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Abstract. The last decade has seen a number of approaches to generic
programming: PolyP, Functorial ML, ‘Scrap Your Boilerplate’, Generic
Haskell, ‘Generics for the Masses’, etc. The approaches vary in sophisti-
cation and target audience: some propose full-blown programming lan-
guages, some suggest libraries, some can be seen as categorical program-
ming methods. In these lecture notes, we shall compare the various ap-
proaches: we will introduce each method by means of example, and we
will evaluate it along different dimensions (expressivity, ease of use, etc).

1 Introduction

You just started implementing your third web shop in Haskell, and you realize
that a lot of the code you have to write is similar to the code for the previous web
shops. Only the data types have changed. Unfortunately, this implies that all
reporting, editing, storing and loading in the database functionality, and prob-
ably a lot more, has to be changed. You’ve heard about generic programming,
a technique which can be used to automatically generate programs depending
on types. But searching on the web gives you almost ten approaches to solve
your problem: DrIFT, PolyP, Generic Haskell, Derivable Type Classes, Tem-
plate Haskell, Scrap Your Boilerplate, Generics for the Masses, Strafunski, etc.
How do you choose? And these are only the approaches to generic programming
in Haskell. If you are also flexible in the programming language you use, there is
a much larger variety of different approaches to generic programming to choose
from.

In these lecture notes we give arguments why you would choose for a par-
ticular approach to generic programming to solve your generic programming
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problem. We will compare different approaches to generic programming along
different lines, such as for example:

– Can you use generic programs on all types definable in the programming
language?

– Are generic programs compiled or interpreted?
– Can you extend a generic program in a special way for a particular data

type?

Before we will compare the various approaches to generic programming we will
first discuss in detail the criteria on which the comparison is based.

‘Generic’ is an over-used adjective in computing science in general, and in
programming languages in particular. Ada has generic packages, Java has gener-
ics, Eiffel has generic classes, etc. Usually, the adjective generic is used to describe
that a concept allows abstractions over a larger class of entities than was pre-
viously possible. However, broadly speaking most uses of generic refer to some
form of parametric polymorphism, ad-hoc polymorphism, and/or inheritance.
For a nice comparison of the different incarnations of generic concepts in differ-
ent programming languages, see Garcia et al [20]. Already in the 1970s this was
an active area of research [68, 51, 17].

In the context of these lecture notes, generic programming means a form of
programming in which a function takes a type as argument, and its behavior
depends upon the structure of this type. The type argument, which may be
explicit or implicit, represents the type of values to which the function is applied,
or which the function returns. A typical example is the equality function, where
a type argument t dictates the form of the code that performs the equality
test on two values of type t. In the past we have just the adjective polytypic
instead of generic, which is less confusing and describes the concept a bit more
accurate. However, the adjective hasn’t been picked up by other people working
on conceptually the same topic, and maybe it sounds a bit scary.

Types play a fundamental rôle in generic programming. Therefore, we will
look in particular at programming languages with a static type system. It is pos-
sible to do generic programming in an untyped language or in a language with
a dynamic type system, and some people think it is much easier to do generic
programming in these languages. We disagree whole-heartedly: since generic pro-
gramming is fundamentally about programming with types, simulating generic
programming in an untyped language is difficult, since desirable concepts, checks,
and abstractions are missing. To illustrate our argument we will include an un-
typed approach to generic programming in our comparison, namely DrIFT.

We will introduce each approach to generic programming by means of a
number of, more or less, canonical examples. This set of examples has been
obtained by collecting the functions defined in almost 20 papers introducing the
various approaches to generic programming. Almost all of these papers contain
at least one function from the top five of examples thus obtained. Furthermore,
the top five examples exhibit different characteristics, which we use to show
differences between approaches to generic programming. The functions we will
implement for all approaches are:
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– encode, a function that encodes a value of any type as a list of bits. The
function encode is a simple recursive function which ‘destructs’ a value of a
data type into a list of bits. The inverse of encode, called decode, is a function
which builds a value of a data type from a list of bits.

– eq , a function that takes two values, and compares them for equality.
– map, a generalization of the standard map function on lists. On a parame-

terized data type, such as lists, function map takes a function argument and
a value of the data type, and applies the function argument to all parametric
values inside the value argument. The function map is particularly useful
when applied to type constructors (of which the list type is an example),
instead of types.

– show , a function that shows or pretty-prints a value of a data type.
– update, a function that takes a value of a data type representing the struc-

ture of a company, and updates the salaries that appear in this value. The
characterizing feature of this example is that update is only interested in
values of a very small part of a possibly very large type.

We will not define all of these functions for each approach, in particular not
for approaches that are very similar, but we will use these examples to highlight
salient points. We will then investigate a number of properties for each approach.
Examples of these properties are: is it possible to define a generic function on any
data type that can be defined in the programming language (full reflexivity), is
the programming language type safe, do generic functions satisfy desirable prop-
erties, etc. Not all properties can be illustrated by means of these examples, so
sometimes we will use other examples. In these draft lecture notes for the Spring
School on Datatype-Generic Programming 2006 we will compare the approaches
to generic programming in Haskell:

– Generic Haskell [24, 27, 55, 57].
– DrIFT [74].
– PolyP [37].
– Derivable Type Classes [32].
– Lightweight Generics and Dynamics [13].
– Scrap Your Boilerplate [48, 50, 49].
– Generics for the masses [28].
– Clean [3, 2].
– Strafunski [47].
– Using Template Haskell for generic programming [63].

The last two approaches will only be included in the final version of these lecture
notes. They are rather similar to Scrap Your Boilerplate and DrIFT, respectively.
In the final version of these lecture notes we also plan to consider the following
non-Haskell approaches to generic programming:

– Charity [15].
– ML [12, 19].
– Intensional type analysis [22, 16, 72].
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– Extensional type analysis [18].
– Functorial ML [43, 62], the Constructor Calculus [40], the Pattern Calcu-

lus [41, 42], FISh [39].
– Dependently typed generic programming [6, 10].
– Type-directed programming in Java [73].
– Maude [58].

We have tried to be as complete as possible, but certainly this list is not exhaus-
tive.

These notes are organized as follows. In Section 2 we discuss why generic
programming matters by means of a couple of representative examples. We will
use these examples in Section 4 to compare the various approaches to generic
programming by means of the criteria introduced and discussed in Section 3.
Finally, Section 5 concludes.

2 Why generic programming matters

Software development often consists of designing a data type, to which func-
tionality is added. Some functionality is data type specific, other functionality is
defined on almost all data types, and only depends on the type structure of the
data type. Examples of generic functionality defined on almost all data types are
storing a value in a database, editing a value, comparing two values for equality,
pretty-printing a value, etc. A function that works on many data types is called
a generic function. Applications of generic programming can be found not just
in the rather small programming examples mentioned, but also in

– XML tools such as XML compressors [29], and type-safe XML data binding
tools [7];

– automatic testing [46];
– constructing ‘boilerplate’ code that traverses a value of a rich set of mutually

recursive data types, applying real functionality at a small portion of the data
type [48, 55, 49];

– structure editors such as XML editors [21], and generic graphical user inter-
faces [1];

– data conversion tools [38] which for example store a data type value in a
database [21], or output it as XML, or in a binary format [70], or . . .

Change is endemic to any large software system. Business, technology, and orga-
nization frequently change during the life cycle of a software system. However,
changing a large software system is difficult: localizing the code that is respon-
sible for a particular part of the functionality of a system, changing it, and
ensuring that the change does not lead to inconsistencies in other parts of the
system or in the architecture or documentation is usually a challenging task.
Software evolution is a fact of life in the software development industry [52, 53,
66].

If a data type changes, or a new data type is added to a piece of software,
a generic program automatically adapts to the changed or new data type. An
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example is a generic program for calculating the total amount of salaries paid
by an organization. If the structure of the organization changes, for example
by removing or adding an organizational layer, the generic program still calcu-
lates the total amount of salaries paid. Since a generic program automatically
adapts changes of data types, a programmer only has to program ‘the exception’.
Generic programming has the potential to solve at least an important part of
the software evolution problem [45].

In the rest of this section we will show a number of examples of generic
programs. We will write the generic programs in Generic Haskell [24, 30, 54].
Generic Haskell is an extension of the lazy, higher-order, functional programming
language Haskell [65] that supports generic programming. We could have chosen
many of the approaches to generic programming for presenting the example
generic programs: most approaches can express all the examples. The choice for
Generic Haskell is rather random, and related to the fact that we are responsible
for the development of Generic Haskell. We use the most recent version of Generic
Haskell, known as Dependency-style Generic Haskell [55, 54]. Dependencies both
simplify and increase the expressiveness of generic programming. In Section 4
we will show how these programs are written in other approaches to generic
programming.

2.1 Data types in Haskell

The functional programming language Haskell 98 provides an elegant and com-
pact notation for declaring data types. In general, a data type introduces a
number of constructors, where each constructor takes a number of arguments.
Here are two example data types:

data CharList = Nil | Cons Char CharList
data Tree = Empty | Leaf Int | Bin Tree Char Tree.

A character list, a value of type CharList, is often called a string. It is either empty,
denoted by the constructor Nil , or it is a character c followed by the remainder
of the character list cs, denoted Cons c cs, where Cons is the constructor. A
tree, a value of type Tree, is empty, a leaf containing an integer, or a binary node
containing two subtrees and a character.

These example types are of kind ?, meaning that they do not take any type
arguments. A kind can be seen as the ‘type of a type’. The following type takes
an argument; it is obtained by abstracting Char out of the CharList data type
above:

data List a = Nil | Cons a (List a).

Here List is a type constructor, which, when given a type a, constructs the type
List a. The type constructor List has the functional kind ? → ?. The list data
type is predefined in Haskell: the type List a is written [a ], the constructors Nil
and Cons x xs are written [ ] and x : xs, respectively. A type can take more than
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one argument. If we abstract from the types Char and Int in the type Tree, we
obtain the type GTree defined by:

data GTree a b = GEmpty | GLeaf a | GBin (GTree a b) b (GTree a b).

The type constructor GTree takes two type arguments, both of kind ?, and hence
has kind ?→ ?→ ?.

Arguments of type constructors need not be of kind ?. Consider the data
type of Rose trees, defined by:

data Rose a = Node a [Rose a ].

A Rose tree is a Node containing an element of type a, and a list of child trees.
Just as List, Rose has kind ? → ?. If we abstract from the list type in Rose, we
obtain the data type GRose defined by:

data GRose f a = GNode a (f (GRose f a)).

Here the type argument f has kind ?→ ?, just as the List type constructor, and
it follows that GRose has kind (?→ ?)→ ?→ ?.

All the examples of data types we have given until now are examples of
so-called regular data types: a recursive, parametrized type whose recursive def-
inition does not involve a change of the type parameter(s). Non-regular or nested
types [11] are practically important since they can capture data-structural in-
variants in a way that regular data types cannot. For instance, the following
data type declaration defines a nested data type: the type of perfectly balanced,
binary leaf trees [25] — perfect trees for short.

data Perfect a = ZeroP a | SuccP (Perfect (Fork a))
data Fork a = Fork a a

This equation can be seen as a bottom-up definition of perfect trees: a perfect
tree is either a singleton tree or a perfect tree that contains pairs of elements.
Here is a perfect tree of type Perfect Int:

SuccP (SuccP (SuccP (ZeroP (Fork (Fork (Fork 2 3)
(Fork 5 7))

(Fork (Fork 11 13)
(Fork 17 19)))))).

Note that the height of the perfect tree is encoded in the prefix of SuccP and
ZeroP constructors.

2.2 Structure representation types

To apply functions generically to all data types, we must view data types in
a uniform manner: every Haskell data type can be viewed as a labeled sum of
possibly labeled products. This encoding is based on the following data types:
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data a :+: b = Inl a | Inr b
data a :*: b = a :*: b
data Unit = Unit
data Con a = Con ConDescr a
data Label a = Label LabelDescr a.

The choice between Nil and Cons, for example, is encoded as a sum using the
type :+: (nested to the right if there are more than two constructors). The con-
structors of a data type are encoded as sum labels, represented by the type
Con, which contains a description of a constructor in the form of a value of type
ConDescr. The constructors Nil and Cons are represented by ConDescr values
nilDescr and consDescr , respectively. The exact details of how constructors are
represented are omitted. Record names are encoded as product labels, repre-
sented by a value of the type Label, which contains a value of type LabelDescr.
Arguments such as the a and List a of the Cons are encoded as products using
the type :*: (nested to the right if there are more than two arguments). In the
case of Nil , an empty product, denoted by Unit, is used. The arguments of the
constructors are not translated. Finally, abstract types and primitive types such
as Char are not encoded, but left as they are.

Now we can encode CharList, Tree, and List as

type CharList◦ = Con Unit :+: Con (Char :*: CharList)
type Tree◦ = Con Unit :+: Con Int :+: Con (Tree :*: (Char :*: Tree))
type List◦ a = Con Unit :+: Con (a :*: (List a)).

These representations are called structure representation types. A type t and
its structural representation type t◦ are isomorphic (ignoring undefined values).
This isomorphism is witnessed by a so-called embedding-projection pair : a value
conv t :: EP t t◦ of the data type

data EP a b = EP (a→ b) (b→ a).

For example, for the List data type we have that convList = Ep fromList toList,
where fromList and toList are defined by

fromList :: ∀a . List a→ List◦ a
fromList Nil = Inl (Con nilDescr Unit)
fromList (Cons a as) = Inr (Con consDescr (a :*: as))
toList :: ∀a . List◦ a→ List a
toList (Inl (Con Unit)) = Nil
toList (Inr (Con (a :*: as))) = Cons a as.

The Generic Haskell compiler generates the translation of a type to its structural
representation, together with the corresponding embedding projection pair. More
details about the correspondence between these and Haskell types can be found
elsewhere [27].

A generic program is defined by induction on structure types. Whenever
a generic program is applied to a user-defined data type, the Generic Haskell
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compiler takes care of the mapping between the user-defined data type and its
corresponding structural representation. Furthermore, a generic program may
also be defined directly on a user-defined data type, in which case this definition
takes precedence over the automatically generated definitions. A definition of a
generic function on a user-defined data type is called a default case. To develop a
generic function, it is best to first consider a number of its instances for specific
data types.

2.3 Encoding and decoding

A classic application area of generic programming is parsing and unparsing, i.e.,
reading values of different types from some universal representation, or writ-
ing values to that universal representation. The universal representation can be
aimed at being human-readable (such as the result of Haskell’s show function);
or it can be intended for data exchange, such as XML. Other applications include
encryption, transformation, or storage.

In this section we will treat a very simple case of compression, by defining
functions that can write to and read from a sequence of bits. A bit is defined by
the following data type declaration:

data Bit = O | I

(the names O and I are used as constructors here).

Function encode on CharList. To define encode on the data type CharList, we
assume that there exists a function encodeChar :: Char → [Bit], which takes a
character and returns a list of bits representing that character. We assume that
encodeChar returns a list of 8 bits, corresponding to the ASCII number of the
character. A value of type CharList is now encoded as follows:

encodeCharList :: CharList→ [Bit]
encodeCharList Nil = [O ]
encodeCharList (Cons c cs) = I : encodeChar c ++ encodeCharList cs.

