
Under consideration for publication in J. Functional Programming 1

F U N C T I O N A L P E A R L S

Purely Functional 1-2 Brother Trees

RALF HINZE
Computing Laboratory
University of Oxford

Wolfson Building, Parks Road,
Oxford, OX1 3QD, England

ralf.hinze@comlab.ox.ac.uk

1 Prologue

Enter the computing arboretum and you will find a variety of well-studied trees: AVL trees
(Adel’son-Vel’skiı̆ & Landis, 1962), symmetric binary B-trees (Bayer, 1972), Hopcroft’s
2-3 trees (Aho et al., 1974), the bushy finger trees (Guibas et al., 1977), and the colourful
red-black trees (Guibas & Sedgewick, 1978). In this pearl, we look at a more exotic species
of balanced search trees, 1-2 brother trees (Ottmann et al., 1979), which deserves to be
better known. Brother trees lend themselves well to a functional implementation with
deletion (Sec. 5) as straightforward as insertion (Sec. 3), both running in logarithmic time.
Furthermore, brother trees can be constructed from ordered lists in linear time (Sec. 4).
With some simple optimisations in place, this implementation of search trees is one of the
fastest around. So, fasten your seat belts.

2 Brother Trees

A 1-2 brother1 tree, brother tree for short, consists of nullary, unary and binary nodes.

data Tree a = N0 | N1 (Tree a) | N2 (Tree a) a (Tree a)

An element of type Tree t is called a brother tree iff (a) all nullary nodes have the same
depth (height condition) and (b) each unary node has a binary brother (brother condition).

The brother condition implies that the root of a brother tree is not unary and that a unary
node has not a unary child. Put positively, a unary node only occurs as the child of a binary
node. We can formalise the invariants of brother trees using subset types.

B0 a = N0

Bh+1 a = N2 (Uh a ∪Bh a) a (Bh a) ∪ N2 (Bh a) a (Uh a ∪Bh a)

Uh+1 a = N1 (Bh a)

The definitions lean on the syntax of datatype declarations with C A1 . . . An abbreviating
the set comprehension {C a1 . . . an | a1 ∈A1, . . . ,an ∈An}.

1 I decided to stick to the original terminology, even though it is not gender neutral.

2 R. Hinze

Table 1. Number of brother trees of height 0 6 h 6 5 and size 0 6 s 6 15

Size s
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
ei

gh
th

0 1
1 1
2 2 1
3 4 6 4 1
4 16 32 44 60 70 56 28 8 1
5 128 448 864 1552

A brother tree of height h with labels of type t is then an element of Bh t ⊆ Tree t.
To give a feel for the restrictiveness of the conditions, Table 1 lists the number of

differently shaped brother trees for a few given heights and sizes. For instance, there are
1,553 brother trees of size 15, none of which is deeper than 5. By contrast, the total number
of binary trees of that size amounts to 9,694,845, with heights ranging from 4 to 15.

The sparsest brother tree of a given height is the Fibonacci tree defined

fib-tree :: Integer→ Tree ()
fib-tree 0 = N0

fib-tree 1 = N2 N0 () N0

fib-tree (h+2) = N2 (fib-tree (h+1)) () (N1 (fib-tree h)) .

Fig. 1 displays the Fibonacci tree of height seven. Since unary nodes contain no elements,
they are drawn as small, filled circles. For the example tree, the ratio between binary and
unary nodes is (F9−1)/(F8−1) = 33/20 = 1.65, where Fn is the n-th Fibonacci number.
As the height goes to infinity, the ratio (Fh+2−1)/(Fh+1−1) approaches the golden ratio,
φ = 1

2 (1 +
√

5) ≈ 1.618. Since Fh+2−1 is the minimum possible size of a brother tree of
height h, a brother tree with n elements has height at most lg(n+1)/ lgφ ≈ 1.44 lg(n+1).

If we remove the unary nodes from a brother tree, contracting N1 t to t, we obtain an
AVL tree of the same height! The height and the brother condition translate to the balance
condition of AVL trees: for each node, the height difference of the children is at most 1.
Conversely, we can transform an AVL tree to a brother tree by inserting unary nodes at the
appropriate places, so that all paths from the root to a leaf are equally long.

The standard query operations on binary search trees are easy to adapt for brother trees.
As an example, here is the definition of membership.

member :: (Ord a)⇒ a→ Tree a→ Bool
member a N0 = False
member a (N1 t) = member a t
member a (N2 l b r) | a 6 b = member a l

| a > b = member a r

Functional pearls 3

Fig. 1. Fibonacci tree of height seven, fib-tree 7.

