
Functional Pearl
Trouble Shared is Trouble Halved

Richard Bird
Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford, OX1 3QD, England

bird@comlab.ox.ac.uk

Ralf Hinze
Institut für Informatik III

Universität Bonn
Römerstraße 164, 53117 Bonn, Germany

ralf@informatik.uni-bonn.de

Abstract

A nexusis a tree that containssharednodes, nodes that have more
than one incoming arc. Shared nodes are created in almost every
functional program—for instance, when updating a purely func-
tional data structure—though programmers are seldom aware of
this. In fact, there are only a few algorithms that exploit sharing of
nodes consciously. One example is constructing a tree in sublinear
time. In this pearl we discuss an intriguing application of nexuses;
we show that they serve admirably asmemo structuresfeaturing
constant timeaccess to memoized function calls. Along the way
we encounter Boolean lattices and binomial trees.

Categories and Subject Descriptors

D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming; D.3.2 [Programming Languages]: Language Clas-
sifications—applicative (functional) languages; E.1 [Data]: Data
Structures—trees

General Terms

Algorithms, design, performance

Keywords

Memoization, purely functional data structures, sharing, Boolean
lattices, binomial trees, Haskell

1 Introduction

A nexusis a tree that containssharednodes, nodes that have more
than one incoming arc. Shared nodes are created in almost every
functional program, though programmers are seldom aware of this.
As a simple example, consider adding an element to a binary search

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’03,August 25, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-758-3/03/0008 ...$5.00

tree. Here is a suitable data type declaration for binary trees given
in the functional programming language Haskell 98 [10]:

data Treeα = Empty
| Node{ left ::Treeα, info:: α, right :: Treeα}

leaf :: ∀α .α→ Treeα
leaf x = Node Empty x Empty

Here is the definition of insertion:

insert :: ∀α .(Ord α)⇒ α→ Treeα→ Treeα
insert x Empty = leaf x
insert x(Node l k r)
| x≤ k = Node(insert x l) k r -- r is shared
| otherwise = Node l k(insert x r) -- l is shared

Observe that in each recursive call one subtree is copied unchanged
to the output. Thus, after an insertion the updated treeinsert x tand
the original treet—which happily coexist in the functional world—
contain several shared nodes. As an aside, this technique is called
path copying[11] in the data structure community.

Perhaps surprisingly, there are only a few functional programs that
exploit sharing of nodes consciously [9]. For instance, sharing al-
lows us to create a tree in sublinear time (with respect to the size of
the tree). The callfull n x creates a full or complete binary tree of
depthn labelled with the same valuex.

full :: ∀α . Integer→ α→ Treeα
full 0 x = leaf x
full (n+1) x = Node t x t -- t is shared

where t = full n x

The sharing is immediate: the result of the recursive call is used
both for the left and for the right subtree. So is the sub-linearity:
just count the nodes created!

Now, why are nexuses not more widely used? The main reason is
that sharing is difficult to preserve and impossible to observe, ex-
cept indirectly in the text of the program by counting the number of
nodes that are created. In a purely functional settingfull is equiva-
lent to the following definition which exhibits linear running time:

full′ :: ∀α . Integer→ α→ Treeα
full′ 0 x = leaf x
full′ (n+1) x = Node(full′ n x) x (full′ n x)

Indeed, an optimizing compiler might transformfull′ to full via
common subexpression elimination. Since sharing is impossible
to observe, it is also difficult to preserve. For instance, mapping a
function across a tree,fmap f t, does away with all the sharing.

These observations suggest that nexuses are next to useless. This
conclusion is, however, too rash. In this pearl, we show that nexuses
serve admirably asmemo structuresfeaturingconstant timeaccess
to memoized function calls. Since entries in a memo table are never
changed—because they cache the results of a pure function—there
is no need ever to update a memo table. Consequently and fortu-
nately, maintaining sharing is a non-issue for memo tables.