For example, applying encodeCharList to the string "Bonn" defined as a CharList
by bonn = Cons ’B’ (Cons ’o’ (Cons ’n’ (Cons ’n’ Nil))) gives

ComparingGP〉 encodeCharList bonn

[I ,O , I ,O ,O ,O ,O , I ,O , I ,O , I , I ,O , I , I , I , I , I
,O , I , I ,O , I , I , I ,O , I ,O , I , I ,O , I , I , I ,O ,O ].
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Function encode on Tree. To define encode on the data type Tree, we assume
there exists, besides a function encodeChar , a function encodeInt :: Int → [Bit],
which takes an integer and returns a list of bits representing that integer. A
value of type Tree can then be encoded as follows:

encodeTree :: Tree→ [Bit]
encodeTree Empty = [O ,O ]
encodeTree (Leaf i) = [O , I ] ++ encodeInt i
encodeTree (Bin l c r) = [I ,O ]

++ encodeTree l
++ encodeChar c
++ encodeTree r .

Function encode on List a. The data type CharList is an instance of the data type
List a, where a is Char. How do we define an encoding function on the data type
List a? For character lists, we assumed the existence of an encoding function for
characters. Here we take the same approach: to encode a value of type List a, we
assume that we have a function for encoding values of type a. Abstracting from
encodeChar in the definition of encodeCharList we obtain:

encodeList :: (a→ [Bit ])→ List a→ [Bit ]
encodeList encodeA Nil = [O ]
encodeList encodeA (Cons x xs) = I : encodeA x ++ encodeList encodeA xs.

Generic encode. The encoding functions on CharList, Tree and List a follow
the same pattern: encode the choice made for the top level constructors, and
concatenate the encoding of the children of the constructor. We can capture this
common pattern in a single generic definition by defining the encoding function
by induction on the structure of data types. This means that we define encode
on sums (:+:), on products (:*:), and on base types such as Unit, Int and Char,
as well as on the sum labels (Con) and the product labels (Label).

The only place where there is a choice between different constructors is in
the :+: type. Here, the value can be either an Inl or an Inr . If we have to
encode a value of type Unit, it can only be Unit , so we need no bits to encode
that knowledge. Similarly, for a product we know that the value is the first
component followed by the second – we need no extra bits except the encodings
of the components.

In Generic Haskell, the generic encode function is rendered as follows:

encode{|a :: ∗|} :: (encode{|a|})⇒ a→ [Bit ]
encode{|Unit|} Unit = [ ]
encode{|Int|} i = encodeInt i
encode{|Char|} c = encodeChar c
encode{|α :+: β|} (Inl x ) = O : encode{|α|} x
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encode{|α :+: β|} (Inr y) = I : encode{|β|} y
encode{|α :*: β|} (x1 :*: x2) = encode{|α|} x1 ++ encode{|β|} x2

encode{|Label l α|} (Label a) = encode{|α|} a
encode{|Con c α|} (Con a) = encode{|α|} a.

There are a couple of things to note about generic function definitions:

– The function encode{|a|} is a type-indexed function. The type argument ap-
pears in between special parentheses {|, |}. An instance of encode is obtained
by applying encode to a type. For example, encode{|CharList|} is the instance
of the generic function encode on the data type CharList. This instance is
semantically the same as the definition of encodeCharList .

– The constraint encode{|a|} that appears in the type of encode says that encode
depends on itself. A generic function f depends on a generic function g if
there is an arm in the definition of f , for example the arm for f {|α :+: β|} that
uses g on a variable in the type argument, for example g{|α|}. If a generic
function depends on itself it is defined by induction over the type structure.

– The type of encode is given for a type a of kind ?. This does not mean
that encode can only be applied to types of kind ?; it only gives the type
information for types of kind ?. The type of function encode on types with
kinds other than ? can automatically be derived from this base type. In
particular, encode{|List|} will be translated to a value that has the type (a→
[Bit])→ (List a→ [Bit]).

The Con and the Label case are more interesting for generic functions that use the
names of constructors and labels in some way, such as a generic show function.
Most generic functions, however, essentially ignore these branches. In this case,
we will omit these branches from the generic function definition.

Generic decode. The inverse of encode recovers a value from a list of bits. This
inverse function is called decode, and is defined in terms of a function decodes,
which takes a list of bits, and returns a list of values that can be recovered from
an initial segment of the list of bits. The reason we define this example as well,
is that we want to show how to generically build or construct a value of a data
type.

mapFst f (x , y) = (f x , y)
decodes{|a :: ∗|} :: (decodes{|a|})⇒ [Bit ]→ [(a, [Bit])]
decodes{|Unit|} xs = [(Unit , xs ) ]
decodes{|Int|} xs = decodesInt xs
decodes{|Char|} xs = decodesChar xs
decodes{|α :+: β|} (O : xs) = map (mapFst Inl) (decodes{|α|} xs)
decodes{|α :+: β|} (I : xs) = map (mapFst Inr) (decodes{|β|} xs)
decodes{|α :+: β|} [ ] = [ ]
decodes{|α :*: β|} xs = [(y1 :*: y2, r2) | (y1, r1)← decodes{|α|} xs

, (y2, r2)← decodes{|β|} r1 ]
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The function is a bit more involved than encode, because it has to deal with
incorrect input, and it has to return the unconsumed part of the input. This
is solved using the standard list-of-successes technique, where the input list is
transformed into a list of pairs, containing all possible parses with the associated
unconsumed part of the input. The decoding process is not ambiguous, so only
lists of zero (indicating failure) and one (indicating success) elements occur. As
with encodeChar , we assume a function decodeChar is obtained from somewhere.

A value of type Unit is represented using no bits at all, therefore it can be
decoded without consuming any input. Except for the primitive types such as
Char and Int, the case for :+: is the only place where input is consumed (as it is
the only case where output is produced in encode), and depending on the first bit
of the input, we produce an Inl or an Inr . A third case lets the decoding process
fail if we run out of input while decoding a sum. The product first decodes the
left component, and then runs decodes for the right component on the rest of
the input.

The inverse of encode is now defined by:

decode{|a :: ∗|} :: (decodes{|a|})⇒ [Bit ]→ a

decode{|a|} x = case decodes{|a|} x of
[(y , [ ])]→ y

→ error "decode: no parse".

Note that although this is a generic function, it is not defined by induction
on the structure of types. Instead, it is defined in terms of another generic
function, decodes. A generic function f that is defined in terms of another generic
function g is called a generic abstraction. Such a generic function does not depend
on itself, but on g instead. Using a generic abstraction, we can thus define a
function that depends on a type argument, but is not defined using cases on
types.

For a value x of type t, we have

(decode{|t|} . encode{|t|}) x x ,

provided there is no specialization error.

2.4 Equality

In this subsection we define the generic equality function, which takes two argu-
ments instead of a single argument as encode. We define the equality function
on two of the example data types given in Section 2.1. Two character lists are
equal if both are empty, or if both are non-empty, the first elements are equal,
and the tails of the lists are equal.

eqCharList :: CharList→ CharList→ Bool
eqCharList Nil Nil = True
eqCharList (Cons x xs) (Cons y ys) = eqChar x y ∧ eqCharList xs ys
eqCharList = False,
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where eqChar is the equality function on characters.
Two trees are equal if both are empty, both are a leaf containing the same

integer, determined by means of function eqInt , or if both are nodes containing
the same subtrees, in the same order, and the same characters.

eqTree :: Tree→ Tree→ Bool
eqTree Empty Empty = True
eqTree (Leaf i) (Leaf j ) = eqInt i j
eqTree (Bin l c r) (Bin v d w) = eqTree l v ∧ eqChar c d ∧ eqTree r w
eqTree = False

The equality functions on CharList and Tree follow the same pattern: compare
the top level constructors, and, if they equal, pairwise compare their arguments.
We can capture this common pattern in a single generic definition by defining
the equality function by induction on the structure of data types.

eq{|a :: ∗|} :: (eq{|a|})⇒ a→ a→ Bool

eq{|Unit|} = True
eq{|Int|} i j = eqInt i j
eq{|Char|} c d = eqChar c d
eq{|α :+: β|} (Inl x ) (Inl y) = eq{|α|} x y
eq{|α :+: β|} (Inl x ) (Inr y) = False
eq{|α :+: β|} (Inr x ) (Inl y) = False
eq{|α :+: β|} (Inr x ) (Inr y) = eq{|β|} x y
eq{|α :*: β|} (x :*: y) (v :*: w) = eq{|α|} x v ∧ eq{|β|} y w

2.5 Map

In this section we define the generic map function. This example illustrates the
importance of kinds in generic programming. To understand the definition of
the generic map function, it helps to first study the generic copy function. The
generic copy function is defined as follows:

copy{|a :: ∗|} :: (copy{|a|})⇒ a→ a

copy{|Unit|} x = x
copy{|Int|} x = x
copy{|Char|} x = x
copy{|α :+: β|} (Inl x ) = Inl (copy{|α|} x )
copy{|α :+: β|} (Inr x ) = Inr (copy{|β|} x )
copy{|α :*: β|} (x :*: y) = copy{|α|} x :*: copy{|β|} y .

Note that we have made a choice in the code above: the definition is written
recursively, applying the generic copy deeply to all parts of a value. We could
have simplified the last three lines, removing the dependency of copy on itself:

copy{|α :+: β|} x = x
copy{|α :*: β|} x = x .
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But retaining the dependency and applying the function recursively has an ad-
vantage: using a so-called local redefinition we can change the behavior of the
function. As an example, we can increase all elements of a list by one, using the
function

incBy1 x = let copy{|a|} = (+1) in copy{|[a ]|} x .

Here we locally redefine copy to behave as the function (+1) on values of type a
that appear in a list of type [a]. Note that this is something that would normally
be written as an application of map:

incBy1 x = map (+1) x .

If we compare map with the locally redefined version of copy , then two differences
spring to mind. First, the function map can only be used on lists, whereas copy
can be used on other data types as well. Second, map has a more liberal type.
If we define

map′ f = let copy{|a|} = f in copy{|[a ]|},

then we can observe that map′, compared to map has a more restricted type:

map′ :: ∀a :: ? . (a→ a) → [a]→ [a ]
map :: ∀(a :: ?) (b :: ?) . (a→ b)→ [a]→ [b ].

The function passed to map may change the type of its argument; the function
passed to map′ must preserve the argument type.

Inspired by this deficiency, we can ask ourselves if it would not be possible
to also pass a function of type a→ b while locally redefining copy . The function
copy{|[a ]|} has the qualified type

copy{|[a ]|} :: ∀a :: ∗ . (copy{|a|} :: a→ a)⇒ [a ]→ [a],

but we are now going to generalize this type to something like

map{|[a ]|} :: ∀(a :: ∗) (b :: ∗) . (map{|a|} :: a→ b)⇒ [a]→ [b],

thereby renaming function copy to map (but using exactly the same definition).
For this to work, map needs a different type signature:

map{|a :: ∗, b :: ∗|} :: (map{|a, b|})⇒ a→ b.

The function is now parametrized over two type variables, and so is the depen-
dency. When used at a constant type, both variables a and b are instantiated
to the same type – only when locally redefining the function for a dependency
variable, the additional flexibility is available. Figure 1 shows some types for
applications of map to specific type arguments.

For example, assume the (data) types Pair and Either are defined by:
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map{|Tree :: ∗|} :: Tree → Tree
map{|List (a :: ∗) :: ∗|} ::
∀(a1 :: ∗) (a2 :: ∗) . (map{|a|} :: a1 → a2) ⇒ List a1 → List a2

map{|GTree (a :: ∗) (b :: ∗) :: ∗|} ::
∀(a1 :: ∗) (a2 :: ∗) (b1 :: ∗) (b2 :: ∗) . (map{|a|} :: a1 → a2,map{|b|} :: b1 → b2) ⇒

GTree a1 a2 → GTree b1 b2

map{|GRose (f :: ∗ → ∗) (a :: ∗) :: ∗|} ::
∀(f1 :: ∗ → ∗) (f2 :: ∗ → ∗) (a1 :: ∗) (a2 :: ∗) .

(map{|f c|} :: ∀(c1 :: ∗) (c2 :: ∗) . (map{|c|} :: c1 → c2) ⇒ f1 c1 → f2 c2

,map{|a|} :: a1 → a2

) ⇒ GRose f1 a1 → GRose f2 a2.

Fig. 1. Example types for generic applications of map to type arguments of different
forms.

type Pair a b = (a, b)
data Either a b = Left a | Right b.

Then the expressions

map{|[ ]|} (+1) [1, 2, 3, 4, 5]
map{|Pair|} (∗2) ("y"++) (21, "es")
map{|Either|} not id (Left True)

evaluate to [2, 3, 4, 5, 6], (42, "yes"), and Left False, respectively.

2.6 Show

The function show shows a value of an arbitrary data type. In Haskell, the
definition of show can be derived for most data types. In this subsection we
explain how to define show as a generic function in Generic Haskell. The function
show is an example of a function that uses the constructor descriptor in the Con
case. We define show in terms of the function showP , a slightly generalized
variant of Haskell’s show that takes an additional argument of type String →
String. This parameter is used internally to place parentheses around a fragment
of the result when needed.

showP{|a :: ∗|} :: (showP{|a|})⇒ (String→ String)→ a→ String

showP{|Unit|} p Unit = ""
showP{|α :+: β|} p (Inl x ) = showP{|α|} p x
showP{|α :+: β|} p (Inr x ) = showP{|β|} p x
showP{|α :*: β|} p (x1 :*: x2) = showP{|α|} p x1 ++ " " ++ showP{|β|} p x2

showP{|Con c α|} p (Con x ) = let parens x = "(" ++ x ++ ")"
body = showP{|α|} parens x

in if null body
then conName c
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else p (conName c ++ " " ++ body)
showP{|[α ]|} p xs = let body = (concat

. intersperse ", "

.map (showP{|α|} id)
) xs

in "[" ++ body ++ "]"

The type Unit represents a constructor with no fields. In such a situation, the
constructor name alone is the representation, and it will be generated from
the Con case, so we do not need to produce any output here. We just descend
through the sum structure; again, no output is produced because the constructor
names are produced in the Con case. A product concatenates fields of a single
constructor; we therefore show both components, and separate them from each
other by whitespace.

Most of the work is done in the arm for Con. We show the body of the
constructor, using parentheses where necessary. The body is empty if and only if
there are no fields for this constructor. In this case, we only return the name of
the constructor. Here we make use of the function conName on the constructor
descriptor c to obtain that name. Otherwise, we connect the constructor name
and the output of the body with a space, and possibly surround the result with
parentheses.

The last case is for lists and implements Haskell’s list syntax, with brackets
and commas.

In addition to the cases above, we need cases for abstract primitive types
such as Char, Int, or Float that implement the operation in some primitive way.

The function show is defined in terms of showP via generic abstraction, in-
stantiating the first parameter to the identity function, because outer parentheses
are not required.

show{|a :: ∗|} :: (showP{|a|})⇒ a→ String
show{|a|} = showP{|a|} id

The definition of a generic read function that parses the generic string repre-
sentation of a value is also possible using the Con case, and only slightly more
involved because we have to consider partial consumption of the input string
and possible failure.

2.7 Update salaries

Adapting from Lämmel and Peyton Jones [48], we use the following data types
to represent the organizational structure of a company.

data Company = C [Dept]
data Dept = D Name Manager [SubUnit]
data SubUnit = PU Employee | DU Dept
data Employee = E Person Salary
data Person = P Name Address
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data Salary = S Float
type Manager = Employee
type Name = String
type Address = String

We wish to update a Company value, which involves giving every Person a 15%
pay rise. To do so requires visiting the entire tree and modifying every occurrence
of Salary. The implementation requires pretty standard “boilerplate” code which
traverses the data type, until it finds Salary, where it performs the appropriate
update — itself one line of code — before reconstructing the result.