3 Insertion

Since brother trees are in a one-to-one correspondence to AVL trees, we could adapt AVL
insertion and deletion to the new setting. However and perhaps surprisingly, if one starts
afresh, two new algorithms emerge.

Insertion consists of two phases: a top-down search and a bottom-up construction phase.
For the first phase, we use the standard algorithm for binary search trees. During the second
phase, we additionally restore the invariants of brother trees using smart constructors.

insert :: (Ord a)⇒ a→ Tree a→ Tree a
insert a t = root (ins t)

where
ins N0 = L2 a
ins (N1 t) = n1 (ins t)
ins (N2 l b r) | a 6 b = n2 (ins l) b r

| a > b = n2 l b (ins r)

The helper function ins recurses from the root to a leaf. In the base case, the nullary
constructor N0 is replaced by the leaf L2 a, where L2 is a new, auxiliary data constructor.
The functions n1 and n2 are smart versions of the constructors N1 and N2, which among
other things eliminate occurrences of the new constructor. This is actually quite simple. If
the new element is inserted into a unary node, it is expanded to a binary node. By the same
logic, a binary node is expanded to a ternary node. Like L2, a ternary node is an auxiliary
data constructor introduced solely for the purpose of insertion.

data Tree a = · · · | L2 a | N3 (Tree a) a (Tree a) a (Tree a)

All that is left to do is to get rid of the ternary node. If the sole son of a unary node is
ternary, then we can rearrange the tree as follows.

⇐= =⇒

4 R. Hinze

Both transformations are viable. In the code below, we arbitrarily pick the first alternative.

root (L2 a) = N2 N0 a N0

root (N3 t1 a1 t2 a2 t3) = N2 (N2 t1 a1 t2) a2 (N1 t3)
root t = t

n1 (L2 a) = N2 N0 a N0

n1 (N3 t1 a1 t2 a2 t3) = N2 (N2 t1 a1 t2) a2 (N1 t3)
n1 t = N1 t

The function root ensures that the auxiliary constructors are eliminated if they propagate to
the root. If one of the first two equations matches, then we know that the tree has grown—
like most height-balanced trees, brother trees grow upwards.

For a binary node, we additionally distinguish whether the brother of the ternary node is
unary or binary.

=⇒ ⇐=

=⇒ ⇐=

A ternary and a unary node are transformed into two binary ones. If the ternary node
has a binary brother, we propagate the ternary node upwards. The transformations are
implemented by the code below—subtrees are re-used with the help of as-patterns.

n2 (L2 a1) a2 t1 = N3 N0 a1 N0 a2 t1 -- t1 N0

n2 (N3 t1 a1 t2 a2 t3) a3 (N1 t4) = N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)
n2 (N3 t1 a1 t2 a2 t3) a3 t4@(N2) = N3 (N2 t1 a1 t2) a2 (N1 t3) a3 t4
n2 t1 a1 (L2 a2) = N3 t1 a1 N0 a2 N0 -- t1 N0

n2 (N1 t1) a1 (N3 t2 a2 t3 a3 t4) = N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)
n2 t1@(N2) a1 (N3 t2 a2 t3 a3 t4) = N3 t1 a1 (N1 t2) a2 (N2 t3 a3 t4)

n2 t1 a1 t2 = N2 t1 a1 t2

Clearly, the smart constructors root, n1 and n2 jointly eliminate the auxiliary nodes L2

and N3. But, is the result still a brother tree? It is easy to check that the transformations
preserve the height—like N0, the height of L2 a is by definition 0. Regarding the brother
condition, note that a ternary node is either of the form N3 N0 a1 N0 a2 N0 or of the form
N3 (N2 t1 a1 t2) a2 (N1 t3) a3 (N2 t4 a4 t5). This invariant guarantees that the son of a freshly
constructed unary node is never unary and that a freshly constructed binary node has at
most one unary son. The invariants can be captured using subset types.

