurse (F∗ ∗F∗) (∗) i)

= { fusion: rat i = 1, (4) and (5) }
recurse (recip ◦ succ ◦ recip) succ 1.

If we unfold the definitions, we obtain the following co-recursive program:

stern-brocot :: Tree Rational
stern-brocot = Node 1 (1/ (1/ stern-brocot+1)) (stern-brocot+1).

The definition is tantalisingly close to the definition of bird. As an aside, the derivation
above also provides a formula for the bit-reversal permutation tree of stern-brocot, the
so-called Calkin-Wilf or Eisenstein-Stern tree. We simply replace recurse by iterate, ob-
taining iterate (recip ◦ succ ◦ recip) succ 1.

We have already observed that bird and stern-brocot are level-wise permutations of each
other. Looking a bit closer, we notice that the natural numbers are located on the right spine
of the Stern-Brocot tree, whereas the Fibonacci fractions that approach the golden ratio 1/1,
2/1, 3/2, 5/3, 5/8, etc. appear on a zigzag path. Recalling that it was the other way round in
the Bird Tree, we conjecture

odd-mirror bird = stern-brocot (6)

odd-mirror stern-brocot = bird, (7)

where odd-mirror swaps the immediate subtrees of a node but only on odd levels:

even-mirror,odd-mirror :: Tree α→Tree α

odd-mirror (Node a l r) = Node a (even-mirror l) (even-mirror r)
even-mirror (Node a l r) = Node a (odd-mirror r) (odd-mirror l).

Since odd-mirror and even-mirror are involutions, it suffices to prove one of the equations
above; we pick the first one (6). Let us introduce some shortcuts so that the expressions still
fit on one line: We abbreviate map recip by r, map (recip ◦ succ) by rs and so forth. Fur-
thermore, e is shorthand for even-mirror bird and likewise o for odd-mirror bird. Finally,
we abbreviate stern-brocot by sb:

o

= { definition of bird and definition of odd-mirror, naturality of even-mirror }
Node 1 (rs e) (sr e)

= { definition of bird and definition of even-mirror, naturality of odd-mirror }
Node 1 (rs (Node 1 (sr o) (rs o))) (sr (Node 1 (sr o) (rs o)))

= { definition of rs and sr }
Node 1 (Node 1/2 (rssr o) (rsrs o)) (Node 2/1 (srsr o) (srrs o))

10 R. Hinze

⊂ { x = Node 1 (Node 1/2 (rssr x) (rsrs x)) (Node 2/1 (srsr x) (srrs x)) }
Node 1 (Node 1/2 (rssr sb) (rsrs sb)) (Node 2/1 (srsr sb) (srrs sb))

= { recip is an involution: rssr = rsrrsr and srrs = ss }
Node 1 (Node 1/2 (rsrrsr sb) (rsrs sb)) (Node 2/1 (srsr sb) (ss sb))

= { definition of rsr and definition of s }
Node 1 (rsr (Node 1 (rsr sb) (s sb))) (s (Node 1 (rsr sb) (s sb)))

= { definition of sb }
Node 1 (rsr sb) (s sb)

= { definition of sb }
sb.

5 Linearising the Stern-Brocot tree

Now, let us consider linearising the Bird Tree. As a warm-up exercise, this section demon-
strates how to linearise the Stern-Brocot tree. This has been done several times before
(Gibbons et al. 2006; Backhouse & Ferreira 2008), but we believe that the co-data frame-
work is particularly suited to this task, so it is worthwhile to repeat the exercise. Techni-
cally, we aim to derive a loopless algorithm (Bird 2006) for enumerating the elements of
stern-brocot. An enumeration is called loopless if the next element is computed from the
previous one in constant time and, for this pearl, in constant space.

Since we have to transform an infinite tree into an infinite list, let us introduce a tailor-
made co-datatype for the latter (Hinze 2008):

data Stream α = Cons {head :: α, tail :: Stream α }

infixr 5≺
(≺) :: α→Stream α→Stream α

a≺ s = Cons a s.

The type of streams is similar to Haskell’s predefined type of lists, except that there is no
empty list constructor, so we cannot form a finite list.

Like infinite trees, streams are an idiom, which means that we can effortlessly lift
functions to streams:

instance Idiom Stream where
pure a = s where s = a≺ s
s� t = (head s) (head t)≺ (tail s)� (tail t).