In Generic Haskell writing this function requires but a few lines. The code is
based on the generic map function. The code to perform the updating is given
by the following three lines, the first of which is the mandatory type signature,
the second states that the function is based on map, and the third performs the
update of the salary. The extends construct denotes that the cases of map are
copied into update. These are the default cases described in Clarke and Löh [14].

update{|a :: ∗|} :: (update{|a|})⇒ a→ a
update extends map
update{|Salary|} (S s) = S (s ∗ (1 + 0.15))

3 Criteria for comparing approaches to generic
programming

This section discusses the criteria we will use for comparing approaches to generic
programming. Together, these criteria can be viewed as a characterization of
generic programming. We don’t think that all criteria are equally important:
some criteria discuss whether or not some functions can be defined or used on
particular data types, whereas other criteria discuss more cosmetic aspects. We
will illustrate the criteria with an evaluation of Generic Haskell.

3.1 Structure in programming languages

Adding generic programming capabilities to a programming language is a pro-
gramming language design problem. Many of the criteria we will give are related
to or derived from programming language design concepts.

Ignoring modules, many modern programming languages have a two level
structure. The bottom level, where the computations take place, consists of
values. The top level imposes structure on the value level, and is inhabited by
types. On top of this, Haskell adds a level that imposes structure on the type
level, namely kinds. Finally, in a dependently typed programming language there
is a possibly infinite hierarchy of levels, where level n + 1 imposes structure on
elements of level n.

In ordinary programming we routinely define values that depend on values,
that is, functions, and types that depend on types, that is, type constructors.
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However, we can also imagine to have dependencies between adjacent levels. For
instance, a type might depend on a value or a type might depend on a kind. The
following table lists the possible combinations:

kinds depending on kinds parametric and kind-indexed kinds
kinds depending on types dependent kinds

types depending on kinds polymorphic and kind-indexed types
types depending on types parametric and type-indexed types
types depending on values dependent types

values depending on types polymorphic and type-indexed functions
values depending on values ordinary functions

If a higher level depends on a lower level we have so-called dependent types or
dependent kinds. Programming languages with dependent types are the subject
of intensive research [60, 9]. We will encounter some of these later in our com-
parison. Generic programming is concerned with the opposite direction, where a
lower level depends on the same or a higher level. For instance, if a value depends
on a type we either have a polymorphic or a type-indexed function. In both cases
the function takes a type as an argument. What is the difference between the
two? A polymorphic function is a function that happens to be insensitive to what
type the values in some data type are. Take, for example, the length function
that calculates the length of a list. Since it does not have to inspect the elements
of an argument list, it has type ∀a . List a → Int. By contrast, a type-indexed
function is defined by induction on the structure of its type argument. In some
sense, the type argument guides the computation which is performed on the
value arguments.

Not only values may depend on types, but also types. For example, the type
constructor List depends on a type argument. We can make a similar distinction
as on the value level. A parametric type, such as List, does not inspect its type
argument. A type-indexed type [31], on the other hand, is defined by induction
on the structure of its type argument. An example of a type-indexed data type
is the zipper data type introduced by Huet [35]. Given a data type t, the zipper
data type corresponding to t can be defined by induction on the data type t.
Finally, we can play the same game on the level of kinds. The following table
summarizes the interesting cases.

kinds defined by induction on the structure of kinds kind-indexed kinds
kinds defined by induction on the structure of types –

types defined by induction on the structure of kinds kind-indexed types
types defined by induction on the structure of types type-indexed types
types defined by induction on the structure of values –

values defined by induction on the structure of types type-indexed values
values defined by induction on the structure of values –

For each of the approaches to generic programming we will discuss what can
depend on what.
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Structural dependencies. Which concepts may depend on which concepts?
Generic Haskell supports the definition of type-indexed values, as all the

examples in the previous section show. Type arguments appear between special
parentheses {|, |}. A type-indexed value has a kind-indexed type, of which the base
case, the case for kind ?, has to be supplied by the programmer. The inductive
case, the case for k → l but is automatically generated by the compiler (as it is
determined by the way Generic Haskell specializes generic functions).

Generic Haskell also supports the definition of type-indexed types. A type-
indexed type is defined in the same way as a type-indexed function, apart from
the facts that every line in its definition starts with type, and its name starts
with a capital. A type-indexed type has a kind-indexed kind [31].

3.2 The Type Completeness Principle

The Type Completeness Principle [71] says that no programming language oper-
ation should be arbitrarily restricted in the types of its operands. For example, in
Haskell, a function can take an argument of any type, including a function type,
and a tuple may contain a function. To a large extent, Haskell satisfies the type
completeness principle on the value level. There are exceptions, however. For
example, it is not possible to pass a polymorphic function as argument. Pascal
does not satisfy the type completeness principle, since, for example, procedures
cannot be part of composite values.

The type completeness principle leads to the following criteria.

Full reflexivity. A generic programming language is fully reflexive if a generic
function can be used on any type that is definable in the language.

Generic Haskell is fully reflexive with respect to the types definable in Haskell
98, except for constraints in data type definitions. So a data type of the form

data Eq a⇒ Set a = NilSet | ConsSet a (Set a)

is not dealt with correctly. However, constrained data types are a corner case in
Haskell and can easily be simulated using other means.

Generic functions cannot be used on existential data types, such as for ex-
ample

data Foo = ∀a .MkFoo a (a→ Bool)
| Foo.

Although these are not part of Haskell 98, they are supported by most compilers
and interpreters for Haskell. Furthermore, generic functions cannot be applied to
generalized algebraic data types (GADTs), a recent extension in GHC, of which
the following type Term, representing typed terms, is an example:

data Term :: ∗ → ∗ where
Lit :: Int→ Term Int
Succ :: Term Int→ Term Int
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IsZero :: Term Int→ Term Bool
If :: Term Bool→ Term a→ Term a→ Term a
Pair :: Term a→ Term b→ Term (a, b).

Generic Haskell is thus not fully reflexive with respect to modern extensions of
Haskell.

First-class generic functions. Can a generic function take a generic function as
an argument?

Generic Haskell does not have first-class generic functions. To a certain ex-
tent first-class generic functions can be mimicked by means of extending existing
generic functions, but it is impossible to pass a generic function as an argument
to another (generic) function. The reason for this is that generic functions in
Generic Haskell are translated by means of specialization. Specialization elimi-
nates the type arguments from the code, and specialized instances are used on
the different types. Specialization has the advantage that types do not appear in
the generated code, but the disadvantage that specializing higher-order generic
programs becomes difficult: it is hard to determine which translated components
are used where.

Multiple type arguments. Can a function be generic in more than one type ar-
gument? Induction over multiple types is for example useful when generically
transforming values from one type structure into another type structure [8].

Generic functions in Generic Haskell can be defined by induction on a single
type. It is impossible to induct over multiple types. If induction on multiple
types is needed, the typical solution is to define two generic functions, with a
universal data type in between them.

Transforming values from one type structure into another type structure is
the only example we have encountered for which multiple type arguments would
be useful. Hence we do not weigh this aspect heavily in our comparison.

3.3 Well-typed expressions do not go wrong

Well-typed expressions in the Hindley-Milner type system [61] do not go wrong.
Does the same hold for generic functions?

Type system. Do generic functions have types?
In Generic Haskell, generic functions have explicit types. Type-correctness is

only partially checked by the Generic Haskell compiler. Haskell type checks the
generated code. Both Löh [54] and Hinze [26] describe a type system for Generic
Haskell.

Type safety. Is the generic programming language type safe? By this we mean:
is a type-correct generic function translated to a type-correct instance? And
does a compiled program not crash because a non-existing instance of a generic
function is called?

Generic Haskell is type safe in both aspects.
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3.4 Information in types

How expressive is the type language? What does the type of a generic function
reveal about the function? Can we infer a property of a generic function from its
type? Since generic programming is about programming with types, questions
about the type language are particularly interesting.

Type-language expressiveness. If a programming language has no types, it is
impossible to define a function the behavior of which depends on a type, and
hence it is impossible to define generic functions. But then, of course, there is no
need for defining generic functions either. The type languages of programming
languages with type systems vary widely. The less expressive a type language,
the easier it becomes to write generic programs. And the more expressive a
type language, the harder it becomes to write generic programs. The interesting
question to ask here is: What kind of data types can be expressed in the type
language?

Haskell (and hence Generic Haskell) has a very expressive type language,
which can express regular data types, infinite data types, nested data types [11],
data types that take type constructors as argument, etc.

The type of a generic function. Do types of generic functions in some way cor-
respond to intuition? A generic function f {|a|} that has type a → a → Bool is
probably a comparison function. But what does a function of type ∀b . (∀a . a→
a) → b → b do? This question is related to the possibility to infer useful prop-
erties, like free theorems [69], for a generic function from its type.

Generic Haskell’s types of generic functions are relatively straightforward: a
type like

eq{|a :: ?|} :: (eq{|a|})⇒ a→ a→ Bool

is close to the type you would expect for the equality function, maybe apart
from the dependency. The type for map:

map{|a :: ∗, b :: ∗|} :: (map{|a, b|})⇒ a→ b.

is perhaps a little bit harder to understand, but playing with instances of the
type of map for particular types, in particular for type constructors, probably
helps understanding why this type is the one required by map.

Properties of generic functions. Is the approach based on a theory for generic
functions? Do generic functions satisfy algebraic properties? How easy is it to
reason about generic functions?

In his habilitations thesis [26], Hinze discusses generic programming and
generic proofs in the context (of a ‘core’ version) of Generic Haskell. He shows a
number of properties satisfied by generic functions, and he shows how to reason
about generic functions.
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3.5 Integration with the underlying programming language

How well does the generic programming language extension integrate with the
underlying programming language? A type system can be nominal (based on the
names of the types), structural (based on the structure of the types), or a mixture
of the two. If a type system is nominal, it can distinguish types with exactly the
same structure, but with different names. Generic functions are usually defined
on a structural representation of types. Can I extend such a generic functions
in a non-generic way, for example for a particular, named, data type? Or even
for a particular constructor? The general question here is: how does generic
programming interact with the typing system?

Using default cases, a generic function can be extended in a non-generic
way in Generic Haskell. The update function defined in Section 2.7 provides an
example. Generic functions can even be specialized for particular constructors.

3.6 Tools

Of course, a generic programming language extension is only useful if there exists
an interpreter or compiler that understands the extension. Some ‘light-weight’
approaches to generic programming require no extra language support: the com-
piler for the underlying programming language is sufficient. However, most ap-
proaches require tools to be able to use them, and we can ask the following
questions.

Specialization versus interpretation. Is a generic function interpreted at run-time
on data types to which it is applied, or is it specialized at compile-time? The
latter approach allows the optimization of generated code.

Generic Haskell specializes applications of generic functions at compile-time.

Code optimization. How efficient is the code generated for instances of generic
functions?

Generic Haskell does not optimize away the extra marshaling that is in-
troduced by the compiler for instances of generic functions. This might be an
impediment for some applications.

Separate compilation. Can I use a generic function that is defined in one module
on a data type defined in another module without having to recompile the module
in which the generic function is defined?

Generic Haskell provides separate compilation.

Practical aspects. Does there exist an implementation? Is it maintained? On
multiple platforms? Is it documented? What is the quality of the error messages
given by the tool?

Generic Haskell is available on several platforms: Windows, Linux and Mac-
OSX. The latest release is from January 14, 2005. A new release is expected in
the first half of 2006. The distribution comes with a User Guide, which explains
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how to install Generic Haskell, how to use it, and introduces the functions that
are in the library of Generic Haskell. The Generic Haskell compilers reports
syntax errors. Type errors, however, are only reported when the file generated
by Generic Haskell is compiled by a Haskell compiler. Type systems for Generic
Haskell have been published [26, 55, 54], but not implemented.

4 Comparing approaches to generic programming

In this section we will describe seven different approaches to generic program-
ming. We will give a brief introduction to each approach, and we will evaluate
it using the criteria introduced in the previous section.

4.1 DrIFT

DrIFT [74] is a type sensitive preprocessor for Haskell. It extracts type declara-
tions and directives from Haskell modules. The directives cause rules to be fired
on the parsed type declarations, generating new code which is then appended to
the bottom of the input file. An example of a directive is:

{- ! for Foo derive : update,Show -}
Given such a directive in a module that defines the data type Foo, and rules for
generating instances of the function update and the class Show , DrIFT generates
a definition of the function update on the data type Foo, and an instance of Show
for Foo. The rules are expressed as Haskell code, and a user can add new rules
as required.

DrIFT comes with a number of predefined rules, for example for the classes
derivable in Haskell and for several marshaling functions between Haskell data
and, for example, XML, ATerm, and a binary data format.

A type is represented within DrIFT using the following data definition.

data Statement = DataStmt | NewTypeStmt
data Data = D{name :: Name -- type name

, constraints :: [(Class,Var)] -- constraints on type variables
, vars :: [Var ] -- parameters
, body :: [Body ] -- the constructors
, derives :: [Class] -- derived classes
, statement :: Statement -- data or newtype
}

type Name = String
type Var = String
type Class = String

A value of type Data represents one parsed data or newtype statement. These
are held in a D constructor record. The body of a data type is represented by a
value of type Body. It holds information about a single constructor.
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data Body = Body{constructor :: Constructor -- constructor name
, labels :: [Name ] -- label names
, types :: [Type ] -- type representations
}

type Constructor = String

The definition of Type is as follows.

data Type = Arrow Type Type -- function type
| Apply Type Type -- application
| Var String -- variable
| Con String -- constant
| Tuple [Type ] -- tuple
| List Type -- list

deriving (Eq ,Show)

For example, the data type CharList is represented internally by:

reprCharList = D{ name = "CharList"
, constraints = [ ]
, vars = [ ]
, body = [bodyNil , bodyCons ]
, derives = [ ]
, statement = DataStmt
}

bodyNil = Body { constructor = "Nil"
, labels = [ ]
, types = [ ]
}

bodyCons = Body { constructor = "Cons"
, labels = [ ]
, types = [Con "Char"

,Con "CharList"]
}

A rule consists of a name and a function that takes a Data and returns a docu-
ment, a value of type Doc, containing the textual code of the rule for the Data
value. The type Doc is defined in a module for pretty printing, and has several
operators defined on it, for putting two documents beside each other (<+>) (list
version hsep), above each other $$ (list version vcat), for printing texts (text and
texts), etc [36]. Constructing output using pretty printing combinators is easier
and more structured than manipulating strings.

Function encode. We will now explain the rules necessary for obtaining a defi-
nition of function encode on an arbitrary data type. For that purpose, we define
the following class in our test file.
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class Encode a where
encode :: a→ [Bit]

and ask DrIFT to generate instances of this class for all data types by means
of the directive {- ! global : encode -} . For example, for the type CharList it
should generate:

instance Encode CharList where
encode Nil = [O ]
encode (Cons aa ab) = [I ] ++ encode aa ++ encode ab

The rules for generating such instances have to be added to the file UserRules.hs.

encodefn :: Data→ Doc
encodefn d =

instanceSkeleton "Encode"
[(makeEncodefn (mkBits (body d)), empty)]
d

mkBits :: [Body ]→ Constructor→ String
mkBits bodies c = ( show

. intinrange2bits (length bodies)

. fromJust

. elemIndex c

. map constructor
) bodies

The function encodefn generates an instance of the class Encode using the utility
function instanceSkeleton. It applies makeEncodefn to each Body of a data type,
and adds the empty document at the end of the definition. The function mkBits
takes a list of bodies, and returns a function that when given a constructor
returns the list of bits for the constructor in its data type. For example, the list
of bits for a data type with three constructors are [[O ,O ], [O , I ], [I ,O ]]. The
function intinrange2bits, which encodes a natural number in a given range as a
list of bits, comes from a separate Haskell module for manipulating bits.