B+
0 a = B0 a ∪ L2 a

B+
1 a = B1 a ∪ N3 N0 a N0 a N0

B+
h+2 a = Bh+2 a ∪ N3 (Bh+1 a) a (Uh+1 a) a (Bh+1 a)

The set B+
h t comprises grown trees, which possibly have an auxiliary node as their root. It

is important to note that the auxiliary nodes only appear on the top-level, never below a root
node. The functions involved in inserting an element then satisfy the following invariants,

Functional pearls 5

Fig. 2. Brother trees generated by from-list [1 . .n] for n = 1, . . . , 15.

where f ∈ P→ Q means that ∀ x . x ∈ P =⇒ f x ∈ Q.

ins ∈Bh a→B+
h a

ins ∈Uh a → (Uh a ∪Bh a)
n1 ∈B+

h a→ (Uh+1 a ∪Bh+1 a)
n2 ∈B+

h a→ a→ (Uh a ∪Bh a)→B+
h+1 a

n2 ∈ (Uh a ∪Bh a)→ a→B+
h a→B+

h+1 a
root ∈B+

h a→ (Bh a ∪Bh+1 a)

Note that ins preserves the height, n1 and n2 increase it, and root possibly increases it. The
smart constructor n2 is really two-in-one, as it takes care of growth in either the left or the
right subtree.

Finally, all the transformations preserve the search-tree property: the relative order and
multiplicity of elements and subtrees is unchanged.

4 Construction

Using insert we can easily construct a brother tree from an unordered list.

from-list :: (Ord a)⇒ [a]→ Tree a
from-list = foldr insert N0

Fig. 2 displays the trees generated by from-list [1 . .n] for n = 1, . . . , 15. Note that we do
not label the nodes as the keys are uniquely determined by the search-tree property. Rather
amazingly, if n is 2i−1 for some i, we obtain a perfectly balanced binary tree, perfect tree
for short. Moreover, unary nodes are quite rare. In fact, they only appear immediately below
the left spine of a tree. This is not a coincidence. Since the list is processed from right to left,
the elements are actually inserted in descending order. Consequently, ins always traverses
the left spine of the tree to the leftmost leaf. Since furthermore the left spine contains only
binary nodes, only the first three equations of the smart constructor n2 can possibly match.

6 R. Hinze

Drawing the left spine horizontally, the relevant transformations are

=⇒ =⇒

.

The transformations preserve the following invariant: the right son of a binary node is
either a perfect tree or a unary node applied to a perfect tree (N); the same holds for the
middle son of a ternary node, whereas its right son is always a perfect tree (4).

The transformations along the left spine are reminiscent of the binary increment with the
ternary node corresponding to a cascading carry. In fact, the construction of a brother tree
from an ordered list can be modelled after a funny variant of the binary number system that
uses the digits 1

2 and 1. Why these two digits? Well, the i-th tree on the left spine has either
1
2 · 2

i or 1 · 2i elements, including the element on the spine. Recall that the value of the
binary number b0 . . .bn−1 is ∑

n−1
i=0 bi2i. For our number system, we constrain the digits to

b0 = 1 and bi+1 ∈ { 1
2 ,1}. The binary increment is then given by 1+ε = 1, 1+1s = 1(1

2 +s)
and 1

2 + ε = 1
2 , 1

2 + 1
2 s = 1s, 1

2 +1s = 1
2 (1

2 + s). Thus, the first eight positive numbers are

1, 1 1
2 , 11, 1 1

2
1
2 , 11 1

2 , 1 1
2 1, 111, 1 1

2
1
2

1
2 .

These numbers correspond to the trees in the first row of Fig. 2. We can use this correspon-
dence to improve the running time of from-list from Θ(n logn) to Θ(n) for the special case
that the input list is ordered.

First, we define a suitable representation for the left spine of a brother tree.

data Spine a = Nil | Half a (Tree a) (Spine a) | Full a (Tree a) (Spine a)

The constructor Half corresponds to the digit 1
2 , the constructor Full to 1. Consing an

element to the spine is modelled after the binary increment: cons a s implements 1+ s and
half a t s implements 1

2 + s.

cons :: a→ Spine a→ Spine a
cons a1 Nil = Full a1 N0 Nil
cons a1 (Full a2 t2 s) = Full a1 N0 (half a2 t2 s)

half :: a→ Tree a→ Spine a→ Spine a
half a1 t1 Nil = Half a1 t1 Nil
half a1 t1 (Half a2 t2 s) = Full a1 (N2 t1 a2 t2) s
half a1 t1 (Full a2 t2 s) = Half a1 t1 (half a2 t2 s)

The new construction function from-ord-list first transforms the input list to a spine and
then converts the spine to a brother tree.

from-ord-list :: [a]→ Tree a
from-ord-list = from-spine N0 · foldr cons Nil

from-spine :: Tree a→ Spine a→ Tree a
from-spine t1 Nil = t1
from-spine t1 (Half a1 t2 s) = from-spine (N2 t1 a1 (N1 t2)) s
from-spine t1 (Full a1 t2 s) = from-spine (N2 t1 a1 t2) s

Functional pearls 7

Since cons has a constant amortised running time, from-ord-list works in linear time. As an
aside, note that the functions above are truly polymorphic. In particular, from-ord-list does
not require an Ord a context since we assume that the input is given in ascending order.