Like infinite trees, streams can be built recursively or iteratively. We overload recurse and
iterate to also denote the combinators on streams:

recurse :: (α→α)→ (α→Stream α)
recurse f a = s where s = a≺ map f s

iterate :: (α→α)→ (α→Stream α)
iterate f a = a≺ iterate f (f a).

Functional pearls 11

Unlike the tree combinators, recurse and iterate construct exactly the same stream: we
have recurse f a = iterate f a.

Exercise 4 Show that iterate f a satisfies the recursion equation of recurse f a. (Hint:
Formulate a fusion law first.)

To convert a tree to a stream, we define a helper function that chops the root off a tree:

stream :: Tree α→Stream α

stream t = root t ≺ stream (chop t)

chop :: Tree α→Tree α

chop t = Node (root (left t)) (right t) (chop (left t)).

In a sense, root is the counterpart of head and chop is the counterpart of tail. Infinite trees
and streams are both very regular structures, so it probably comes as little surprise that
stream is an idiom isomorphism.

Exercise 5 Show that ‘stream’ is an idiom isomorphism and that ‘chop’ is an idiom ho-
momorphism.

Let’s have a closer look at the workings of stream: it outputs the elements of its argument
tree level by level. However, since chop repeatedly swaps the left and the right subtree,
each level is output in bit-reversal permutation order. In other words, stream stern-brocot
actually linearises the Calkin-Wilf tree. We return to this point later on. The enumeration
stream t is not loopless: to produce the next element, stream t takes time linear in the depth
of the element in the tree and space proportional to the width of the current level. So turning
stream stern-brocot into a loopless algorithm requires some effort.

As a first step towards this goal, let us disentangle stern-brocot into a tree of numerators
and denominators. Given the specification

num÷den = stern-brocot, (8)

where ÷ is lifted to trees, we reason as follows:

num÷den

= { specification and definition of stern-brocot }
Node 1 (1/ (1/ (num÷den)+1)) (num÷den+1)

= { arithmetic }
Node (1÷1) (num÷ (num+den)) ((num+den)÷den)

= { definition of ÷ lifted to trees }
(Node 1 num (num+den))÷ (Node 1 (num+den) den).

Thus, num and den defined by

num = Node 1 num (num+den)

den = Node 1 (num+den) den

satisfy the specification. The two definitions are pleasingly symmetric; in fact, we have
den = chop num. In other words, we can confine ourselves to linearising den; that is we

12 R. Hinze

seek to express chop den in terms of den and possibly num. To see what we are aiming for,
let us unroll chop den:

chop den = Node 2 den (den+ chop den).

This is almost the sum of num and den:

num+den− chop den = Node 0 (2∗num) (num+den− chop den).

The difference between num + den and chop den equals 2 ∗ x, where x is the solution of
x = Node 0 num x. Have we made any progress? Somewhat surprisingly, the answer is yes.
By a stroke of good luck, the unique solution x of the equation above is num mod den, as a
quick calculation shows:

num mod den

= { definition of num and definition of den }
(Node 1 num (num+den))mod (Node 1 (num+den) den)

= { definition of mod lifted to trees }
Node (1 mod 1) (num mod (num+den)) ((num+den)mod den)

= { properties of mod }
Node 0 num (num mod den).

As an intermediate summary, we have derived

fusc = 1≺ fusc′

fusc′ = 1≺ fusc+ fusc′−2∗ (fusc mod fusc′),

where fusc = stream num is the stream of numerators and fusc′ = stream den = tail fusc is
the stream of denominators. (The name fusc is due to Dijkstra (1976).) Both streams are
given by recursive definitions. It is a simple exercise to turn them into iterative definitions.
Tupling fusc and fusc′ using (?) = zip (,), we obtain

fusc? fusc′

= { definition of fusc and definition of fusc′ }
(1≺ fusc′)? (1≺ fusc+ fusc′−2∗ (fusc mod fusc′))

= { definition of ? and definition of zip }
(1,1)≺ fusc′ ? (fusc+ fusc′−2∗ (fusc mod fusc′))

= { idioms, and introduce step (n,d) = (d,n+d−2∗ (n mod d)) }
(1,1)≺ map step (fusc? fusc′).