The function makeEncodefn takes an encoding function and a body, and re-
turns a document containing the definition of function encode on the constructor
represented by the body. If the constructor has no arguments, encode returns
the list of bits for the constructor, obtained by means of the encoding function
that is passed as an argument. If the constructor does have arguments, encode
returns the list of bits for the constructor, followed by the encodings of the ar-
guments of the constructor. For the argument of encode on the left-hand side of
the definition we have to generate as many variables as there are arguments to
the constructor. These variables are returned by the utility function varNames.
Function varNames takes a list, and returns a list, the length of which is equal
to the length of the argument list, of variable names. The constructor pattern is
now obtained by prefixing the list generated by varNames with the constructor.
This is conPat in the definition below. The encodings of the arguments of the
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constructor are obtained by prefixing the generated variables with the function
encode, and separating the elements in the list with the list concatenation opera-
tor ++. Finally, equals is a utility function that returns the document containing
an equality sign, ‘=’.

makeEncodefn :: (Constructor→ String)→ (Body→ Doc)
makeEncodefn enc (Body{constructor = constructor , types = types }) =

let bits = text (enc constructor)
encodeText = text "encode"
constrText = text constructor

in let newVars = varNames types
conPat = parens . hsep $ constrText : newVars
lhs = encodeText <+> conPat
rhs = ( fsep

. sepWith (text "++")

. (bits:)

. map (λn → encodeText <+> n)
) newVars

in lhs <+> equals <+> rhs

Function decode. Decoding is a bit more complicated. First, we define the fol-
lowing class in our test file.

class Decode a where
decodes :: [Bit ]→ (a, [Bit ])
decode :: [Bit ]→ a
decode bits = let (a, rest) = decodes bits

in if null rest
then a
else error "decode: non-empty rest"

Then we ask DrIFT to generate instances of this class for all data types by means
of the directive {- ! global : decode -} . For example, for the type CharList it
should generate:

instance Decode CharList where
decodes (O : xs) = (Nil , xs)
decodes (I : xs) = let (res1, xs1) = decodes xs

(res2, xs2) = decodes xs1

in (Cons res1 res2, xs2)
decodes [ ] = error "decodes"

The decode function generates an instance of the class Decode. At the end of
each class instance it adds the declaration of decodes on the empty list.

decodefn :: Data→ Doc
decodefn d =
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instanceSkeleton "Decode"
[(mkDecodefn (mkBitsPattern (body d))
, text "decodes [] = error \"decodes\"")
]
d

Here, function mkBitsPattern is almost the same as function mkBits, except for
the way in which the list of bits is shown. We omit its definition.

The function mkDecodefn produces the cases for the different constructors.
The left-hand side of these cases are obtained by constructing the appropri-
ate bits pattern. The right-hand side is obtained by means of the function
decodechildren, and returns a constructor (applied to its arguments). If a con-
structor has no arguments this is easy: return the constructor. If a constructor
does have arguments, we first decode the arguments, and use the results of these
decodings as arguments to the constructor.

mkDecodefn :: (Constructor→ String)→ (Body→ Doc)
mkDecodefn enc body =

let decodesText = text "decodes"
decodechildren b =

let nrOfArgs = length (types b)
argsList = [1 . .nrOfArgs ]
listOfArgs = text "xs" : map ((text "xs"<>) . int) argsList
listOfRess = map ((text "res"<>) . int) argsList
listOfRests = map ((text "xs"<>) . int) argsList
constrText = text (constructor b)

in if nrOfArgs 0
then parens (constrText <+> comma <+> text "xs")
else text "let"

$$ vcat (map (nest 2)
(zipWith3 (λres rest arg →

parens (res <+> comma <+> rest)
<+> equals
<+> decodesText
<+> arg
) listOfRess listOfRests listOfArgs

)
)

$$ text "in"
<+> parens ( constrText

<+> hsep listOfRess
<+> comma
<+> text "xs"<>int nrOfArgs

)
in decodesText

<+> parens (text (enc (constructor body))<>text "xs")
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<+> equals
<+> nest 6 (decodechildren body)

Instances of class Eq. The rules necessary for generating an instance of the class
Eq for a data type are very similar to the rules for generating an instance of the
class Encode. These rules are omitted, and can be found in the material accom-
panying these lecture notes, or in the file StandardRules.hs in the distribution
of DrIFT.

Function map. The rules for generating instances of the map function on dif-
ferent data types differ from the rules given until now. The biggest difference is
that we do not generate instances of a class. Any class definition is of the form
class C t wherer ..., in which the kind of the type t is fixed. So suppose we define
the following class for map:

class Map t where
map :: (a→ b)→ t a→ t b.

The we can only instantiate this class with types of kind ?→ ?. Since the data
type of generalized trees GTree has kind ? → ? → ?, we cannot represent the
‘standard’ map function on GTree by means of an instance of this class. Instead,
we generate a separate map function on each data type. For example, on the
type GTree we obtain:

mapGTree fa fb GEmpty = GEmpty
mapGTree fa fb (GLeaf a) = GLeaf (fa a)
mapGTree fa fb (GBin l v r) = GBin (mapGTree fa fb l)

(fb v)
(mapGTRee fa fb r)

The function mapfn generates a definition of map for each constructor using
mkMapfn. The function mkMapfn takes as arguments the name of the data type
(for generating the name of the map function on the data type) and the variables
of the data type (for generating the names of the function arguments of map.

mapfn :: Data→ Doc
mapfn (D{name = name, vars = vars, body = body }) =

vcat (map (mkMapfn name vars) body)

Function mkMapfn creates the individual arms of the map function. For gen-
erating the right-hand side, it recurses over the type of the constructor in the
declaration rhsfn.

mkMapfn name vars (Body{constructor = constructor , types = types }) =
let mt name = text ("map" ++ name)

mapArgs = hsep (texts (map (λv → ’f’ : v) vars))
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newVars = varNames types
conPat = parens . hsep $ text constructor : newVars
lhs = mt name <+> mapArgs <+> conPat
rhs = hsep (text constructor

: map (parens . rhsfn) (zip newVars types)
)

rhsfn = λ(newVar , rhstype)→
case rhstype of

LApply t ts → hsep
(mt (getName t)
: hsep (map mkMapName ts)
++ [newVar ]
)

Var v → text (’f’ : v) <+> newVar
Con s → mt s <+> newVar
List t → text "map"

<+> parens (mt (getName t)
<+> mapArgs
)

<+> newVar
x → newVar

in lhs <+> equals <+> rhs

The utility functions mkMapName and getName return the name of the func-
tion to be applied to the arguments of a constructor, and the name of a type,
respectively.

mkMapName (LApply s t) = parens (mkMapName s
<+> hsep (map mkMapName t)
)

mkMapName (Var s) = text (’f’ : s)
mkMapName (Con s) = text ("map" ++ s)
mkMapName (List t) = text "map" <+> mkMapName t
mkMapName = error "mkMapName"

getName (LApply s t) = getName s
getName (Var s) = s
getName (Con s) = s
getName (List t) = getName t
getName = error "getName"

Evaluation

Structural dependencies. DrIFT supports the definition of functions that take
the abstract syntax of a data type as an argument. From this definition it can
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generate any document, and it follows that it supports, in principle, the defi-
nition of type-indexed values, type-indexed types, type-indexed class instances,
etc. There is no support for kind-indexed definitions, though: DrIFT does not
perform any kind inference.

Full reflexivity. DrIFT is not fully reflexive with respect to the set of data
types definable in Haskell 98: it cannot handle data types with type variables
of higher-order kinds, such as GRose. Just as Generic Haskell, DrIFT cannot
generate instances of functions on existential types or on GADTs.

We see, however, no principle reason why DrIFT cannot be fully reflexive
with respect to the data types definable in Haskell 98.

First-class generic functions. Since rules are plain Haskell functions, they can
take rules as arguments. First-class rules are inherited from Haskell. On the
other hand, an instance of a class cannot be explicitly passed as an argument
to a function or a class instance, so a rule that generates an instance of a class
cannot be passed as argument to a rule that generates a function or a class
instance.

Multiple type arguments. Rules cannot take multiple type arguments in DrIFT.

Type system. Rules for generic functions all have the same type in DrIFT:
Data → Doc. There is no separate type system for rules; rules are ordinary
Haskell functions.

Type safety. A type-correct rule does not guarantee that the generated code is
type correct, as well. It is easy to define a type-correct rule that generates code
that does not type-check in Haskell. DrIFT is not type safe.

Type-language expressiveness. The type language of DrIFT is Haskell’s type
language.

The type of a generic function. In DrIFT, every rule has type Data→ Doc. Thus
it is impossible to distinguish generic functions by type.

Properties of generic functions. Since rules generate pretty-printed documents
(syntax), it is virtually impossible to specify properties of rules.

Integration with the underlying programming language. If a user wants to imple-
ment and use a new rule, DrIFT has to be recompiled. If a user wants to use a
rule, adding a directive to a Haskell file suffices.

Specialization versus interpretation. DrIFT specializes rules on data types fol-
lowing directives.

Code optimization Code can be optimized by hand by specifying a more efficient
rule. There need not be an efficiency penalty when using DrIFT.
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Separate compilation. It is easy to use rules on data types that appear in a new
module. Rules are separately compiled in DrIFT, and can then be used in any
module.

Practical aspects. DrIFT is maintained. The last release is from September 2005.
It runs on many platforms. The user guide explains how to use DrIFT.

No error messages are given for data types for which DrIFT cannot generate
code.

4.2 PolyP

PolyP [37] is an extension of Haskell with a construct for defining so-called
polytypic programs.

PolyP allows the definition of generic functions on regular data types of kind
? → ?. A data type is regular if it does not contain function spaces, and if
the arguments of the data type constructor on the left- and right-hand sides in
its definition are the same. Examples of regular data types are List a, Rose a,
and Fork a. The data types CharList, Tree, and GRose are regular, but have
kind ?, ?, and (? → ?) → ? → ?, respectively. The data type Perfect a is not
regular: in the right-hand side Perfect is applied to Fork a instead of a. Another
example of a data type that is not regular is the data type Flip defined by
data Flip a b = MkFlip a (Flip b a).

PolyP is rather similar to Generic Haskell in that it translates data types to
structure representation types. The structure representation type of a data type
d a is given by

Mu (FunctorOf d a),

where FunctorOf d is a type constructor of kind ? → ? → ? representing the
recursive structure of the data type d, and the data type Mu takes a type con-
structor and a type variable of kind ?, and returns the fixed point of the type
constructor:

data Mu f a = Inn (f a (Mu f a)).

FunctorOf d is sometimes also called the bifunctor of d. The isomorphism
between a data type and its structure representation type is witnessed by the
functions inn and out .

inn :: FunctorOf d a (d a)→ d a
inn = Inn
out :: d a→ FunctorOf d a (d a)
out (Inn x ) = x

The restriction to regular data types imposed by PolyP is caused by the way the
structure representation types are built up.

Here is the grammar for bifunctors:
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f ::= g + h
| g ∗ h
| Par
| Rec
| d@g
| Const t
| Empty.

Binary functors are sums (+, with constructors InL and InR) of products (∗,
with constructor :*:) of either the parameter type of kind ? (represented by Par,
with constructor ParF and destructor unParF ), the data type itself (represented
by Rec, with constructor RecF and destructor unRecF ), compositions of data
types and bifunctors (represented by @, with constructor CompF and destructor
unCompF ), or constant types (represented by Const t where t may be any of
Float, Int, etc., with constructor ConstF and destructor unConstF ). An empty
product is represented by the unit type (represented by Empty). For example,
for the data types List a, Rose a, and Fork a we have:

FunctorOf List Empty + Par ∗ Rec
FunctorOf Rose Par ∗ List@Rec
FunctorOf Fork Par ∗ Par.

This encoding of data types is similar to the encoding in Generic Haskell, but
there is an important difference. In Generic Haskell the structure types only
represent the top-level structure of a value, whereas in PolyP the encoding of
values is deep: the original data type has disappeared in the encoded structure.

An important recursion combinator in PolyP is the catamorphism [59], which
is defined in PolyLib, the library of PolyP. The catamorphism is a generalization
of Haskell’s foldr to an arbitrary data type. It takes an algebra as argument, and
is defined in terms of a polytypic function fmap2 , representing the action of the
bifunctor of the data type on functions.

cata :: Regular d⇒ (FunctorOf d a b→ b)→ (d a→ b)
cata alg = alg . fmap2 id (cata i) . out

Function fmap2 is a polytypic function, the two-argument variant of map. It is
defined by induction over the structure of bifunctors. It takes two functions p
and r as arguments, and applies p to occurrences of the parameter, and r to
occurrences of the recursive data type.

polytypic fmap2 :: (a→ c)→ (b→ d)→ f a b→ f c d
= λp r →

case f of
g + h → (fmap2 p r) -+- (fmap2 p r)
g ∗ h → (fmap2 p r) -*- (fmap2 p r)
Empty → λEmptyF → EmptyF
Par → ParF . p . unParF



32 R. Hinze, J. Jeuring and A. Löh

Rec → RecF . r . unRecF
d@g → CompF . pmap (fmap2 p r) . unCompF
Const t→ ConstF . unConstF

Here -+- and -*- have the following types:

(-+-) :: (g a b→ g c d)→ (h a b→ h c d)→ ((g + h) a b→ (g + h) c d)
(-*-) :: (g a b→ g c d)→ (h a b→ h c d)→ ((g ∗ h) a b→ (g ∗ h) c d),

where + and ∗ are the internal sum and product types used by PolyP.

Function encode. Function encode takes an encoder for parameter values as
argument, and recurses over its argument by means of a catamorphism. The
algebra of the catamorphism is given by the polytypic function fencode. The
choice between an O and an I is made, again, in the sum case. The encoder for
parameter values is applied in the Par case. The other cases are standard.

encode :: Regular d⇒ (a→ [Bit ])→ d a→ [Bit ]
encode enca = cata (fencode enca)
polytypic fencode :: (a→ [Bit ])→ f a [Bit ]→ [Bit] =

λenca →
case f of

g + h → (λx → O : fencode enca x ) ‘foldSum‘
(λy → I : fencode enca y)

g ∗ h → λ(x :*: y)→ fencode enca x ++ fencode enca y
Empty → const [ ]
Par → enca . unParF
Rec → unRecF
d@g → encode (fencode enca) . unCompF
Const Int → encodeInt . unConstF
Const Char→ encodeChar . unConstF

foldSum :: (g a b→ c)→ (h a b→ c)→ ((g + h) a b→ c)

Function decode. Function decode is the inverse of function encode.

data Dec a = Dec ([Bit]→ (a, [Bit]))
apply :: Dec a→ [Bit ]→ (a, [Bit])
apply (Dec f ) = f
instance Monad Dec where

return x = Dec (λbits → (x , bits))
Dec f >>= g = Dec (λbits → let (result , rest) = f bits

Dec g ′ = g result
in g ′ rest

)
decode :: Regular d⇒ Dec a→ Dec (d a)
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decode deca = liftM inn (fdecode deca (decode deca))
polytypic fdecode :: Dec a→ Dec b→ Dec (f a b) =

λdeca decb →
case f of

g + h →
Dec (λbits → case bits of

O : bs → mapFst InL
(apply (fdecode deca decb) bs)

I : bs → mapFst InR
(apply (fdecode deca decb) bs)

)
g ∗ h → fdecode deca decb >>= λx →

fdecode deca decb >>= λy →
return (x :*: y)

Empty → return EmptyF
Par → deca >>= (return .ParF )
Rec → decb >>= (return .RecF )
d@g → decode (fdecode deca decb) >>= (return .CompF )
Const Int → decodeInt >>= (return .ConstF )
Const Char→ decodeChar >>= (return .ConstF )

where liftM :: Monad m ⇒ (a → b) → (m a → m b) lifts a function to the level
of monads. Given the definition of function encode, the definition of function
decode is rather standard.