REMARK 1. Is a nexus the same as a DAG, a directed, acyclic
graph? No, it is not. By definition, a nexus contains nodes with
more than one incoming arc whereas a DAG may or may not have
this property. By definition, a DAG may not be cyclic whereas a
nexus may very well have this property (circularity being an ex-
treme case of sharing). Finally, there is one fundamental difference
between trees and graphs: a node in a tree has asequenceof suc-
cessors, whereas a vertex in a graph has asetof successors.

2 Tabulation

A memo function[7] is like an ordinary function except that it
caches previously computed values. If it is applied a second time
to a particular argument, it immediately returns the cached result,
rather than recomputing it. For storing arguments and results, a
memo function usually employs an indexed structure, the so-called
memo table. The memo table can be implemented in a variety of
ways using, for instance, hashing or comparison-based search tree
schemes or digital search trees [3].

Memoization trades space for time, assuming that a table look-up
takes (considerably) less time than recomputing the corresponding
function call. This is certainly true if the function argument is an
atomic value such as an integer. However, for compound values
such as lists or trees the look-up time is no longer negligible. Worse,
if the argument is an element of an abstract data type, say a set,
it may not even be possible to create a memo table because the
abstract data type does not support ordering or hashing.

To sum up, the way memoization is traditionally set up is to con-
centrate on the argument structure. On the other hand, the structure
of the function is totally ignored, which is, of course, a good thing:
once a memo table has been implemented for values of typeτ, one
can memoize any function whose domain happens to beτ.

In this pearl, we pursue the other extreme: we concentrate solely
on the structure of the function and largely ignore the structure of
the argument. We say ‘largely’ because the argument type often
dictates the recursion structure of a function as witnessed by the
extensive literature onfoomorphisms[6, 1].

The central idea is to capture the call graph of a function as a nexus,
with shared nodes corresponding to repeated recursive calls with
identical arguments. Of course, building the call graph puts a con-
siderable burden on the programmer but as a reward we achieve
tabulation for free: each recursive call is only a link away.

To illustrate the underlying idea let us tackle the standard example,
the Fibonacci function:

fib :: Integer→ Integer
fib 0 = 0
fib 1 = 1
fib (n+2) = fib (n)+fib (n+1)

The naive implementation entails an exponential number of recur-
sive calls; but clearly there are only a linear number of different

calls. Thus, the call graph is essentially a linear list—the elements
corresponding tofib (n), fib (n−1), . . . ,fib (1), fib (0)—with addi-
tional links to the tail of the tail, that is, fromfib (n+2) to fib (n).
To implement a memoized version offib we reuse the tree type of
Sec. 1: the left subtree is the link to the tail and the right subtree
serves as the additional link to the tail of the tail.

memo-fib :: Integer→ Tree Integer
memo-fib0 = leaf 0
memo-fib1 = Node(leaf 0) 1 Empty
memo-fib(n+2) = node t(left t)

where t = memo-fib(n+1)

The functionnodeis a smart constructor that combines the results
of the two recursive calls:

node :: Tree Integer→ Tree Integer→ Tree Integer
node l r = Node l(info l+ info r) r

We will use smart constructors heavily in what follows as they allow
us to separate the construction of the graph from the computation
of the function values.

Now, thefib function can be redefined as follows:

fib = info ·memo-fib

Note, however, that in this setup only the recursive calls are mem-
oized. If fib is called repeatedly, then the call graph is built re-
peatedly, as well. Indeed, this behaviour is typical ofdynamic-
programmingalgorithms [2], see below.

In the rest of the paper we investigate two families of functions
operating on sequences that give rise to particularly interesting call
graphs.

3 Segments

A segmentis a non-empty, contiguous part of a sequence. For in-
stance, the sequenceabcdhas10 segments:a, b, c, d, ab, bc, cd,
abc, bcd, andabcd. An immediate segmentresults from removing
either the first or the last element of a sequence. In general, a se-
quence of lengthn has two immediate segments (forn≥ 2 and zero
immediate segments for0≤ n≤ 1) and1

2n(n+1) segments in total.