Since iterate f a is the unique solution of the recursion equation x = a≺ map f x, we have
fusc? fusc′ = iterate step (1,1). The following calculations summarise our findings:

stream stern-brocot

= { see above }
stream (num÷den)

= { stream is an idiom homomorphism }

Functional pearls 13

stream num÷ stream den

= { see above }
fusc÷ fusc′

= { idioms, and introduce rat′ (n,d) = n÷d }
map rat′ (fusc? fusc′)

= { see above }
map rat′ (iterate step (1,1)).

As a final step, we can additionally fuse rat′ with iterate, employing the following
formula:

1/ (bn÷dc+1−{n÷d}) = d÷ (n+d−2∗ (n mod d)).

Here, brc denotes the integral part of r and {r} its fractional part, such that r = brc+{r}.
Continuing the calculation, we obtain

= { fusion, and introduce next r = 1/ (brc+1−{r}) }
iterate next 1.

This intriguing algorithm is attributed to Newman (Aigner & Ziegler 2004); the formula
for step is apparently due to Stay (Sloane, 2009; sequence A002487).

Can we derive a similar algorithm for stream bird? The answer is probably no. The next
section explains why.

6 Linearising the Bird Tree and some others

Now that we have warmed up, let’s become more ambitious: the goal of this section
is to derive a loopless algorithm for enumerating the elements of the infinite tree ab =
recurse (a·) (b·) ε , where a and b are elements of some given monoid. Unfortunately, we
will not quite achieve our goal: the step function will run in amortised constant time, based
on the assumption that the monoid operation ‘·’ runs in constant time. Or put differently, it
will use a constant number of ‘·’ operations amortised over time.

Now, the call stream ab yields

ε ≺ a≺ b≺ a ·a≺ b ·a≺ a ·b≺ b ·b≺ a ·a ·a≺ ·· · .

On the face of it, calculating the next element in stream ab corresponds to the binary
increment: bi ·a ·w becomes ai ·b ·w, and bi becomes ai+1.

In contrast to the binary increment, we can’t examine the elements, since we are not
working with the free monoid — after all, the elements a and b could be functions. Of
course, if we don’t make any additional assumptions about the underlying structure, then
we simply can’t calculate the next from the previous element. In order to support incre-
mental computations, we assume that each element has an inverse; that is we are working
with a group rather than a monoid:

class (Monoid α)⇒ Group α where
inverse :: α→α

(^) :: α→ Integer→α.

14 R. Hinze

The class Group additionally supports exponentiation, which we assume defaults to a
logarithmic implementation. We abbreviate a^n by an; in particular, inverse a = a−1.

Now, to get from bi · a ·w to ai · b ·w, we simply pre-multiply the former element with
(ai ·b) ·(bi ·a)−1. If the current element is bi, then we cannot reuse any information, and we
compute ai+1 afresh. Still, there is no way to inspect the elements, so we have to maintain
some information: the number i of leading bs and whether the current element contains
only bs. It turns out that the calculations are slightly more attractive, if we maintain the
number of leading as of the next element. Given this information, the next element can be
computed as follows:

〈c, i, x〉 | c = ai

| otherwise = ai ·b ·a−1 ·b−i · x.

The required pieces of information can be easily defined using infinite trees:

rim = Node True (pure False) rim

carry′ = Node 1 0 (1+ carry′).

Abbreviating map (x·) s by x · s, we have ab = Node ε (a · ab) (b · ab). Only the elements
on the right spine of ab contain only bs. Consequently, rim’s right spine is labelled with
Trues, and all the other elements are False. To motivate the definition of carry′, let’s unfold
chop ab:

chop ab

= { definition of chop }
Node (root (left ab)) (right ab) (chop (left ab))

= { definition of ab }
Node a (b ·ab) (chop (a ·ab))

= { chop is an idiom homomorphism }
Node a (b ·ab) (a · chop ab).

The root contains one leading a, the left subtree none and each element of the right subtree
one more than the corresponding element in the entire tree. The definition of carry′ exactly
captures this description.