The definition of the polytypic functions eq and map contain no surprises:
both are similar to the definitions of function fmap2 and encode, and can be
found in PolyLib.

Function update. Function update is the same as the polytypic copy or iden-
tity function, except for a special case for the structure representation type
Const Salary.

update :: Regular d⇒ d a→ d a
update = inn . fupdate id update . out
polytypic fupdate :: (a→ b)→ (c→ d)→ f a c→ f b d =

λp r →
case f of

g + h → fupdate p r -+- fupdate p r
g ∗ h → fupdate p r -*- fupdate p r
Empty → λEmptyF → EmptyF
Par → ParF . p . unParF
Rec → RecF . r . unRecF
d@g → CompF . update . pmap (fupdate p r) . unCompF
Const Salary→ ConstF . updateSalary . unConstF

updateSalary (S f ) = S (f ∗ (1 + 0.15))
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Evaluation

Structural dependencies. PolyP adds polytypic functions, which depend on types,
to Haskell.

Full reflexivity. PolyP is not fully reflexive: polytypic functions can only be used
on regular data types of kind ? → ?. Important classes of data types for which
polytypic functions do not work are mutually recursive data types and data
types of kind ?.

First-class generic functions. Polytypic functions are not first class.

Multiple type arguments. Polytypic functions are defined by induction over a
single bifunctor.

Type system. Polytypic functions are explicitly typed. The compiler checks type-
correctness of polytypic functions.

Type safety. Type-correct polytypic functions are translated to type-correct
Haskell functions. Forgetting an arm in the case expression of a polytypic func-
tion leads to an error when the generated Haskell is compiled or interpreted.

Type-language expressiveness. PolyP only works on regular data types of kind
? → ?. Data types with different kinds should preferably not appear in files
containing polytypic definitions. So the expressiveness of the type language is
as in Haskell, but for polytypic functions, expressiveness is limited. Besides the
obvious disadvantages, this has an advantage as well: since the structure of
regular data types of kind ? → ? can be described by a bifunctor, we can
define functions like the catamorphism on arbitrary data types in PolyP. The
catamorphism cannot be defined in Generic Haskell. This is an instance of a
general pattern: for restricted classes of data types, it might be possible to define
particular generic functions that are only definable on this class.

The type of a generic function. Types of polytypic functions are direct abstrac-
tions of types on normal data types, and closely correspond to intuition.

Properties of generic functions. Jansson and Jeuring [44, 38] show how to reason
about polytypic functions, and how to derive a property of a generic function
from its type.

Integration with the underlying programming language. The integration of poly-
typic programming and Haskell is not completely seamless. PolyP does not know
about classes, about types of kind other than ?→ ?, and lacks several syntactic
constructions that are common in Haskell, such as where and operator sections.
It is wise to separate the polytypic functions from other functions in a separate
file, and only compile this file with PolyP.
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Specialization versus interpretation. Polyp specializes applications of polytypic
functions at compile-time.

Code optimization Like Generic Haskell, PolyP does not optimize away the extra
marshaling that is introduced by the compiler for instances of generic functions.
This might be an impediment for some applications.

Separate compilation. PolyP provides separate compilation.

Practical aspects. A compiler for PolyP can be downloaded. It is usable on the
platforms on which GHC is available. It is not very actively maintained anymore:
the latest release is from 2004. It is reasonably well documented, although not
all limitations are mentioned in the documentation. PolyP’s error messages can
be improved.

4.3 Derivable Type Classes

Haskell’s major innovation is its support for overloading, based on type classes.
For example, the Haskell Prelude defines the class Eq (slightly simplified):

class Eq a where
eq :: a→ a→ Bool

This class declaration defines an overloaded top-level function, called method,
whose type is

eq :: ∀a . (Eq a)⇒ a→ a→ Bool.

Before we can use eq on values of, say Int, we must explain how to take equality
over Int values:

instance Eq Int where
eq = eqInt .

This instance declaration makes Int an element of the type class Eq and says
‘the eq function at type Int is implemented by eqInt ’. As a second example
consider equality of lists. Two lists are equal if they have the same length and
corresponding elements are equal. Hence, we require equality over the element
type:

instance (Eq a)⇒ Eq (List a) where
eq Nil Nil = True
eq Nil (Cons a2 as2) = False
eq (Cons a1 as1) Nil = False
eq (Cons a1 as1) (Cons a2 as2) = eq a1 a2 ∧ eq as1 as2.

This instance declaration says ‘if a is an instance of Eq , then List a is an instance
of Eq , as well’.
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Though type classes bear a strong resemblance to generic definitions, they do
not support generic programming. A type class declaration corresponds roughly
to the type signature of a generic definition — or rather, to a collection of
type signatures. Instance declarations are related to the type cases of a generic
definition. The crucial difference is that a generic definition works for all types,
whereas instance declarations must be provided explicitly by the programmer
for each newly defined data type. There is, however, one exception to this rule.
For a handful of built-in classes Haskell provides special support, the so-called
‘deriving’ mechanism. For instance, if you define

data List a = Nil | Cons a (List a) deriving (Eq)

then Haskell generates the ‘obvious’ code for equality. What ‘obvious’ means is
specified informally in an Appendix of the language definition [65]. Derivable
type classes (DTCs) [32] generalize this feature to arbitrary user-defined classes:
generic definitions are used to specify default methods so that the programmer
can define her own derivable classes.

Functions encode and decode. A type class usually gathers a couple of related
methods. For that reason, we put encode and decode into a single class, called
Binary .

class Binary a where
encode :: a→ [Bit ]
decodes :: [Bit ]→ [(a, [Bit])]

Using two generic definitions we provide default methods for both encode and
decode.

encode{|Unit|} Unit = [ ]
encode{|b :+: c|} (Inl x ) = O : encode x
encode{|b :+: c|} (Inr y) = I : encode y
encode{|b :*: c|} (x :*: y) = encode x ++ encode y
decodes{|Unit|} bs = [(Unit , bs)]
decodes{|b :+: c|} [ ] = [ ]
decodes{|b :+: c|} (O : bs) = [(Inl x , cs) | (x , cs)← decodes bs ]
decodes{|b :+: c|} (I : bs) = [(Inr y , cs) | (y , cs)← decodes bs ]
decodes{|b :*: c|} bs = [(x :*: y , ds) | (x , cs)← decodes bs

, (y , ds)← decodes cs ]

Incidentally, DTCs use the same structure representation types as Generic Has-
kell, so the corresponding definitions can be copied almost verbatim. There is
one small difference though: explicit type arguments, written in curly braces,
are only specified on the left-hand side of default method definitions. Elsewhere,
Haskell’s overloading resolution automatically determines the instance types, as
for every other class method.
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The function decode is defined in terms of decodes. We decided to turn the
latter function into an overloaded function rather than a class method since its
code is the same for all instances.

decode :: (Binary a)⇒ [Bit]→ a
decode bs = case decodes bs of

[(x , [ ])]→ x
→ error "decode: no parse"

Now, if we intend to use encode or decode on a particular type, we must first
provide an instance declaration. However, by virtue of the default methods the
instance declaration may be empty.

instance Binary CharList
instance Binary Tree
instance (Binary a)⇒ Binary [a ]

The compiler then automatically fills in the missing method definitions. However,
if we say

instance (Compress a)⇒ Compress [a ] where
encode xs = encode (length xs) ++ concatMap encode xs
decodes bs = [(xs, ds) | (n, cs) ← decodes bs

, (xs, ds)← times n decodes cs ]
times :: Int→ ([Bit]→ [(a, [Bit ])])→ ([Bit ]→ [([a ], [Bit ])])
times 0 p bs = [([ ], bs)]
times (n + 1) p bs = [(x : xs, ds) | (x , cs)← p bs, (xs, ds)← times n p cs ]

then this programmer-supplied code is used. Thus, the programmer can override
the generic definition on a type-by-type basis. This ability is crucial to support
abstract types. We can also use, indeed, we must use ordinary instance declara-
tions to specify what a generic definition should do on primitive types such as
Char or Int.

instance Binary Char where
encode = encodeChar
decodes = decodesChar

instance Binary Int where
encode = encodeInt
decodes = decodesInt

Function eq. The predefined Eq class can be thought of as a derivable type class.

class Eq a where
eq ,neq :: a→ a→ Bool

eq{|Unit|} Unit Unit = True
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eq{|b :+: c|} (Inl x ) (Inl v) = eq x v
eq{|b :+: c|} (Inl x ) (Inr w) = False
eq{|b :+: c|} (Inr y) (Inl v) = False
eq{|b :+: c|} (Inr y) (Inr w) = eq y w
eq{|b :*: c|} (x :*: y) (v :*: w) = eq x v ∧ eq y w
neq x y = not (eq x y)

The class definition contains an ordinary default definition for inequality and a
generic one for equality. Equality on characters and integers is specified using
ordinary instance declarations.

instance Equal Char where
eq = eqChar

instance Equal Int where
eq = eqInt

Function map. Generic definitions for default methods may only be given for
type classes whose type parameter ranges over types of kind ?. For that reason,
we cannot specify a generic mapping function, There is, however, no principle
hindrance in adding this feature.

Function show. The definition of show is similar to the one for Generic Haskell
and hence omitted. Like equality, show is a class method of a built-in derivable
type class.

Function update. We can define update as a variant of the generic identity, or
copy function.

class Update a where
update :: a→ a

update{|Unit|} Unit = Unit
update{|b :+: c|} (Inl x ) = Inl (update x )
update{|b :+: c|} (Inr y) = Inr (update y)
update{|b :*: c|} (x :*: y) = update x :*: update y

Again, we have to provide instance declarations for all the types, on which we
wish to use update.

instance Update Char where
update = id

instance (Update a)⇒ Update [a]
instance Update Company
instance Update Dept
instance Update SubUnit
instance Update Employee
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instance Update Person
instance Update Salary where

update (S s) = S (s ∗ (1 + 0.15))

All the instance declarations are trivial except the one for salary which specifies
the salary increase.

Evaluation

Structural dependencies. DTCs allow the definition of ?-indexed functions in the
style of Generic Haskell. There is no support for type-indexed data types.

Full reflexivity. DTCs share the limitations of class-based systems: higher-order
kinded data types such as GRose cannot be turned into instance declarations
as this requires so-called higher-order contexts. The original DTCs proposal
recognizes this shortcoming and proposes a solutions in the form of higher-order
contexts, but this extension has not been implemented yet.

First-class generic functions. Generic functions are tied to class methods. How-
ever, type classes are not first-class citizens. Consequently, generic functions are
not first class either.

Multiple type arguments. Derivable type classes may only abstract over one type
argument.

Type system. DTCs are fully integrated into Haskell.

Type safety. DTCs are fully type-safe. Since instance declaration must be ex-
plicitly provided, missing instances are detected at compile-time.

Type-language expressiveness. DTCs makes use of Haskell’s expressive type lan-
guage. However, not all types are equally usable in the context of generic func-
tions (see ‘full reflexivity’).

The type of a generic function. The types are intuitive (and familiar to Haskell
programmers).

Properties of generic functions. Properties of a generic function can be stated
and proven as in Generic Haskell.

Integration with the underlying programming language. DTCs are fully inte-
grated into Haskell. Only the module Data.Generics must be imported and the
options -fglasgow-exts, -fgenerics and -package lang must be passed to
the compiler, i.e., the Glasgow Haskell Compiler (GHC).

Specialization versus interpretation. The generic code is specialized for each
instance.
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Code optimization The overhead is similar to that of Generic Haskell.

Separate compilation. DTCs fully support separate compilation.

Practical aspects. The original DTCs proposal is partially implemented in GHC,
the standard compiler for Haskell. A missing feature is the cof a construct, with
which one can access the names of constructors and labels. So, currently, one
cannot define a generic version of show or read . The documentation is integrated
into GHC’s user guide (Section 7.11, ”‘Generic classes”’). Error messages are
usually good.

4.4 Lightweight Implementation of Generics and Dynamics

Lightweight Implementation of Generics and Dynamics [13] (LIGD) is an ap-
proach to embedding generic functions and dynamic values into Haskell 98 aug-
mented with existential types. For the purposes of these lecture notes we concen-
trate on the generics (which slightly simplifies the presentation). For the treat-
ment of dynamics the interested reader is referred to the original paper [13] or
to the companion lecture notes “Generic Programming, Now!”, which elaborate
on a closely related approach to generic programming.

A generic function in Generic Haskell is parameterized by type, essentially
performing a dispatch on the type argument. The basic idea of the lightweight
approach is to reflect the type argument onto the value level so that the type-case
can be implemented by ordinary pattern matching. As a first try, we could, for
instance, assign the generic encode function the type ∀t . Rep→ t→ [Bit ], where
Rep is the type of type representations. A moment’s reflection, however, reveals
that this won’t work. The parametricity theorem [69] implies that a function
of this type must necessarily ignore its second argument. The trick is to use a
parametric type for type representations: encode :: ∀t .Rep t → t → [Bit]. Here
Rep t is the type representation of t. The one-million-dollar question is, of course,
how can we define such a type?

Using a recent extension to Haskell, so-called generalized algebraic data
types, Rep can be defined directly in Haskell, see also “Generic Programming,
Now!”.

data Rep :: ?→ ? where
Unit :: Rep Unit
Int :: Rep Int
Sum :: Rep a→ Rep b→ a :+: b
Pair :: Rep a→ Rep b→ a :*: b

A type t is represented by a term of type Rep t. Note that the above declaration
cannot be introduced by a Haskell 98 data declaration since none of the data
constructors has result type Rep a.

If one wants to stick to Haskell 98 (or modest extensions thereof), one has
to encode the representation type somehow. We discuss a direct encoding in the
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sequel and a more elaborate one in Section 4.6. The idea is to assign, for instance,
Int , the representation of Int, the type Rep t with the additional constraint that
t = Int. The type equality is then encoded using the equivalence type a↔ b (the
type is the same as the EP type of Section 2.2).

data a↔ b = EP{from :: a→ b, to :: b→ a}
An element of t ↔ t′ can be seen as a ‘proof’ that the two types are equal.
Of course, in Haskell, an equivalence pair only guarantees that t can be cast
to t′ and vice versa. This, however, turns out to be enough for our purposes.
Figure 2 displays the full-fledged version of Rep that uses equivalence types.
The constructors Unit , Int , Char , Sum, Pair and Con correspond to the type

data Rep t = Unit (t ↔ Unit)
| Int (t ↔ Int)
| Char (t ↔ Char)
| ∀a b .Sum (Rep a) (Rep b) (t ↔ (a :+: b))
| ∀a b .Pair (Rep a) (Rep b) (t ↔ (a :*: b))
| ∀a . Type (Rep a) (t ↔ a)
| Con String (Rep t)

Fig. 2. A type representation type.

patterns Unit, Int, Char, · :+: ·, · :*: · and Con in Generic Haskell. The constructor
Type is used for representing user-defined data types, see below.

In general, approaches to generics contain three components: code for generic
values, per data type code, and shared library code. In Generic Haskell and other
approaches the per data type code is not burdened upon the programmer but
is generated automatically. Here the programmer is responsible for supplying
the required definitions. (Of course, she or he may use tools such as DrIFT to
generate the code automatically.) To see what is involved, re-consider the List
data type

data List a = Nil | Cons a (List a)

and recall that the structure type of List a is Unit :+: (a :*: (List a)). To turn
List a into a representable type, a type on which a generic function can be used,
we define

list :: ∀a . Rep a→ Rep (List a)
list a = Type ((Con "Nil" unit) + (Con "Cons" (a ∗ (list a))))

(EP fromList toList)

where unit , ·+· and ·∗· are smart versions of the respective constructors (defined
in the LIGD library) and fromList and toList convert between the type List and
its structure type.
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fromList :: ∀a . List a→ Unit :+: (a :*: (List a))
fromList Nil = Inl Unit
fromList (Cons a as) = Inr (a :*: as)
toList :: ∀a . Unit :+: (a :*: (List a))→ List a
toList (Inl Unit) = Nil
toList (Inr (a :*: as)) = Cons a as

Note that the representation of the structure type records the name of the con-
structors.

