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Abstract. Folds and unfolds are at the heart of the algebra of program-
ming. They allow the cognoscenti to derive and manipulate programs
rigorously and effectively. Fundamental laws such as fusion codify ba-
sic optimisation principles. However, most, if not all, programs require
some tweaking to be given the form of an (un-) fold, and thus make them
amenable to formal manipulation. In this paper, we remedy the situation
by introducing adjoint folds and unfolds. We demonstrate that most pro-
grams are already of the required form and thus are directly amenable to
manipulation. Central to the development is the categorical notion of an
adjunction, which links adjoint (un-) folds to standard (un-) folds. We
discuss a number of adjunctions and show that they are directly relevant
to programming.

Key words: initial algebra, fold, final coalgebra, unfold, adjunction.

1 Introduction

One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them

The Lord of the Rings—J. R. R. Tolkien.

Effective calculations are likely to be based on a few fundamental principles. The
theory of initial datatypes aspires to play that rôle when it comes to calculating
programs. And indeed, a single combining form and a single proof principle rule
them all: programs are expressed as folds, program calculations are based on
the universal property of folds. In a nutshell, the universal property formalises
that a fold is the unique solution of its defining equation. It implies computation
rules and optimisation rules such as fusion. The economy of reasoning is further
enhanced by the principle of duality: initial algebras dualise to final coalgebras,
and alongside folds dualise to unfolds. Two theories for the price of one.

However, all that glitters is not gold. Most if not all programs require some
tweaking to be given the form of a fold or an unfold, and thus make them
amenable to formal manipulation. Somewhat ironically, this is in particular true
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of the “Hello, world!” programs of functional programming: factorial, the Fi-
bonacci function and append. For instance, append does not have the form of a
fold as it takes a second argument that is later used in the base case.

We offer a solution to the problem in the form of adjoint folds and unfolds.
The central idea is to gain flexibility by allowing the argument of a fold or
the result of an unfold to be wrapped up in a functor application. In the case
of append, the functor is essentially pairing. Not every functor is admissible
though: to preserve the salient properties of folds and unfolds, we require the
functor to have a right adjoint and, dually, a left adjoint for unfolds. Like folds,
adjoint folds are then the unique solutions of their defining equations and, as to
be expected, this dualises to unfolds. I cannot claim originality for the idea: Bird
and Paterson [5] used the approach to demonstrate that their generalised folds
are uniquely defined. The purpose of the present paper is to show that the idea
is more profound and more far-reaching. In a sense, we turn a proof technique
into a definitional principle and explore the consequences and opportunities of
doing this. Specifically, the main contributions of this paper are the following:

– we introduce folds and unfolds as solutions of so-called Mendler-style equa-
tions (Mendler-style folds have been studied before [38], but we believe that
they deserve to be better known);

– we argue that termination and productivity can be captured semantically
using naturality;

– we show that by choosing suitable base categories mutually recursive types
and parametric types are subsumed by the framework;

– we generalise Mendler-style equations to adjoint equations and demonstrate
that many programs are of the required form;

– we conduct a systematic study of adjunctions and show their relevance to
programming.

We largely follow a deductive approach: simple (co-) recursive programs are
naturally captured as solutions of Mendler-style equations; adjoint equations
generalise them in a straightforward way. Furthermore, we emphasise duality
throughout by developing adjoint folds and unfolds in tandem.

Prerequisites A basic knowledge of category theory is assumed, along the lines of
the categorical trinity: categories, functors and natural transformations. I have
made some effort to keep the paper sufficiently self-contained, explaining the
more advanced concepts as we go along. Some knowledge of the functional pro-
gramming language Haskell [32] is useful, as the formal development is paralleled
by a series of programming examples.