A standard example of the use of segments is the problem of
optimal bracketingin which one seeks to bracket an expression
x1⊕ x2⊕ ·· ·⊕ xn in the best possible way. It is assumed that ‘⊕’
is an associative operation, so the way in which the brackets are in-
serted does not affect the value of the expression. However, brack-
eting may affect the costs of computing the value. One instance of
this problem ischain matrix multiplication.

The following recursive formulation of the problem makes use of a
binary tree to represent each possible bracketing:

data Expr α = Constα | Expr α :⊕: Expr α
opt :: [σ]→ Expr σ
opt [x] = Const x
opt xs = best[opt s1 :⊕: opt s2 | (s1,s2)← uncat xs]

The functionbest:: [Exprσ]→ Exprσ returns the best tree (its def-
inition depends on the particular problem at hand), anduncatsplits
a sequence that contains at least two elements in all possible ways:

uncat :: ∀α . [α]→ [([α], [α])]
uncat[x1,x2] = [([x1], [x2])]
uncat(x : xs) = ([x],xs) :map(λ(l, r)→ (x : l, r)) (uncat xs)

abcde

abcd bcde

abc bcd cde

ab bc cd de

a b c d e

Figure 1. Call graph of a function that recurs on the immediate
segments.

The recursive formulation leads to an exponential time algorithm,
and the standard dynamic programming solution is to make use of
a memo table to avoid computingopt more than once on the same
argument. One purely functional scheme, a rather clumsy one, is
developed on pages 233 to 236 of [1]. However, using nexuses,
there is a much simpler solution.

Before we tackle optimal bracketing, let us first look at a related but
simpler problem, in which each recursive call depends only on the
immediate segments.

3.1 Immediate segments

Consider the functionf defined by the following scheme:

f :: [σ]→ τ
f [x] = ϕ x
f xs| length xs≥ 2 = f (init xs) ¦ f (tail xs)

whereϕ ::σ→ τ and(¦) ::τ→ τ→ τ. Note thatinit xsandtail xsare
the immediate segments ofxs. Furthermore, note thatf is defined
only for non-empty sequences. The recursion tree or call graph of
f for the initial argumentabcdeis depicted in Fig 1. The call graph
has the form of a triangle; the inner nodes of the triangle are shared
sinceinit · tail = tail · init.

Now, let us build the recursion tree explicitly. We reuse theTree
data type of Sec. 1 and redefine the smart constructorsleaf and
node, which now take care of callingϕ and ‘¦’.

leaf :: σ→ Treeτ
leaf x = Node Empty(ϕ x) Empty

node :: Treeτ→ Treeτ→ Treeτ
node l r = Node l(info l ¦ info r) r

The most immediate approach is to build the call tree in a bottom-
up, iterative manner: starting with a list of singleton trees we re-
peatedly join adjacent nodes until one tree remains.

bottom-up :: [σ]→ Treeτ
bottom-up = build ·map leaf

build :: [Treeτ]→ Treeτ
build [t] = t
build ts = build (step ts)
step :: [Treeτ]→ [Treeτ]
step[t] = []
step(t1 : t2 : ts) = node t1 t2 :step(t2 : ts)

The last equation introduces sharing:t2 is used two times on the

right-hand side.

Alternatively, the tree can be constructed in a top-down, recursive
fashion: the triangle is created by adding a diagonal slice (corre-
sponding to a left spine) for each element of the sequence.

top-down :: [σ]→ Treeτ
top-down = foldr1 (2) ·map leaf

The helper function ‘2’ adds one slice to a nexus: its first argument
is the singleton tree to be placed at the bottom, its second argument
is the nexus itself. For instance, when called withleaf a and the
tree rooted atbcde(see Fig. 1), ‘2’ creates the nodes labelled with
abcde, abcd, abc, aband finally placesleaf aat the bottom.