So, whenever we define a new data type and we intend to use a generic
function on that type, we have to do a little bit of extra work. However, this has
to be done only once.

Function encode. The definition of encode is very similar to the Generic Haskell
definition.

encode :: ∀t . Rep t→ t→ [Bit]
encode (Unit ep) t = case from ep t of

Unit → [ ]
encode (Char ep) t = encodeChar (from ep t)
encode (Int ep) t = encodeInt (from ep t)
encode (Sum a b ep) t = case from ep t of

Inl x → O : encode a x
Inr y → I : encode b y

encode (Pair a b ep) t = case from ep t of
x :*: y → encode a x ++ encode b y

encode (Type a ep) t = encode a (from ep t)
encode (Con s a) t = encode a t

The main difference is that we have to use an explicit cast, from ep, to turn the
second argument of type t into a character, an integer, and so forth. In Generic
Haskell this cast is automatically inserted by the compiler.

Function decode. For decode we have to cast an integer etc into an element of
the result type t using to ep.

decodes :: ∀t .Rep t→ [Bit ]→ [(t, [Bit])]
decodes (Unit ep) bs = [(to ep Unit, bs)]
decodes (Char ep) bs = map (mapFst (to ep)) (decodesChar bs)
decodes (Int ep) bs = map (mapFst (to ep)) (decodesInt bs)
decodes (Sum a b ep) [ ] = [ ]
decodes (Sum a b ep) (O : bs) = map (mapFst (to ep . Inl)) (decodes a bs)
decodes (Sum a b ep) (I : bs) = map (mapFst (to ep . Inr)) decodes b bs)
decodes (Pair a b ep) bs = [ (to ep (x :*: y), ds)

| (x , cs)← decodes a bs
, (y , ds)← decodes b cs ]
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decodes (Type a ep) bs = map (mapFst (to ep)) (decodes a bs)
decodes (Con s a) bs = decodes a bs

A big plus of the lightweight approach is that encode and decode are ordinary
Haskell functions. We can, for instance, pass them to other functions or we can
define other functions in terms of them.

decode :: Rep a→ [Bit ]→ a
decode a bs = case decodes a bs of

[(x , [ ])]→ x
→ error "decode: no parse"

Function eq. The equality function is again very similar to the version in Generic
Haskell.

eq :: ∀t . Rep t→ t→ t→ Bool
eq (Int ep) t1 t2 = from ep t1 from ep t2
eq (Char ep) t1 t2 = from ep t1 from ep t2
eq (Unit ep) t1 t2 = case (from ep t1, from ep t2) of

(Unit ,Unit)→ True
eq (Sum a b ep) t1 t2 = case (from ep t1, from ep t2) of

(Inl a1, Inl a2) → eq a a1 a2

(Inr b1, Inr b2)→ eq b b1 b2

→ False
eq (Pair a b ep) t1 t2 = case (from ep t1, from ep t2) of

(a1 :*: b1, a2 :*: b2)→ eq a a1 a2 ∧ eq b b1 b2

eq (Type a ep) t1 t2 = eq a (from ep t1) (from ep t2)
eq (Con s a) t1 t2 = eq a t1 t2

Function map. The function map abstracts over a type constructor of kind
? → ?, or is indexed by kind as in Generic Haskell. Defining such a version of
map requires a different type representation. A discussion of the design space
can be found in the companion lecture notes “Generic Programming, Now!”.

Function show. The implementation of show is again straightforward. The con-
structor names can be accessed using the Con pattern (an analogous approach
can be used for record labels).

shows :: ∀t .Rep t→ t→ ShowS
shows (Int ep) t = showsInt (from ep t)
shows (Char ep) t = showsChar (from ep t)
shows (Unit ep) t = showString ""
shows (Sum a b ep) t = case from ep t of

Inl a1 → shows a a1

Inr b1 → shows b b1
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shows (Pair a b ep) t = case from ep t of
(a1 :*: b1)→ shows a a1

· showString " "
· shows b b1

shows (Type a ep) t = shows a (from ep t)
shows (Con s (Unit ep)) t = showString s
shows (Con s a) t = showChar ’(’

· showString s
· showChar ’ ’
· shows a t
· showChar ’)’

Since types are reflected onto the value level, we can use the full convenience
of Haskell pattern matching. For instance, in the definition of shows we treat
nullary constructors in a special way (omitting parentheses) through the use of
the pattern Con s (Unit ep).

Function update. An implementation of update requires an extension of the
Rep data type, which means that one has to modify the source of the library.
Alternatively, one could turn Rep into a so-called open data type [56]. The code
for update is then entirely straightforward and omitted for reasons of space.

Evaluation

Structural dependencies. LIGD supports the definition of ?-indexed functions in
the style of Generic Haskell. Using a different representation type we can also
define generic functions that are indexed by first- or higher-order kinds (this is
not detailed in the original paper). Type-indexed data types are out of reach.

Full reflexivity. LIGD is in principle fully reflexive. However, to support types
of arbitrary ranks, so-called rank-n types are required (a function has rank 2 if
it takes a polymorphic function as an argument). Most Haskell implementations
support rank-n types.

First-class generic functions. A generic function is an ordinary polymorphic
Haskell function of type ∀t . Rep t → Poly t. As such it is first-class, assuming
that rank-n functions are supported.

Multiple type arguments. Since types are reflected onto the value level, a generic
function may have multiple type arguments.

Type system. LIGD is fully integrated into Haskell’s type system.

Type safety. LIGD is fully type-safe. A missing type-case, however, only gen-
erates a warning at compile-time. Depending on the complexity of the ‘type’
patterns it may not be detected at all (in particular, if patterns are used in
conjunction with guards). In this case, we get a pattern-matching failure at
run-time.
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Type-language expressiveness. LIGD makes full use of Haskell’s expressive type
language.

The type of a generic function. The types are intuitive; we only have to prefix
a ‘Rep t→’ type.

Properties of generic functions. Properties of a generic function can be stated
and proven as in Generic Haskell.

Integration with the underlying programming language. LIGD is fully integrated
into Haskell.

Specialization versus interpretation. Representation of types are passed and an-
alyzed at run-time. A generic function can be seen as an interpreter.

Code optimization The run-time passing of type representations incurs a small
overhead compared to Generic Haskell.

Separate compilation. LIGD supports separate compilation.

Practical aspects. The implementation of LIGD consists of a few dozen lines of
code (see Appendix A of the original paper). So it can be easily integrated into
one’s programs and also be adapted to one’s needs (for instance, if additional
type cases are required).

4.5 Scrap Your Boilerplate

Scrap Your Boilerplate (SYB) [48, 50] is a library that provides combinators
to build traversals and queries in Haskell. A traversal processes and selectively
modifies a possibly complex data structure, whereas a query collects specific
information from a data structure. Using SYB one can extend basic traversals
and queries with type-specific information, thereby writing generic functions.

Generic functions in SYB are applicable to all data types of the type class
Data. This class provides fundamental operations to consume or build values of
a data type, as well as general information about the structure of a data type.
All other functions are built on top of methods of the class Data.

A partial definition of the class Data is shown in Figure 3.
The functions toConstr yields information about the data constructor that

has constructed the given value. The data type Constr is abstract and can be
queried for information such as the name of the constructor, or the data type it
belongs to.

Similarly, dataTypeOf returns information about the data type of a value,
again encapsulated in an abstract data type DataType.

The function gfoldl is a very general function that allows the destruction of
a single input value – the third argument – of type a into a result of type f a.
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import (Typeable a) ⇒ Data a where
toConstr :: a → Constr
dataTypeOf :: a → DataType

gfoldl :: ∀a f .
(∀a b .Data a ⇒ f (a → b) → a → f b)

→ (∀a . a → f a)
→ a → f a

Fig. 3. Partial definition of the type class Data

Almost any Haskell value is an application of a data constructor to other values.
This is the structure that gfoldl works on. If a value v is of the form

C v1 v2 ... vn

then gfoldl (¦) c v is

(· · · ((c C ¦ v1) ¦ v2) ¦ · · · ¦ vn).

The second argument c is applied to the data constructor C , and each application
is replaced by the first argument (¦). In particular,

unId . gfoldl (λx y → Id (unId x y)) Id

is the identity on types of class Data. Here, the auxiliary type

newtype Id a = Id{unId :: a}

is used, because the result type of f a of gfoldl can be instantiated to Id a, but
not directly to a in Haskell. If we could, then

gfoldl ($) id

would be the identity, making the role of gfoldl more obvious.
With the help of gfoldl , a basic query combinator can be defined, which also

forms part of the SYB library:

gmapQ :: ∀a .Data a⇒ (∀b .Data b⇒ b→ c)→ a→ [c ].

A call gmapQ q x takes a query q (of type ∀b .Data b ⇒ b → c) and applies it
to the immediate subterms of q , collecting the results in a list.

Function encode. A good example of a function using gmapQ is the function
encode, which can be written using the SYB library as follows:

encode :: Data a⇒ a→ [Bit]
encode x = concat (encodeConstr (toConstr x ) : gmapQ encode x ).
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The function encodeConstr takes the current constructor and encodes it as a list
of bits:

encodeConstr :: Constr→ [Bit]
encodeConstr c = intinrange2bits (maxConstrIndex (constrType c))

(constrIndex c − 1).

As before, we use the utility function intinrange2bits to encode a natural number
in a given range. In encode, the constructor for the current value x is encoded,
and we use gmapQ to recursively encode the subterms of x .

With encode, we can for instance encode booleans, lists, trees etc: we have a
generic function. However, the default behavior is unsuitable for handling base
types such as Int and Char. If we want to use type-specific behavior such as
encodeInt and encodeChar , the SYB library allows us to extend a query with a
type-specific case, using extQ :

extQ :: ∀a b c . (Typeable a,Typeable b)⇒ (a→ c)→ (b→ c)→ (a→ c).

This function makes use of run-time type information which is encapsulated in
the type class Typeable and available for all types in Data, as Typeable is a
superclass of Data. It is essentially a one-branch type-case. Using extQ , we can
write encode with type-specific behavior for Ints and Chars:

encode :: Data a⇒ a→ [Bit]
encode = (λx → concat (encodeConstr (toConstr x ) : gmapQ encode x ))

‘extQ ‘ encodeInt
‘extQ ‘ encodeChar .

Note that we cannot reuse the previously defined version of encode in this new
definition, because the recursive call to encode that appears as an argument to
gmapQ must point to the extended function.

Function decode. The gfoldl combinator is only suitable for processing values.
In order to write a generic producer such as decode, a different combinator is
required. The Data class provides one, called gunfold :

gunfold :: ∀a f .
(∀a b .Data a⇒ f (a→ b)→ f b)

→ (∀a . a→ f a)
→ Constr→ f a.

If d :: Constr is the constructor information for the data constructor C , which
takes n arguments, then gunfold app c d is

app (· · · (app (c C )) · · ·),
thus app applied n times to c C . As with gfoldl , SYB provides several combina-
tors built on top of gunfold , the most useful being fromConstrM , that monadi-
cally constructs a value of a certain constructor:
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fromConstrM :: ∀a f . (Data a,Monad f)⇒ (∀b .Data b⇒ f b)→ Constr→ f a
fromConstrM p = gunfold (‘ap‘p) return

Here, ap ::∀a b f .Monad f ⇒ f (a→ b)→ f a→ f b is lifted function application.
Using fromConstrM , we can define decodes, a monadic version of decode that

keeps the “current” list of bits as state in a state monad:

decodes :: Data a⇒ State [Bit] a
decodes = decodes ′ ⊥

‘extR‘ decodesInt
‘extR‘ decodesChar

where
decodes ′ :: Data a⇒ a→ State [Bit ] a
decodes ′ dummy =

do let d = dataTypeOf dummy
l = length (int2bits (length (dataTypeConstrs d)− 1))

c ← consume l
let con = decodeConstr c d
fromConstrM decodes con.

A few remarks are in order. The function decodes calls decodes ′ with ⊥. This
is a convenient way to obtain a value of the result type a, so that we can ap-
ply dataTypeOf to it. The function decodes ′ reads in l bits from the input via
consume, interprets these bits as a constructor con using decodeConstr , and fi-
nally employs fromConstrM to decode the children of the constructor recursively.
Both consume and decodeConstr are easy to define. Type-specific behavior for
integers and characters is added to the function using the SYB extension op-
erator extR, which plays a role analogous to extQ , in the context of monadic
generic producers:

extR :: ∀a b f . (Monad f,Typeable a,Typeable b)⇒ f a→ f b→ f a.

From decodes, we get decode in the obvious way:

decode :: Data a⇒ [Bit ]→ a
decode bs = case runState decodes bs of

(r , [ ])→ r
→ error "decode: no parse".

Function eq. The definition of generic equality in SYB is simple, but requires
yet another combinator:

eq :: Data a⇒ a→ a→ Bool
eq = eq ′

eq ′ :: (Data a,Data b)⇒ a→ b→ Bool
eq ′ x y = toConstr x toConstr y ∧

and (gzipWithQ eq ′ x y).
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The function eq is a type-restricted variant of eq ′, which accepts two arguments
of potentially different types. The constructors of the two values are compared,
and gzipWithQ is used to pairwise compare the subterms of the two values
recursively.

The combinator gzipWithQ is a two-argument variant of mapQ . It is a bit
tricky to define, but it can be defined in terms of gfoldl .

Note that eq ′ requires the relaxed type, because the subterms of x and y
only have compatible types if they really are of the same data constructor. If we
compare unequal values, we are likely to get incompatible types sooner or later.

If the trick to relax the type of the function is not available for a two-argument
generic function , an alternative solution is to use the dynamically available type
information from class Typeable to define a unification function

unify :: (Typeable a,Typeable b)⇒ Maybe (a→ b).

Function map. A generic function such as map that abstracts over a type con-
structor cannot be defined using SYB, because the Data class contains only
types of kind ∗. It is possible to define variants of map, such as traversals that
increase all integers in a complex data structure, but it isn’t possible to define a
function of type

∀a b f . (a→ b)→ f a→ f b,

where the arguments of the container type f are modified, and the function is
parametrically polymorphic in a and b (cf. the section on “SYB Revolutions”
below)

Function show. We define show in two steps, as we have done in the Generic
Haskell case. The function showP takes an additional string transformer that
encodes whether to place surrounding parentheses on non-atomic expressions or
not.

We have already seen how constructor information can be accessed in the
definition of encode. Therefore, the definition of showP does not come as a
surprise:

showP :: Data a⇒ (String→ String)→ a→ String
showP p = (λx → showApp (showConstr (toConstr x ))

(gmapQ ((++) " " . showP parens) x ))
‘ext1Q ‘ showList
‘extQ ‘ (Prelude.show :: String→ String)

where
parens x = "(" ++ x ++ ")"

showApp :: String→ [String ]→ String
showApp x [ ] = x
showApp x xs = p (concat (x : xs))
showList :: Data a⇒ [a ]→ String
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showList xs =
"[" ++ concat (intersperse "," (map (showP id) xs)) ++ "]"

We feed each constructor application to showApp. On atomic subexpressions,
showApp never produces parentheses, otherwise it consults p.