Lifting the ternary operation 〈−,−,−〉 to infinite trees, we claim that 〈rim, carry′, ab〉=
chop ab. The proof makes essential use of the shift property

〈c, i+1, x〉 = a · 〈c, i, b−1 · x〉, (9)

which expresses the straightforward fact that we can pull an a to the front if the next
element has at least one leading a. Turning to the proof, we show that 〈rim, carry′, ab〉
satisfies the same recursion equation as chop as, namely x = Node a (b ·ab) (a · x):

〈rim, carry′, ab〉
= { definition of rim, definition of carry′ and definition of ab }
〈Node True (pure False) rim, Node 1 0 (carry′+1), Node ε (a ·ab) (b ·ab)〉

= { definition of 〈−,−,−〉 lifted to trees }

Functional pearls 15

Node 〈True, 1, ε〉 〈pure False, 0, a ·ab〉 〈rim, carry′+1, b ·ab〉
= { definition of 〈−,−,−〉 and (9) }

Node a (b ·a−1 ·a ·ab) (a · 〈rim, carry′, b−1 ·b ·ab〉)
= { inverses }

Node a (b ·ab) (a · 〈rim, carry′, ab〉.

So we have reduced the problem of linearising ab to the problem of linearising rim
and carry′. Are we any better off? Certainly, rim isn’t difficult to enumerate, but what
about carry′? By a second stroke of good luck, there is an intriguing cross-connection to
the Stern-Brocot tree: carry′ = bstern-brocotc = bnum / denc = num div den. Here is the
straightforward proof:

num div den

= { definition of num and definition of den }
(Node 1 num (num+den))div (Node 1 (num+den) den)

= { definition of div lifted to trees }
Node (1 div 1) (num div (num+den)) ((num+den)div den)

= { definition of div and num > 1 6 den }
Node 1 0 ((num div den)+1).

Exercise 6 Show that rim = den 1, where is equality lifted to trees, that is has type
(Eq α)⇒ Tree α→Tree α→Tree Bool.

In other words, we can reuse the results of the previous section to solve the more general
problem of turning ab into a stream:

stream ab

= { definition of stream }
root ab≺ stream (chop ab)

= { see above and Exercise 6 }
ε ≺ stream 〈den 1, num div den, ab〉

= { introduce ⊗ with (n,d)⊗ x = 〈d 1, n div d, x〉 }
ε ≺ stream ((num?den)⊗ab)

= { stream is an idiom homomorphism }
ε ≺ stream (num?den)⊗ stream ab

= { Section 5 }
ε ≺ iterate step (1,1)⊗ stream ab.

All that is left to do is to express stream ab = ε ≺ iterate step (1,1)⊗ stream ab as an
iteration. This is easy to achieve using tupling. Let q = (1,1); then

iterate step q? stream ab

= { definition of iterate and property of stream ab }

16 R. Hinze

(q≺ map step (iterate step q))? (ε ≺ iterate step q⊗ stream ab)

= { definition of ? and definition of zip }
(q,ε)≺ map step (iterate step q)? (iterate step q⊗ stream ab)

= { idioms and introduce step′ (x,y) = (step x,x⊗ y) }
(q,ε)≺ map step′ (iterate step q? stream ab).

Recalling that iterate f e is the unique solution of the equation x = e ≺ map f x, we
have established that iterate step q ? stream ab = iterate step′ (q,ε) and furthermore that
stream ab = map snd (iterate step′ (q,ε)).

The following definition summarises the derivation — we have additionally inlined the
definitions and flattened the nested pair (q,ε) to a triple:

loopless :: (Group α)⇒ α→α→Stream α

loopless a b = map (λ (x,y,z)→ z) (iterate step3 (1,1,ε))
where
step3 (n,d,x) = (d,n+d−2∗m,x′)

where (i,m) = divMod n d
x′ | d 1 = ai

| otherwise = ai ·b ·a−1 ·b−i · x.

Assuming that the operation ‘·’ has a constant running time, the function step3 takes
Θ(log log(n + 1)) steps to produce the (n + 1)st element from the nth element: the expo-
nent i in the definition of step3 is at most dlg(n+1)e, and fast exponentiation uses at most
2dlg(i + 1)−1e multiplications. The amortised running time of step3 would be, however,
constant, even if exponentiation were implemented naively; step3 would then perform the
same number of steps as the binary increment.

Linearising the Bird Tree is now simply a matter of applying loopless. First of all, the set
of all invertible square matrices forms a group, the so-called general linear group GLn(R)
— if the coefficients are drawn from R. Since and have the determinant −1, they are
both invertible in GL2(Z), and we have

stream bird

= { Section 3 }
stream (map mediant (recurse (∗) (∗) I))

= { stream is an idiom homomorphism }
map mediant (stream (recurse (∗) (∗) I))

= { see above }
map mediant (loopless).