5 Deletion

Deletion is typically more involved than insertion. One reason is that insertion adds the
new element to the fringe of the tree, whereas deletion removes the element from an
arbitrary node, not necessarily a leaf. Second, with the notable exception of AVL trees,
re-balancing seems to be more intricate for deletion. In the case of red-black trees, for
instance, there is an elegant functional insertion algorithm (Okasaki, 1999) that simplifies
the complex imperative original (Guibas & Sedgewick, 1978). However, for deletion no
such improvement is known. In the case of brother trees, the situation is almost reversed.
For a start, we do not need any auxiliary data constructors: if an element is deleted from
a binary node, it is contracted to a unary node. Like insertion, deletion is a two-phase
algorithm.

delete :: (Ord a)⇒ a→ Tree a→ Tree a
delete a t = root (del t)

where
del N0 = N0

del (N1 t) = N1 (del t)
del (N2 l b r) | a< b = n2 (del l) b r

| a b = case split-min r of Nothing → N1 l
Just (a′,r′)→ n2 l a′ r′

| a> b = n2 l b (del r)

If the to-be-deleted element is found, it is replaced by its inorder successor, if any.

split-min N0 = Nothing
split-min (N1 t) = case split-min t of Nothing → Nothing

Just (a, t′)→ Just (a,N1 t′)
split-min (N2 t1 a1 t2) = case split-min t1 of Nothing → Just (a1,N1 t2)

Just (a, t′1)→ Just (a,n2 t′1 a1 t2)

As before, n2 is a smart constructor that locally detects and repairs violations of the invari-
ants with root finalising the process.

root (N1 t) = t
root t = t

If the first equation matches, the tree has shrunk.
Now, since del or split-min replaces a binary node by a unary one, the brother condition

is possibly violated: a unary node may have a unary brother or it may not have a brother at
all. The first defect is easy to remedy.

=⇒

8 R. Hinze

If a unary node has a unary son, we have to include its binary father in our considerations.
Let us assume that it is the left subtree of the father that violates the brother condition—the
symmetric case is handled, well, symmetrically. Since the right subtree must be binary,
there are three sub-cases to consider.

=⇒ ⇐=

=⇒

For each sub-case, the resulting tree is inevitable; there is no other choice. If the right
subtree contains a unary node, the height condition completely determines the shape of the
tree: no other tree of height 3 has three binary nodes. If the right subtree consists of three
binary nodes, the height condition leaves us with four choices.

There are no other trees of height 3 with four binary nodes. However, all choices, with the
notable exception of the third, possibly violate the brother condition since the unary node
on the lowest level possibly has a unary son. The third alternative, on the other hand, is a
valid brother tree because it re-uses the subtrees from the original tree. Only the two upper
levels are changed using a ‘left rotation’. Again, it is easy to see that the transformations
preserve the height. In the code below, subtrees are re-used with the help of as-patterns.

n2 (N1 t1) a1 (N1 t2) = N1 (N2 t1 a1 t2)

n2 (N1 (N1 t1)) a1 (N2 (N1 t2) a2 t3@(N2)) = N1 (N2 (N2 t1 a1 t2) a2 t3)
n2 (N1 (N1 t1)) a1 (N2 (N2 t2 a2 t3) a3 (N1 t4)) = N1 (N2 (N2 t1 a1 t2) a2

(N2 t3 a3 t4))
n2 (N1 t1@(N1)) a1 (N2 t2@(N2) a2 t3@(N2)) = N2 (N2 t1 a1 t2) a2 (N1 t3)

n2 (N2 (N1 t1) a1 (N2 t2 a2 t3)) a3 (N1 (N1 t4)) = N1 (N2 (N2 t1 a1 t2) a2

(N2 t3 a3 t4))
n2 (N2 t1@(N2) a1 (N1 t2)) a2 (N1 (N1 t3)) = N1 (N2 t1 a1 (N2 t2 a2 t3))
n2 (N2 t1@(N2) a1 t2@(N2)) a2 (N1 t3@(N1)) = N2 (N1 t1) a1 (N2 t2 a2 t3)

n2 t1 a1 t2 = N2 t1 a1 t2

Turning to formal treatment, we first introduce subset types that capture the notion of a
shrunk tree.