The most interesting part is how to define type-specific behavior for lists
and strings. Placing strings between double quotes is achieved by the standard
Haskell show function using the extQ extension operator. However, The more
general syntactic sugar for lists (placed between square brackets, elements sep-
arated by commas) is not achieved so easily, because showList is a polymorphic
function, and extQ only works if the second argument is of monomorphic type.
SYB therefore provides a special, polymorphic, extension operator

ext1Q :: ∀a c . (Typeable1 f,Data a)⇒
(a→ c)→ (∀b .Data b⇒ f b→ c)→ (a→ c)

Note that polymorphic extension requires a separate operator for each kind, and
also a separate variant of the cast operation: the run-time type information of
the type constructor f of kind ∗ → ∗ is made available using the type class
Typeable1 rather than Typeable.

Function update. Traversals that update a large heterogeneous data structure in
selective places were one of the main motivations for designing SYB, therefore
it isn’t surprising that defining such a traversal is extremely simple:

update :: Data a⇒ a→ a
update = everywhere (id ‘extT ‘ (λ(S s)→ S (s ∗ (1 + 0.15)))).

The argument to everywhere is the identity function, extended with a type-
specific case for the type Salary. The function everywhere is a SYB combinator
that applies a function at any point in a data structure. It is defined in terms of

gmapT :: ∀a .Data a⇒ (∀b .Data b⇒ b→ b)→ (a→ a),

a variant of gmapQ that applies a given generic function to the immediate sub-
terms of a value. The gmapT in turn can again be defined using gfoldl .

Derived work: SYB with Class. Lämmel and Peyton Jones have shown [49]
that using type classes rather than run-time type casts can make generic pro-
gramming using SYB more flexible. Their work aims at replacing SYB extension
operators such as extQ and extR: each generic function is then defined as a class
with a default behavior, and type-specific behavior can be added by defining
specific instances of the class.

This approach is a bit more verbose, but has a significant advantage: instances
of classes can be added in a modular way, also at a later stage. There is always
the possibility to extend an already existing generic function with new behavior,
without modification of already written code.
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Derived work: SYB Reloaded and Revolutions. In their SYB Reloaded
and Revolutions papers, Hinze, Löh and Oliveira [34, 33] demonstrate that SYB’s
gfoldl function is in essence a catamorphism on the Spine data type, which can
be defined as follows:

data Spine a where
Constr :: Constr→ a→ Spine a
(¦) :: Data a⇒ Spine (a→ b)→ a→ Spine b.

Furthermore, a “type spine” type is given as a replacement for gunfold , and a
“lifted spine” type for generic functions that are parameterized over type con-
structors. For example, using the lifted spine type, map can be defined.

Evaluation

Structural dependencies. SYB allows the definition of generic functions. There
is no support for defining type-indexed data types.

Full reflexivity. The SYB approach is not fully reflexive. Generic functions are
only applicable to data types for which a Typeable instance can be specified .

Type-specific behavior is only possible for types of kind ∗ .

First-class generic functions. In SYB, generic functions are normal polymorphic
Haskell functions, and as such are first-class under the precondition of arbitrary-
rank polymorphism.

Multiple type arguments. There is no restriction on the number of type argu-
ments that a generic function can have in SYB, although the basic combinators
are tailored for functions of the form

Data a⇒ a→ . . .

that consume a single value.

Type system. SYB is completely integrated in Haskell’s type system.

Type safety. SYB is type-safe, but type-specific extensions of generic functions
rely on run-time type casting via the Typeable class. It is possible for a user
to break type safety by defining bogus instances for the Typeable class. The
implementation could be made more robust if user-defined instances of class
Typeable would not be allowed, and all Typeable instances would be derived
automatically by the compiler.

Type-language expressiveness. SYB makes use of Haskell’s expressive type lan-
guage. However, not all types are equally usable in the context of generic func-
tions (see “full reflexivity”).
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The type of a generic function. Types of generic functions have one or more
constraints for the Data class. The types are intuitive.

Properties of generic functions. The use of type classes Data and Typeable at
the basis of SYB makes proving properties relatively difficult. Instances for these
classes can be generated automatically, but automatic generation is only de-
scribed informally. User-defined instances of these classes can cause unintended
behavior. There is no small set of fundamental data types (such as Generic
Haskell’s unit, binary sum, and binary pair types) to which Haskell data types
are reduced. Lämmel and Peyton Jones state a few properties of basic SYB com-
binators in the original paper, but provide no proof. The only work we are aware
of trying to prove properties about SYB is of Reig [67], but he translates SYB
combinators into Generic Haskell in order to do so.

Integration with the underlying programming language. SYB is fully integrated
into Haskell. The module Data.Generics contains all SYB combinators. The
options -fglasgow-exts is required for GHC to support the higher-ranked types
of some of the SYB combinators.

Specialization versus interpretation. The SYB approach makes use of run-time
type information. Generic functions have Data class constraints. Most Haskell
compilers implement type classes using dictionary passing : for each Data con-
straint, a record containing the appropriate class methods is passed along at
run-time. The Data is a subclass of Typeable, which provides the actual struc-
ture of the type at run-time. This information is used to provide run-time type
casts to enable type-specific behavior.

Code optimization As SYB is a Haskell library, the code is not optimized in
any special way. The implementation of generic functions is relatively direct, the
only overhead is due to the passing of class dictionaries and the use of many
higher-order functions.

Separate compilation. Generic functions are normal Haskell functions, and can
be placed in different modules and compiled separately. Generic functions them-
selves are not extensible, however. If new specific cases must be added to a
generic function, the whole definition has to be repeated. This restriction is
lifted by “SYB with Class”.

Practical aspects. SYB is shipped as a library with current releases of GHC and
supported. It is planned to provide the functionality of “SYB with Class” in
future releases of GHC. The Spine data type from “SYB Reloaded” is not yet
used in the official release, but might be integrated in the future.

4.6 Generics for the masses

Generics for the masses [28, 23] (GM) is similar in spirit to LIGD. The approach
shows that one can program generically within Haskell 98 obviating to some
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extent the need for fancy type systems or separate tools. Like LIGD, generics
for the masses builds upon an encoding of the type representation type Rep, this
time a class-based one. The details of the encoding are not relevant here; the
interested reader is referred to the journal paper [23].

Function encode. To define a generic function the generic programmer has to
provide a signature and an implementation. Rather unusually, the type of a
generic function is specified using a newtype declaration.

newtype Encode a = Encode{applyEncode :: a→ [Bit ]}
We already know that the generic function encode cannot be a genuine polymor-
phic function of type a → [Bit ]. Data compression does not work for arbitrary
types, but only for types that are representable. Representable means that the
type can be represented by a certain value. Here a type representation is simply
an overloaded value called rep. The first part of the generic compression function
is then given by the following definition.

encode :: (Rep a)⇒ a→ [Bit]
encode = applyEncode rep

Loosely speaking, we apply the generic function to the type representation rep.
Of course, this is not the whole story. The code above defines only a convenient
shortcut. The actual definition of encode is provided by an instance declaration,
but you should read it instead as just a generic definition.

instance Generic Encode where
unit = Encode (λx → [ ])
plus = Encode (λx → case x of Inl l → O : encode l

Inr r → I : encode r)
pair = Encode (λx → encode (outl x ) ++ encode (outr x ))
datatype descr iso

= Encode (λx → encode (fromData iso x ))
char = Encode (λx → encodeChar x )
int = Encode (λx → encodeInt x )

Most of the cases are familiar — just read the method definitions as type cases.
To encode an element of an arbitrary data type, we first convert the element into
a sum of products, which is then encoded. That said is becomes clear that GM
uses the same structure types as Generic Haskell. The function fromData is an
accessor of the data type Iso (which is the same as the EP type of Section 2.2).

data Iso a b = Iso{fromData :: b→ a, toData :: a→ b}
That’s it, at least, as far as the generic function is concerned. Before we can

actually compress data to strings of bits, we first have to turn the types of the
to-be-compressed values into representable types. Consider as an example the
type of binary leaf trees.
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data Tree a = Leaf a | Fork (Tree a) (Tree a)

We have to show that this type is representable. To this end we exhibit an
isomorphic type built from representable type constructors. This is the familiar
structure type of Tree, denoted Tree′.

type Tree′ a = (Constr a) :+: (Constr ((Tree a) :*: (Tree a)))

The main work goes into defining two mappings, fromTree and toTree, which
certify that Tree a and its structure type Tree′ a are indeed isomorphic.

fromTree :: Tree a→ Tree′ a
fromTree (Leaf x ) = Inl (Con x )
fromTree (Fork l r) = Inr (Con (l :*: r))
toTree :: Tree′ a→ Tree a
toTree (Inl (Con x )) = Leaf x
toTree (Inr (Con (l :*: r))) = Fork l r

The Con constructor just marks the position of the original data constructors
Leaf and Fork . The isomorphism is then used to turn Tree into a representable
type.

instance (Rep a)⇒ Rep (Tree a) where
rep = datatype ("Leaf" ./ 1 .| "Fork" ./ 2) -- syntax

(Iso fromTree toTree) -- semantics

The declaration specifies the syntax — name and arity of the constructors —
and the semantics — the structure — of the tree data type. Such a declaration
has to be provided once per data type and is used for all the generic functions.

For reference, Figure 4 lists the definition of the class Generic (g is the type
of a generic function).

Function decode. The definition of decodes follows exactly the same scheme.

newtype Decodes a = Decodes{applyDecodes :: [Bit ]→ [(a, [Bit])]}
decodes :: (Rep a)⇒ [Bit ]→ [(a, [Bit])]
decodes = applyDecodes rep
instance Generic Decodes where

unit = Decodes (λbs → [(Unit , bs)])
plus = Decodes (λbs → case bs of [ ] → [ ]

O : bs → map (mapFst Inl) (decodes bs)
I : bs → map (mapFst Inr) (decodes bs)

pair = Decodes (λbs → [(x :*: y , ds) | (x , cs)← decodes bs
, (y , ds)← decodes cs ])

datatype descr iso
= Decodes (λbs → map (mapFst (toData iso)) (decodes bs)
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class Generic g where
unit :: g Unit
plus :: (Rep a,Rep b) ⇒ g (a :+: b)
pair :: (Rep a,Rep b) ⇒ g (a :*: b)
datatype :: (Rep a) ⇒ DataDescr → Iso a b → g b
char :: g Char
int :: g Int
list :: (Rep a) ⇒ g [a]
constr :: (Rep a) ⇒ g (Constr a)

list = datatype ("[]" ./ 0 .| ":" ./ 2) (Iso fromList toList)
constr = datatype ("Con" ./ 1) (Iso arg Con)

data DataDescr = NoData
| DataDescr{name :: String, arity :: Int}
| Alt {getl :: DataDescr, getr :: DataDescr}

infix 2 ./
infixr 1 .|
f ./ n = DataDescr{name = f , arity = n }
d1 .| d2 = Alt {getl = d1, getr = d2}
newtype Constr a = Con{arg :: a}

Fig. 4. The class Generic.

char = Decodes (λbs → decodesChar bs)
int = Decodes (λbs → decodesInt bs)

It is worth noting that Haskell’s overloading resolution automatically determines
the instance types: we just call decodes rather than decodes{|t|}.

The function decode can easily be defined in terms of decodes.

decode :: (Rep a)⇒ [Bit ]→ a
decode a bs = case decodes a bs of

[(x , [ ])]→ x
→ error "decode: no parse"

Note that the class context only records that decode depends on some generic
function. This is in sharp contrast to DTC where the context precisely records,
on which overloaded function(s) decode depends: (Binary a)⇒ [Bit]→ a.

Function eq. The definition of eq is straightforward.

newtype Equal a = Equal{applyEqual :: a→ a→ Bool}
eq :: (Rep a)⇒ a→ a→ Bool
eq = applyEqual rep
instance Generic Equal where

unit = Equal (λx1 x2 → True)
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plus = Equal (λx1 x2 → case (x1, x2) of
(Inl a1, Inl a2)→ eq a1 a2

(Inr b1, Inr b2)→ eq b1 b2

→ False)
pair = Equal (λx1 x2 → eq (outl x1) (outl x2) ∧ eq (outr x1) (outr x2))
datatype descr iso

= Equal (λx1 x2 → eq (fromData iso x1) (fromData iso x2))
char = Equal (λx1 x2 → x1 x2)
int = Equal (λx1 x2 → x1 x2)

Function map. The function map cannot be defined using the Generic class that
we have employed for encode and decode. Rather, we need a new tailor-made
class that allows us to define generic functions whose type is parameterized by
two type arguments (see Section 2.5). The definition is then very similar to what
we have seen before.

newtype Map a1 a2 = Map{applyMap :: a1 → a2}
instance Generic Map where

unit = Map (λx → x )
plus a b = Map (λx → case x of Inl l → Inl (applyMap a l)

Inr r → Inr (applyMap b r))
pair a b = Map (λx → applyMap a (outl x ) :*: applyMap b (outr x ))
datatype iso1 iso2 a

= Map (λx → toData iso2 (applyMap a (fromData iso1 x )))
char = Map (λx → x )
int = Map (λx → x )

Using frep, the representation of types of kind ? → ?, we can define a generic
version of Haskell’s fmap.

fmap :: (FRep f)⇒ (a1 → a2)→ (f a1 → f a2)
fmap f = applyMap (frep (Map f ))

Function show. To implement show we have to access the syntax of data con-
structors. To this end, we extends shows ′ by an additional argument of type
DataDescr that provides information about the syntax of the to-be-printed value.
This argument is initialized to NoData, because initially we have no information.

shows :: (Rep a)⇒ a→ ShowS
shows = shows ′ NoData

In the datatype case, which signals that the current argument is an element
of some data type, we use the first argument of datatype as the new syntax
description.

newtype Shows′ a = Shows ′{applyShows ′ :: DataDescr→ a→ ShowS}
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shows ′ :: (Rep a)⇒ DataDescr→ a→ ShowS
shows ′ = applyShows ′ rep
instance Generic Shows′ where

unit = Shows ′ (λd x → showString "")
plus = Shows ′ (λd x → case x of Inl l → shows ′ (getl d) l

Inr r → shows ′ (getr d) r)
pair = Shows ′ (λd x → shows (outl x ) · showChar ’ ’ · shows (outr x ))
char = Shows ′ (λd x → showsChar x )
int = Shows ′ (λd x → showsInt x )
list = Shows ′ (λd x → showsl shows x )
datatype descr iso

= Shows ′ (λd x → shows ′ descr (fromData iso x ))
constr = Shows ′ (λd x → if arity d 0 then

showString (name d)
else

showChar ’(’ · showString (name d) · showChar ’ ’
· shows (arg x ) · showChar ’)’)

The implementation of shows ′ has a special case for lists which are converted to
Haskell list syntax, with brackets and commas. The helper function showsl does
the main work.

showsl :: (a→ ShowS)→ ([a]→ ShowS)
showsl p [ ] = showString "[]"
showsl p (a : as) = showChar ’[’ · p a · rest as

where rest [ ] = showChar ’]’
rest (x : xs) = showChar ’,’ · p x · rest xs

Function update. An implementation of update requires an extension of the
class Generic, which means that one has to modify the source of the library. An
alternative approach based on subclasses is described in a recent paper [64].

Evaluation

Structural dependencies. GM supports the definition of generic functions on
types and type constructors. For each brand of generic functions a tailor-made
Generic class must be used. Because of the class-based encoding the code looks
somewhat different to that of Generic Haskell. The difference is, however, only
superficial.