Done! Well, not quite: because of the way stream is defined, the program above actually
enumerates the elements of the bit-reversal permutation tree of bird. We should really
linearise recurse (∗) (∗) I instead of recurse (∗) (∗) I. Of course, loopless can be
adapted to work with pre- instead of post-multiplications, but fortunately, there is a more
modular approach. Using matrix transposition (−)> we can put recurse (∗) (∗) I into

Functional pearls 17

the required form:

stream (map mediant (recurse (∗) (∗) I))
= { I> = I, > = and > = }

stream (map mediant (recurse (∗ >) (∗ >) I>))

= { fusion: (X∗Y)> = Y> ∗X> }
stream (map mediant (map transpose (recurse (∗) (∗) I)))

= { functor and see above }
map (mediant ◦ transpose) (loopless).

Can we improve the running time of the final program? If we managed to determine Xi

in constant time, then loopless could be turned into a true loopless algorithm. Recall the
findings of Section 3:

n =
(

Fn−1 Fn
Fn Fn+1

)
n =

(
1 0
n 1

)
n =

(
1 n
0 1

)
n =

(
Fn+1 Fn
Fn Fn−1

)
.

The Stern-Brocot tree and the Calkin-Wilf tree can indeed be enumerated looplessly, as
both involve only and — Backhouse and Ferreira derive these special cases in (2008).
However, since we can’t compute the Fibonacci numbers in constant time, this doesn’t
work for the Bird Tree. Indeed, the fastest algorithm for computing Fn involves calculating

n using fast exponentiation.

Acknowledgements

Thanks are due to Roland Backhouse, Jeremy Gibbons, Daniel James and Tom Harper for
carefully proofreading a previous version of this paper. I am furthermore grateful to the
anonymous referees for many helpful suggestions, in particular, for insisting on a road-
map. Finally, I would like to thank Richard for many years of inspiration and support.

References

Aigner, M. & Ziegler, G. M. (2004) Proofs from THE BOOK, 3rd edn. Springer-Verlag.
Backhouse, R. & Ferreira, J. F. (2008) Recounting the rationals: Twice!, In The 9th International

Conference on Mathematics of Program Construction (MPC ’08), Audebaud, P. & Paulin-
Mohring, C. (eds), Lecture Notes in Computer Science, vol. 5133. Springer-Verlag, pp. 79–91.

Bird, R. S. (2006) Loopless functional algorithms. In The 8th International Conference on
Mathematics of Program Construction (MPC ’06), Uustalu, T. (ed.), Lecture Notes in Computer
Science, vol. 4014. Springer-Verlag, pp. 90–114.

Calkin, N. & Wilf, H. (2000) Recounting the rationals, Am. Math. Monthly, 107 (4): 360–363.
Dijkstra, E. W. (1976) EWD 570: An exercise for Dr. R. M. Burstall. The manuscript was

published as pages 215–216 of E. W. Dijkstra (1982), Selected Writings on Computing: A Personal
Perspective. Springer-Verlag, ISBN 0–387–90652–5.

Gibbons, J., Lester, D. & Bird, R. (2006) Functional pearl: Enumerating the rationals. J. Funct.
Program., 16 (3): 281–291.

Graham, R. L., Knuth, D. E. & Patashnik, O. (1994) Concrete mathematics. 2nd edn. Addison-
Wesley.

18 R. Hinze

Hinze, R. (2008) Functional pearl: Streams and unique fixed points. In Proceedings of the 13th ACM
SIGPLAN International Conference on Functional Programming (ICFP ’08), Thiemann, P. (ed.).
ACM Press, pp. 189–200.

McBride, C. & Paterson, R. (2008) Functional pearl: Applicative programming with effects. J.
Funct. Program., 18 (1): 1–13.

Peyton Jones, S. (2003) Haskell 98 Language and Libraries. Cambridge University Press.
Rutten, J. (2003) Fundamental study: Behavioural differential equations: A coinductive calculus of

streams, automata, and power series. Theoret. Comp. Sci., 308: 1–53.
Sloane, N. J. A. (2009) The On-Line Encyclopedia of Integer Sequences [online]. Available at:
http://www.research.att.com/~njas/sequences/.