(2) :: Treeτ→ Treeτ→ Treeτ
t2u@(Empty) = t
t2u@(Node l x r) = node(t2 l) u

Of course, since the smart constructornodeaccesses only the roots
of the immediate subtrees, it is not necessary to construct the tree at
all. We could simply defineleaf = ϕ andnode= (¦). (In fact, this
is only true of the bottom-up version. The top-down version must
keep the entire left spine of the tree.) The tree structure comes in
handy if we want to access arbitrary subtrees, as we need to do for
solving the optimal bracketing problem. This is what we turn our
attention to now.

3.2 All segments

The functionopt is an instance of the following recursion scheme:

f :: [σ]→ τ
f [x] = ϕ x
f xs| length xs≥ 2 = ς [(f s1, f s2) | (s1,s2)← uncat xs]

whereϕ :: σ→ τ andς :: [(τ,τ)]→ τ. The functionς combines the
solutions for the ‘uncats’ ofxs to a solution forxs.

Since the call tree constructed in the previous section contains all
the necessary information we only have to adapt the smart construc-
tor node:

node :: Treeτ→ Treeτ→ Treeτ
node l r = Node l(ς (zip(lspine l) (rspine r))) r

The ‘uncats’ of the sequence are located on the left and on the right
spine of the corresponding node.

lspine, rspine :: ∀α .Treeα→ [α]
lspine(Empty) = []
lspine(Node l x r) = lspine l++[x]
rspine(Empty) = []
rspine(Node l x r) = [x]++ rspine r

The functionslspine and rspine can be seen as ‘partial’ inorder
traversals: lspine ignores the right subtrees whilerspine ignores
the left subtrees. (The functionlspineexhibits quadratic running
time, but this can be remedied using standard techniques.) For in-
stance, the left spine of the tree rooted atabcd is a, ab, abc, and
abcd. Likewise, the right spine of the tree rooted atbcdeis bcde,
cde, de, ande. To obtain the uncats ofabcde, we merely have to zip
the two sequences.

Now, to solve the optimal bracketing problem we only have to de-
fine ϕ = Constandς = best·map(uncurry(:⊕:)).

4 Subsequences

A subsequenceis a possibly empty, possibly non-contiguous part of
a sequence. For instance, the sequenceabcdhas16 subsequences:
ε, a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, andabcd. An
immediate subsequenceresults when just one element is removed
from the sequence. A sequence of lengthn hasn immediate subse-
quences and2n subsequences in total.

As an illustration of the use of subsequences we have Hutton’s
Countdown problem [4]. Briefly, one is given a bag of source num-
bers and a target number, and the aim is to generate an arithmetic
expression from some of the source numbers whose value is as close
to the target as possible. The problem can be solved in a variety
of ways, see [8]. One straightforward approach is to set it up as
an instance ofgenerate and test(we are only interested in the first
phase here). We represent bags as ordered sequences employing
the fact that a subsequence of an ordered sequence is again ordered.
The generation phase itself can be separated into two steps: first
generate all subsequences, then for each subsequence generate all
arithmetic expressions that contain the elementsexactlyonce.

data Expr = Const Integer
| Add Expr Expr| Sub Expr Expr
| Mul Expr Expr| Div Expr Expr

exprs :: [Integer]→ [Expr]
exprs = concatMap generate· subsequences

generate :: [Integer]→ [Expr]
generate[x] = [Const x]
generate xs = [e | (s1,s2)← unmerge xs,

e1 ← generate s1,
e2 ← generate s2,
e← combine e1 e2]

The functioncombine, whose code is omitted, yields a list of all
possible ways to form an arithmetic expression out of two subex-
pressions. The functionunmergesplits a sequence that contains at
least two elements into two subsequences (whose merge yields the
original sequence) in all possible ways.

unmerge :: ∀α . [α]→ [([α], [α])]
unmerge[x1,x2] = [([x1], [x2])]
unmerge(x : xs) = ([x],xs) : map(λ(l, r)→ (l,x : r)) s

++map(λ(l, r)→ (x : l, r)) s
wheres = unmerge xs

For instance,unmerge abcdyields the following list of pairs:
[(a,bcd),(b,acd),(c,abd),(bc,ad),(ab,cd),(ac,bd),(abc,d)].