Full reflexivity. GM is in principle fully reflexive. Rank-n types are required in
order to support types of higher kinds. Furthermore, if one wants to use the
convenience of the Rep class, one additionally needs higher-order contexts, see
the evaluation of DTCs.
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First-class generic functions. A generic function is an ordinary polymorphic
Haskell function of type ∀t . (Rep t) ⇒ Poly t. In a language with rank-n types,
generic functions are consequently first-class citizens.

Multiple type arguments. GM also supports multiple type arguments (through
a nested type case).

Type system. GM is fully integrated into Haskell’s type system.

Type safety. GM is fully type-safe. A missing case branch issues a warning at
compile-time (about a missing method).

Type-language expressiveness. GM makes full use of Haskell’s expressive type
language. The caveats of DTCs also apply here.

The type of a generic function. The types are intuitive; we only have to prefix
a ‘(Rep t)⇒’ context.

Properties of generic functions. Properties of a generic function can be stated
and proven as in Generic Haskell.

Integration with the underlying programming language. GM is fully integrated
into Haskell.

Specialization versus interpretation. Instances of generic functions are assembled
at compile-time.

Code optimization The overhead is similar to that of Generic Haskell. The code
quality possibly depends a bit more on GHC’s optimizer.

Separate compilation. GM supports separate compilation.

Practical aspects. GM comprises three major implementations of generics and
a few variations. The approach is extremely lightweight; each implementation
consists of roughly two dozen lines of Haskell code. It is less suited as a library
(unless one makes do with the predefined types cases), but it can easily be
adopted to one’s needs.

4.7 Clean

Clean’s generic programming extension [3, 2] is just as Generic Haskell based on
Hinze’s work on type-indexed functions with kind-indexed types [27].

The language of data types in Clean is very similar to that of Haskell, and
the description from Section 2.1 on how to convert between data types and their
structural representations as binary sums of binary products applies to Clean
as well, only that the unit type is called UNIT, the sum type EITHER, and the



Comparing Approaches to Generic Programming in Haskell 59

product type PAIR. There are special structural markers for constructors and
record field names called CONS and FIELD, and one for objects called OBJECT.

Clean’s generic functions are integrated with its type class system. Each
generic function defines a kind-indexed family of type classes, the generic func-
tion itself being the sole method of these classes. Let us look at an example.

Function encode. Here is the code for the generic function encode.

generic encode a :: a→ [Bit]
encode{|UNIT|} UNIT = [ ]
encode{|Int|} i = encodeInt i
encode{|Char|} c = encodeChar c
encode{|EITHER|} enca encb (LEFT x ) = [O : enca x ]
encode{|EITHER|} enca encb (RIGHT y) = [I : encb y ]
encode{|PAIR|} enca encb (PAIR x y) = enca x ++ encb y
encode{|CONS|} enca (CONS x ) = enca x
encode{|FIELD|} enca (FIELD x ) = enca x
encode{|OBJECT|} enca (OBJECT x ) = enca x
derive encode Tree

The keyword generic introduces the type signature of a generic function, which
takes the same form as a type signature in Generic Haskell, but without depen-
dencies. Each generic function automatically depends on itself in Clean, and in
the cases for types of higher kinds such as EITHER ::∗ → ∗ → ∗ or CONS ::∗ → ∗,
additional arguments are passed to the generic function representing the recur-
sive calls. This is very close to Hinze’s theory [27] which states that the type of
encode is based on the kind of the type argument as follows:

encode{|a :: κ|} :: Encode{[κ]} a

Encode{[∗]} a = a→ [Bit ]
Encode{[κ→ κ′]} a = ∀b :: κ .Encode{[κ]} b→ Encode{[κ′]} (a b).

In particular, if we instantiate this type to the kinds ∗, ∗ → ∗, and ∗ → ∗ → ∗,
we get the types of the UNIT, EITHER, CONS cases of the definition of encode,
respectively:

encode{|a :: ∗|} :: a→ [Bit ]
encode{|f :: ∗ → ∗|} :: (a→ [Bit ])→ (f a→ [Bit ])
encode{|f :: ∗ → ∗ → ∗|} :: (a→ [Bit ])→ (b→ [Bit ])→ (f a b→ [Bit ]).

The derive statement is an example of how generic behavior must be explicitly
derived for additional data types. If Tree is a type that we want to encode, we
have to request this using a derive statement.

Because generic functions automatically define type classes in Clean, the type
arguments (but not the kind arguments) can usually be inferred automatically.
The function encode can thus be invoked on a tree t ::Tree by calling encode{|∗|} t .
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If encode{|∗|} x is used in another function on a value x :: a, then a class
constraint of the form encode{|∗|} a arises and is propagated as usual. Other
first-order kinds can be passed to encode, but Clean does not currently support
generic functions on higher-order kinds.

Functions decode, eq, map and show. Apart from the already mentioned differ-
ences and a few syntactic differences between the Clean and Haskell languages,
many of the other example functions can be implemented exactly as in Generic
Haskell. We therefore present only map as another example:

generic map a b :: a→ b

map{|UNIT|} x = x
map{|Int|} i = i
map{|Char|} c = c
map{|EITHER|} mapa mapb (LEFT x ) = LEFT (mapa x )
map{|EITHER|} mapa mapb (RIGHT y) = RIGHT (mapb y)
map{|PAIR|} mapa mapb (PAIR x1 x2) = PAIR (mapa x1) (mapb x2)
map{|OBJECT|} mapa (OBJECT x ) = OBJECT (mapa x )
map{|FIELD|} mapa (FIELD x ) = FIELD (mapa x )
map{|CONS|} mapa (CONS x ) = CONS (mapa x )

Function update. A function such as update cannot currently be defined in Clean,
because there is no support for higher-order generic functions, nor are there
default cases as in Generic Haskell.

Evaluation

Structural dependencies. Clean supports the definition of generic functions in
the style of Generic Haskell. It does not support type-indexed data types.

Full reflexivity. We couldn’t get generic functions in Clean to work for types
with higher-order kinds, so the generic programming extension of Clean doesn’t
seem to be fully reflexive.

First-class generic functions. Generic functions are treated as kind-indexed fam-
ilies of type classes. Type classes are not first-class, so generic functions are not
first-class either.

Multiple type arguments. Clean allows the definition of classes with multiple
type arguments. All type arguments, however, must be instantiated to the same
type at the call site. Therefore, true multi-argument generic functions are not
supported.

Type system. Generic functions are fully integrated into Clean’s type system, by
mapping each generic function to a family of type classes. The compiler ensures
type-correctness.



Comparing Approaches to Generic Programming in Haskell 61

Type safety. Clean’s generic programming extension is fully type safe.

Type-language expressiveness. The type language of Clean is comparable in ex-
pressiveness to that of Haskell. Clean additionally supports uniqueness anno-
tations on types. We haven’t investigated the interaction between generics and
uniqueness types.

The type of a generic function. The type of a generic function is declared using
the generic construct. For instance, the type of the generic equality function
looks as follows:

generic eq a :: a a→ Bool

The types are very similar in nature to those of Generic Haskell. They lack
dependencies, which makes them a bit less expressive, but in turn a bit easier
to understand.

Properties of generic functions. Again, Hinze’s theory is the basis of Clean’s
generic programming extension. Therefore it is possible to state and prove the-
orems following his formalism.

Integration with the underlying programming language. Generic programming is
fully integrated with the Clean language. Only the module StdGeneric must be
imported in order to define new generic functions.

Specialization versus interpretation. Clean uses specialization to compile generic
functions. Specialization is explicit, using the derive construct.

Code optimization Because Clean makes use of the same theory as Generic
Haskell, specialized code is inherently inefficient: data is converted between its
original form and a structural view several times during the call of a generic
functions. There is extensive work on optimizing specialized code for generic
functions generated by Clean [4, 5].

Separate compilation. Generic programming is integrated into Clean, and Clean
supports separate compilation.

Practical aspects. Clean is maintained and runs on several platforms. However,
the documentation of generic programming in Clean is lacking. The chapter
in the Clean documentation is missing, and there’s a gap between the syntax
used in papers and the implementation. Furthermore, the error messages of the
Clean compiler with respect to generic functions are not very good Nevertheless,
generic programming in Clean seems very usable and has been used, for example,
to implement a library for generating test data [46] as well as a GUI library [1].
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5 Conclusions and future work

In this section we draw conclusions from the evaluations in the previous sec-
tion. Using these conclusions, we try to answer the question we posed in the
introduction of these lecture notes: ‘How do you choose between the different
approaches to generic programming in Haskell?’ This question is a bit similar to
the question how you choose a programming language for solving a programming
problem. Answers to this question usually contain ‘religious’ aspects. We try to
avoid religion as much as possible, and answer the question in two ways. First,
we summarize the evaluations of the previous section, and draw conclusions
about the suitability of the different approaches for different generic program-
ming concepts. Second, to end on a positive note, for each approach we try to
give arguments why you would use it. Furthermore, we describe future work.

5.1 Conclusions

5.2 Suitability for generic programming concepts.

Figure 5 shows the results of our evaluations of the different approaches to generic
programming in Haskell. Such a presentation does not offer the possibility to
make subtle distinctions, but it does give an overview of the evaluation results.
We use the following categories in this table:

– ++: satisfies all requirements.
– +: satisfies the requirements except for some small details.
– o: satisfies a number of requirements.
– -: satisfies just a few of the requirements.
– --: does not satisfy the requirements.

The results are obtained by an informal translation our evaluations into points
on this five-point scale.

Structure Completeness Safe Info Integration Tools

GH ++ + ++ ++ ++ +

DrIFT + o -- - + +

PolyP o - + + + o

DTCs o o ++ ++ ++ +

LIGD o + ++ ++ ++ ++

SYB o + ++ + ++ +

GM o + ++ ++ ++ +

Clean o + ++ ++ ++ +

Fig. 5. Evaluation results for approaches to generic programming
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Structure in programming languages. Generic Haskell allows the definition of
type-indexed functions with kind-indexed types, and type-indexed data type
with kind-indexed kinds. Since DrIFT can generate anything, it can also be
used to generate type-indexed types. There is no support (library, predefined
constructs) for doing so, however. The other approaches only allow the definition
of type-indexed functions.

The type completeness principle . No approach truly satisfies the type complete-
ness principle. Both SYB and LIGD allow higher-order generic functions, and
generic functions on almost all data types definable in Haskell. On the other
hand, it is impossible to define the generic map function in these approaches.
GM allows higher-order generic functions, and the definition of generic map, but
needs different classes for different brands of generic functions. Furthermore,
GM cannot handle higher-order kinded data types. Generic Haskell and Clean
do not offer higher-order generic functions, but generic functions work on almost
any data type definable in the underlying programming language, and defining
the generic map function is no problem. Higher-orderness does not really play a
rôle in DrIFT, and DrIFT cannot handle higher-order kinded data types. DTCs
cannot handle higher-order kinded data types, and, just as classes, cannot rep-
resent higher-order generic functions. PolyP does not allow higher-order generic
functions either and only works for regular data types of kind ?→ ?.

Well-typed expressions do not go wrong . Clean, Generic Haskell, DTCs, LIGD,
GM, and SYB are type safe. DrIFT offers no safety at all: a generated docu-
ment can represent a completely bogus program. PolyP does not complain about
undefined arms, but otherwise type checks generic functions.

Information in types . Clean, LIGD, and Generic Haskell allow the definition of
generic functions on almost any data type. Types of generic functions generally
correspond to intuition, and there exists a theory of generic functions by means
of which properties for generic functions can be proved. SYB defines generic
functions on more or less the same class of data types. Proving properties of
generic functions in SYB is hard because they rely on properties of, possibly
user-defined, instances of the classes Data and Typeable. DTCs, GM, and SYB
suffer from the fact that higher-order contexts (not implemented in Haskell) are
needed to generate instances of generic functions on higher-order kinded data
types. In DrIFT all rules have the same type, namely Data → Doc, and it is
virtually impossible to prove anything about the functions represented by the
documents. Proving properties about generic functions in PolyP is relatively
easy. However, the type language allowed in PolyP is restricted.

Integration with the underlying programming language . Generic Haskell, Clean,
DTCs, LIGD, GM, and SYB are fully integrated with the underlying program-
ming language, where Clean, DTCs, LIGD, GM, and SYB don’t even need a
separate compiler. PolyP can only deal with a subset of Haskell. DrIFT has to
be recompiled if a new generic function is added to the rules.
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Tools . SYB is shipped as a library of GHC, and is fully supported. The latest
versions of SYB have not been included yet in GHC, which means that the cur-
rent version still suffers from some of the limitations of previous versions of SYB,
in particular the limitation that generic functions cannot be extended. Generic
Haskell, LIGD, GM, and DTCs do not do any optimization on the generic code,
but otherwise provide good error messages. DTCs cannot access constructor
names, which limits their usability a bit. Clean does optimize the generated
code, but provides no error messages. PolyP is not very actively maintained
anymore. DrIFT is maintained, but also provides no error messages.

5.3 Why would I use this approach?

– Use Generic Haskell if you want to experiment with type-indexed functions
with kind-indexed types and/or type-indexed data types. Generic Haskell
is probably the most expressive generic programming extension of Haskell.
A disadvantage of using Generic Haskell might be that the generated code
contains quite a number of mappings from data types to structure types and
back again, and hence not as efficient as hand-written code might be.

– Use Clean if you want to use an approach to generic programming that is
similar to Generic Haskell, is fully integrated in its underlying programming
language, and generates nearly optimal code for generic functions. Clean does
not support the advanced features of Generic Haskell such as dependencies,
type-indexed data types, and default cases.

– Use DrIFT if you want a lot of flexibility in the way you generate code, or
if you want to format the code you generate in a particular way. Make sure
you don’t generate code on data types that use higher-order kinds.

– Use PolyP if you want to define generic functions that use the recursive
structure of data types, such as a generalization of the foldr function on
lists, the catamorphism. Remember that PolyP only generates code for data
types of kind ?→ ?.

– Use Derivable Type Classes if you want (limited) Generic Haskell like generic
programming functionality fully integrated in the underlying programming
language. DTCs don’t support type-indexed data types, or types with higher-
order kinds.

– Use the Lightweight approach if you want to use a simple but expressive
library for generic programming, and your generic functions don’t have to
work on many different data types.

– Use Scrap Your Boilerplate if you want to manipulate a value of a large
abstract syntax at a particular place in the abstract syntax, and if you want
to have an approach to generic programming that is fully integrated in the
underlying programming language.

– Use Generics for the Masses if you want a fully Haskell 98 compatible library
that supports generic programming.

Between the eight approaches to generic programming in Haskell described
in these lecture notes, we distinguish two related groups:
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– Generic Haskell and Clean.
– Lightweight approaches: Derivable Type Classes, Lightweight Generics and

Dynamics, and Generics for the Masses.

The difference between Generic Haskell and Clean is that Generic Haskell is
more expressive and provides more features, whereas Clean produces better code.
The various lightweight approaches can be compared as follows. DTCs and GM
use classes for defining generic functions, so higher-order kinded data types are
out of reach for these approaches. DTCs automatically generate the conversion
functions for instances of generic functions, something that has to be done by
hand for LIGD and GM.

5.4 Future work

These lecture notes only compare approaches to generic programming in Haskell.
The only approaches to generic programming we have not addressed are Stra-
funski, and the approach that uses Template Haskell for generic programming.
Strafunski is rather similar to SYB. Using Template Haskell for generic program-
ming is rather similar to DrIFT, but since types play a larger rôle in Template
Haskell, it is sufficiently different to warrant a separate discussion. The final ver-
sion of these lecture notes will contain a description of Strafunski and Template
Haskell as well.

We have yet to perform the same exercise for approaches to generic program-
ming in different programming languages. In the final version of these lecture
notes we hope to include all approaches to generic programming we know of.
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