B−h a = Bh a ∪Uh a

U −
h+1 a = N1 (B−h a)

Functional pearls 9

The functions involved in deleting an element then satisfy the following invariants.

del ∈Bh a→B−h a
del ∈Uh a →U −

h a
split-min ∈Bh a→Maybe (a,B−h a)
split-min ∈Uh a →Maybe (a,U −

h a)
n2 ∈U −

h a→ a→Bh a →B−h+1 a
n2 ∈Bh a→ a→U −

h a →B−h+1 a
n2 ∈B−h a→ a→B−h a→B−h+1 a
root ∈B−0 a →B0 a
root ∈B−h+1 a→ (Bh+1 a ∪Bh a)

Note that del and split-min preserve the height, n2 increases it, and root possibly decreases
it.

While the definition of re-balancing is inevitable, delete can alternatively be defined in
terms of an operation that appends, or rather, zips two brother trees of height h forming a
brother tree of height h+1. The details are left as an exercise to the reader.

6 Epilogue

Brother trees lend themselves well to a functional implementation. In particular, the re-
balancing operations are nicely captured by equational rewrite rules. While insertion and
deletion are adaptations of imperative algorithms, the construction of brother trees appears
to be original. A similar approach also works for red-black trees (Hinze, 1999).

Some simple, but effective optimisations suggest themselves. Since all leaves have the
same depth, we can eliminate nullary nodes by specialising the nodes on the penultimate
level: N1 N0 becomes L1 and N1 N0 a1 N0 becomes L2 a1. Alternatively or additionally,
unary nodes can be eliminated by introducing skewed binary nodes: N2 (N1 t1) a1 t2 be-
comes N12 t1 a1 t2 and N2 t1 a1 (N1 t2) becomes N21 t1 a1 t2. Furthermore, to avoid unneces-
sary tests, the smart binary constructor n2 should be split into two functions that only check
for violations of the invariants involving either the left or the right son (smart-constructor
optimisation). Again, the details are left as an exercise to the reader.

Several implementations of search trees have appeared in the functional programming
literature, including AVL trees (Myers, 1984; Bird, 1998), 2-3 trees (Reade, 1992), red-
black trees (Okasaki, 1998; Okasaki, 1999; Kahrs, 2001), and finger trees (Hinze & Pa-
terson, 2006). But which to choose? Like AVL trees, but unlike 2-3 trees and red-black
trees, brother trees support a simple implementation of deletion. Like 2-3 trees, but unlike
AVL trees, there is no need for an additional field that contains the height or a balance
factor. (The colour field of red-black trees can be eliminated at the cost of an additional
constructor.) Finger trees are much more general and consequently more involved. When
it comes to raw speed, initial measurements, see Table 2, are very encouraging. With the
above optimisations in place, brother trees consistently outperform red-black trees, whose
optimised implementation is reported to fly (Okasaki, 1999).

10 R. Hinze

Table 2. Comparison of red-black trees and 1-2 brother trees. The programs were compiled
using ghc-6.8.2 -O2. The running time is given in seconds, minimum of three runs, as
reported by ghc’s run-time system. All measurements were taken on an unloaded machine,
AMD Athlon 64 X2 Dual Core Processor 5000+ with 8GB of main memory. Problem
descriptions: (a) sorting; (b) first build using repeated inserts, then look-up (each element
100 times); (c) first build using repeated inserts, then destruct using repeated deletes.
Data structures: (i) Okasaki’s purely functional implementation of red-black trees with the
smart-constructor optimisation in place, see Ex.3.10(a) in (1998); (ii) refinement of (i), so
that only subtrees on the search path are checked for red-red violations, see Ex.3.10(b);
(iii) 1-2 brother trees with leaf nodes eliminated and the smart-constructor optimisation
incorporated; (iv) like (iii), but additionally doing away with unary nodes

Random input

(a) Sorting 10,000 50,000 100,000 500,000 1,000,000
Red-black trees 0.01 0.22 0.69 13.96 53.91
Red-black trees’ 0.02 0.32 0.98 17.53 68.21
1-2 brother trees 0.01 0.21 0.67 13.08 50.73
1-2 brother trees’ 0.01 0.20 0.63 12.06 46.79