Now, how can we weave a nexus that captures the call graph of
generate? As before, we first consider a simpler problem, in which
each recursive call depends only on the immediate subsequences.

4.1 Immediate subsequences

Consider the functionf defined by the following scheme:

f :: [σ]→ τ
f [] = ω
f [x] = ϕ x
f xs = ς [f s | s← delete xs]

whereω :: τ, ϕ :: σ → τ, andς :: [τ]→ τ. The functionς combines
the solutions for the immediate subsequences ofxsto a solution for

abcd

abc abd acd bcd

ab ac ad bc bd cd

a b c d

ε

Figure 2. Call graph of a function that recurs on the immediate
subsequences.

ε

a

ab

abc

abcd

abd

ac

acd

ad

b

bc

bcd

bd

c

cd

d

Figure 3. The binomial tree corresponding to the inverse of the
lattice of Fig. 2.

xs. The functiondeleteyields the immediate subsequences.

delete :: ∀α . [α]→ [[α]]
delete[] = []
delete(x : xs) = map(x:) (delete xs)++[xs]

The call graph off for the initial argumentabcd is depicted in
Fig. 2. Clearly, it has the structure of aBoolean lattice. Though
a Boolean lattice has a very regular structure it is not immediately
clear how to create a corresponding nexus. So let us start with the
more modest aim of constructing itsspanning tree. Interestingly,
a spanning tree of a Boolean lattice is abinomial tree. Recall that
a binomial tree is a multiway tree defined inductively as follows: a
binomial tree of rankn hasn children of rankn−1, n−2, . . . ,0. To
represent a multiway tree we use the left child, right sibling repre-
sentation.1 Since it will slightly simplify the presentation, we will
build the binomial tree upside down, so the subtrees are labelled
with ‘supersequences’ rather than subsequences.

top-down, tree :: ∀α . [α]→ Tree[α]
top-down xs = Node(tree xs) [] Empty

tree[] = Empty
tree(x : xs) = Node l[x] r

where l = fmap(x:) (tree xs) -- child
r = tree xs -- sibling

The binomial tree for the sequenceabcd is pictured in Fig. 3. Note

1Actually, a binary tree represents aforest of multiway trees,
see [5]. A single multiway tree is represented by a binary tree with
an empty right subtree.

that the left child, right sibling representation of a binomial tree is a
perfectly balanced binary tree (if we chop off the root node). Now,
it is immediate that each node in the left subtreel has an immediate
subsequence in the right subtreer at the corresponding position.
This observation is the key for extending each node by additional
up-links to the immediate subsequences. In order to do so we have
to extend the data typeTreefirst.

data Treeα = Empty
| Node{up:: [Treeα], -- up links

left :: Treeα, -- child
info:: α,
right :: Treeα} -- sibling

As usual, we introduce a smart constructor that takes care of calling
ϕ andς.

node :: [Treeτ]→ Treeτ→ σ→ Treeτ→ Treeτ
node[u] l x r = Node[u] l (ϕ x) r
node us l x r = Node us l(ς (map info us)) r

Here is the revised version oftop-downthat creates the augmented
binomial tree.

top-down :: [σ]→ Treeτ
top-down xs = v

wherev = Node[] (tree xs v[]) ω Empty

The helper functiontree takes a sequence, a pointer to the father
and a list of pointers to predecessors, that is, to the immediate sub-
sequences excluding the father. To understand the code, recall our
observation above: each node in the left subtreel has an immediate
subsequence in the right subtreer at the corresponding position.

tree :: [σ]→ Treeτ→ [Treeτ]→ Treeτ
tree[] p ps = Empty
tree(x : xs) p ps = v

wherev = node(p: ps) l x r
l = tree xs v(r :map left ps) -- child
r = tree xs p(map right ps) -- sibling

The parent of the childl is the newly created nodev; since we go
down, l’s predecessors are the right subtreer and the left subtrees
of v’s predecessors. The parent of the siblingr is u, as well; its
predecessors are the right subtrees ofv’s predecessors. The subtreel
has one predecessor more thanr, because the sequences inl are one
element longer than the sequences inr (at corresponding positions).