(b) Searching 10,000 50,000 100,000 500,000 1,000,000
Red-black trees 0.62 5.06 12.42 99.14 257.83
Red-black trees’ 0.63 5.18 12.83 103.41 274.18
1-2 brother trees 0.56 4.75 11.68 93.41 241.99
1-2 brother trees’ 0.62 5.01 12.28 98.09 250.30

(c) Deletion 10,000 50,000 100,000 500,000 1,000,000
Red-black trees 0.05 0.79 2.79 61.88 246.94
Red-black trees’ 0.06 0.96 3.29 72.50 293.14
1-2 brother trees 0.07 0.96 3.41 76.41 309.98
1-2 brother trees’ 0.05 0.69 2.39 52.12 208.49

Strictly ascending input

(a) Sorting 10,000 50,000 100,000 500,000 1,000,000
Red-black trees 0.01 0.17 0.60 15.79 66.70
Red-black trees’ 0.01 0.18 0.63 17.26 73.33
1-2 brother trees 0.00 0.10 0.37 9.74 40.81
1-2 brother trees’ 0.01 0.11 0.38 9.64 40.26

(b) Searching 10,000 50,000 100,000 500,000 1,000,000
Red-black trees 0.41 2.51 5.80 44.79 127.28
Red-black trees’ 0.41 2.52 5.80 46.28 134.20
1-2 brother trees 0.42 2.46 5.51 38.19 100.35
1-2 brother trees’ 0.42 2.51 5.66 39.37 102.35

(c) Deletion 10,000 50,000 100,000 500,000 1,000,000
Red-black trees 0.05 0.81 3.02 77.29 321.07
Red-black trees’ 0.05 0.84 3.21 83.07 344.60
1-2 brother trees 0.05 0.75 2.80 69.25 284.55
1-2 brother trees’ 0.03 0.50 1.85 45.54 187.10

Functional pearls 11

Acknowledgement

I am grateful to Richard Bird for suggesting the use of representation invariants.

References

Adel’son-Vel’skiı̆, G. and Landis, Y. (1962) An algorithm for the organization of information.
Doklady Akademiia Nauk SSSR 146:263–266. English translation in Soviet Math. Dokl. 3,
pp. 1259–1263.

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1974) The design and analysis of computer algorithms.
Addison-Wesley Publishing Company.

Bayer, R. (1972) Symmetric binary B-trees: Data structure and maintenance algorithms. Acta
Informatica 1:290–306.

Bird, R. (1998) Introduction to Functional Programming using Haskell. 2nd edn. Prentice Hall
Europe.

Guibas, L. J. and Sedgewick, R. (1978) A dichromatic framework for balanced trees. Proceedings
of the 19th Annual Symposium on Foundations of Computer Science pp. 8–21. IEEE Computer
Society.

Guibas, L. J., McCreight, E. M., Plass, M. F. and Roberts, J. R. (1977) A new representation for
linear lists. Conference Record of the Ninth Annual ACM Symposium on Theory of Computing,
Boulder, Colorado pp. 49–60.

Hinze, R. (1999) Constructing red-black trees. Okasaki, C. (ed), Proceedings of the Workshop on
Algorithmic Aspects of Advanced Programming Languages, WAAAPL’99, Paris, France pp. 89–
99. The proceedings appeared as a technical report of Columbia University, CUCS-023-99.

Hinze, R. and Paterson, R. (2006) Finger trees: a simple general-purpose data structure. Journal of
Functional Programming 16(2):197–217.

Kahrs, S. (2001) Functional Pearl: Red-black trees with types. Journal of Functional Programming
11(4):425–432.

Myers, E. W. (1984) Efficient applicative data types. Kennedy, K., van Deusen, M. S. and Landweber,
L. (eds), Proceedings of the Eleventh ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, Salt Lake City, Utah, United States pp. 66–75. ACM Press.

Okasaki, C. (1998) Purely Functional Data Structures. Cambridge University Press.
Okasaki, C. (1999) Functional Pearl: Red-black trees in a functional setting. Journal of Functional

Programming 9(4):471–477.
Ottmann, T., Six, H.-W. and Wood, D. (1979) On the correspondence between AVL trees and brother

trees. Computing 23:43–54.
Reade, C. (1992) Balanced trees with removals: an exercise in rewriting and proof. Science of

Computer Programming 18(2):181–204.