Do you see where all a node’s immediate subsequences are? Pick
a node in Fig. 3, sayabd. Its parent (in the multiway tree view)
is an immediate subsequence, in our exampleab. Furthermore, the
node at the corresponding position in the right subtree of the parent
is an immediate subsequence, namelyad. The next immediate sub-
sequence,bd, is located in the right subtree of the grandparent and
so forth.

To sum up,top-down xscreates acircular nexus, with links go-
ing up and going down. The down links constitute the binomial
tree structure (using a binary tree representation) and the up links
constitute the Boolean lattice structure (using a multiway tree rep-
resentation). Since the nexus has a circular structure,treedepends
on lazy evaluation(whereas the previous programs happily work in
a strict setting).

abcd

abc abd

ab

acd

ac ad

a

bcd

bc bd

b

cd

c d

ε

Figure 4. The binomial tree corresponding to the lattice of
Fig. 2.

4.2 All subsequences

The functiongenerateis an instance of the following scheme:

f :: [σ]→ τ
f [] = ω
f [x] = ϕ x
f xs| length xs≥ 2 = ς [(f s1, f s2) | (s1,s2)← unmerge xs]

whereω ::τ, ϕ ::σ→ τ, andς :: [(τ,τ)]→ τ. The functionς combines
the solutions for the unmerges ofxs to a solution forxs.

Each node in the nexus created bytop-downspans a sublattice of
sequences. Since each recursive call ofgeneratedepends on all sub-
sequences of the argument, we have to access every element of this
sublattice. In principle, this can be done by abreadth-first traver-
sal of the graph structure. However, for a graph traversal we have
to keep track of visited nodes. Alas, this is not possible with the
current setup since we cannot check two nodes for equality. Fortu-
nately, there is an attractive alternative at hand: we first calculate a
spanning tree of the sublattice and then do alevel-order traversalof
the spanning tree.

As we already know, one spanning tree of a Boolean lattice is the
binomial tree. Since we follow the up links, we use again the mul-
tiway tree representation.

data Rose a = Branch{ label:: a,subtrees:: [Rose a]}
binom :: ∀α . Int→ Treeα→ Roseα
binom r(Node us x)

= Branch x[binom i u| (i,u)← zip [0. . r−1] us]

Given a rankr, the callbinom r t yields the binomial tree of the
nexust. Note that the ranks of the children are increasing from left
to right (whereas normally they are arranged in decreasing order of
rank). This is because we are working on the upside-down lattice
with the largest sequence on top, see Fig. 4.

level-order :: ∀α . [Roseα]→ [α]
level-order ts
| null ts = []
| otherwise = map label ts

++level-order(concatMap subtrees ts)

As an example, the level-order traversal of the binomial tree shown
in Fig. 4 isabcd, abc, abd, acd, bcd, ab, ac, ad, bc, bd, cd, a, b,
c, d, andε. Clearly, to obtain all possible unmerges we just have to
zip this list with its reverse.

The level-order traversal has to be done for each node of the nexus.

As before, it suffices to adapt the smart constructornodeaccord-
ingly:

node :: [Treeτ]→ Treeτ→ σ→ Treeτ→ Treeτ
node[u] l x r = Node[u] l (ϕ x) r
node us l x r = t

where
t = Node us l(ς (tail (zip(reverse xs1) xs2))) r
(xs1,xs2) = halve(level-order[binom(length us) t])

Note that we have to remove the trivial unmerge(ε,abcd) from the
list of zips in order to avoid a black hole (usingtail). The function
halvesplits a list into two segments of equal length.

Now, to solve the Countdown problem we first have to define suit-
able versions ofω, ϕ, andς—we leave the details to the reader.
Since the nexus woven bytop-downalready contains the solu-
tions forall subsequences, collecting the arithmetic expression trees
is simply a matter of flattening a binary tree. Here is the re-
implementation ofexprs:

exprs xs = concat(flatten[top-down xs])
flatten :: ∀α . [Treeα]→ [α]
flatten[] = []
flatten(Empty: ts) = flatten ts
flatten(Node l x r : ts) = x : flatten([r]++ ts++[l])

All in all, an intriguing solution for a challenging problem.

5 Conclusion

The use of nexus programming to create the call graph of a recursive
program seems to be an attractive alternative to using an indexed
memo table. As we said above, the result of a recursive subcom-
putation is then only a link away. But the programming is more
difficult and we have worked out the details only for two examples:
segments and subsequences. The method is clearly in need of gen-
eralisation, both to other substructures of sequences, but also be-
yond sequences to an arbitrary data type. What the examples have
in common is the idea of recursing on a functionipredsthat returns
the immediate predecessors in the lattice of substructures of inter-
est. For segments the value ofipreds xsis the pair(init xs, tail xs).
For subsequences,ipreds is the functiondeletethat returns imme-
diate subsequences. It is the functionipreds that determines the
shape of the call graph. To avoid having the programmer embark
on a voyage of discovery for each new problem, we need a general
theorem that shows how to build the call tree with sharing given
only knowledge aboutipreds. Whether or not the sharing version
of the call tree should be built bottom-up by iterating some process
step, or recursively by a fold, remains open. We have some pre-
liminary ideas about what such a general theorem should look like
(the conditions of the theorem relateipredsandstep), but they are
in need of polishing. What is clear, however, is that the exploitation
of sharing is yet another technique available to functional program-
mers interested in optimising their programs.

Acknowledgements

We would like to thank four anonymous referees for their construc-
tive and helpful comments.

6 References

[1] Richard Bird and Oege de Moor.Algebra of Programming.
Prentice Hall Europe, London, 1997.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms. The MIT
Press, Cambridge, Massachusetts, second edition, 2001.

[3] Ralf Hinze. Memo functions, polytypically! In Johan Jeur-
ing, editor,Proceedings of the 2nd Workshop on Generic Pro-
gramming, Ponte de Lima, Portugal, pages 17–32, July 2000.
The proceedings appeared as a technical report of Universiteit
Utrecht, UU-CS-2000-19.

[4] Graham Hutton. Functional Pearl: the countdown problem.
Journal of Functional Programming, 12(6):609–616, Novem-
ber 2002.

[5] Donald E. Knuth. The Art of Computer Programming, Vol-
ume 1: Fundamental Algorithms. Addison-Wesley Publishing
Company, 3rd edition, 1997.

[6] E. Meijer, M. Fokkinga, and R. Paterson. Functional program-
ming with bananas, lenses, envelopes and barbed wire. In
5th ACM Conference on Functional Programming Languages
and Computer Architecture, FPCA’91, Cambridge, MA, USA,
volume 523 ofLecture Notes in Computer Science, pages
124–144. Springer-Verlag, 1991.

[7] Donald Michie. “Memo” functions and machine learning.Na-
ture, (218):19–22, April 1968.

[8] Shin-Cheng Mu.A calculational approach to program inver-
sion. PhD thesis, Oxford University Computing Laboratory,
2003.

[9] Chris Okasaki. Functional Pearl: Three algorithms on Braun
trees. Journal of Functional Programming, 7(6), November
1997.

[10] Simon Peyton Jones.Haskell 98 Language and Libraries.
Cambridge University Press, 2003.

[11] Neil Sarnak and Robert E. Tarjan. Planar point location us-
ing persistent search trees.Communications of the ACM,
29(7):669–679, July 1986.