Outline The rest of the paper is structured as follows. Section 2 introduces some
notation, serving mainly as a handy reference. Section 3 reviews conventional
folds and unfolds. We take a somewhat non-standard approach and introduce
them as solutions of Mendler-style equations. Section 4 generalises these equa-
tions to adjoint equations and demonstrates that many, if not most, Haskell
functions fall under this umbrella. Finally, Section 5 reviews related work and
Section 6 concludes.
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2 Notation

We let C, D etc. range over categories. By abuse of notation C also denotes the
class of objects: we write A ∈ C to express that A is an object of C. The class
of arrows from A ∈ C to B ∈ C is denoted C(A,B). If C is obvious from the
context, we abbreviate f ∈ C(A,B) by f : A → B . The latter notation is used
in particular for total functions (arrows in Set) and functors (arrows in Cat).
Furthermore, we let A, B etc. range over objects, F, G, F, G etc. over functors,
and �, �, φ, Ψ etc. over natural transformations. Let F,G : C→ D be two parallel
functors. The class of natural transformations from F to G is denoted DC(F,G). If
C and D are obvious from the context, we abbreviate � ∈ DC(F,G) by � : F →̇G.
We also write � : ∀A . F A → G A and furthermore � : ∀A . F A ∼= G A, if � is a
natural isomorphism. The inverse of an isomorphism is denoted �◦.

Partial applications of functions and operators are often written using ‘cate-
gorical dummies’, where − marks the first and = the optional second argument.
As an example, − ∗ 2 denotes the doubling function and − ∗ = multiplication.
Another example is the so-called hom-functor C(−,=) : Cop × C→ Set, whose
action on arrows is given by C(f , g) h = g · h · f .

The formal development is complemented by a series of Haskell programs. Un-
fortunately, Haskell’s lexical and syntactic conventions deviate somewhat from
standard mathematical practise. In Haskell, type variables start with a lower-
case letter (identifiers with an initial upper-case letter are reserved for type and
data constructors). Lambda expressions such as λ x . e are written λx → e.
In the Haskell code, the conventions of the language are adhered to, with one
notable exception: I have taken the liberty to typeset ‘::’ as ‘:’ — in Haskell, ‘::’
is used to provide a type signature, while ‘:’ is syntax for consing an element to
a list, an operator I do not use in this paper.

3 Fixed-Point Equations

To iterate is human, to recurse divine.

L. Peter Deutsch

In this section we review the semantics of datatypes and introduce folds and
unfolds, albeit with a slight twist. The following two Haskell programs serve as
running examples.

Haskell example 1. The datatype Stack models stacks of natural numbers.

data Stack = Empty | Push (Nat ,Stack)

The type (A,B) is Haskell syntax for the cartesian product A× B .
The function total computes the sum of a stack of natural numbers.

total : Stack → Nat
total Empty = 0
total (Push (n, s)) = n + total s

The function is a typical example of a fold, a function that consumes data. �
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Haskell example 2. The datatype Sequ captures infinite sequences of natural
numbers.

data Sequ = Next (Nat ,Sequ)

The function from constructs the infinite sequence of naturals, from the given
argument onwards.

from : Nat → Sequ
from n = Next (n, from (n + 1))

The function is a typical example of an unfold, a function that produces data.�

Both the types, Stack and Sequ, and the functions, total and from, are given by
recursion equations. At the outset, it is not at all clear that these equations have
solutions and if so whether the solutions are unique. It is customary to rephrase
this problem as a fixed-point problem: A recursion equation of the form x = Ψ x
implicitly defines a function Ψ in the unknown x , the so-called base function of x .
A fixed-point of the base function is then a solution of the recursion equation
and vice versa.

Consider the type equation defining Stack . The base function, or rather, base
functor of Stack is given by

dataStack stack = Empty | Push (Nat , stack)
instance Functor Stackwhere

fmap f Empty = Empty
fmap f (Push (n, s)) = Push (n, f s) .

The type argument of Stack marks the recursive component.
All the functors underlying datatype declarations (sums of products) have

two extremal fixed points: the initial F-algebra 〈µF, in〉 and the final F-coalgebra
〈νF, out〉, where F : C → C is the functor in question. (The proof that these
fixed points exist is beyond the scope of this paper.) Very briefly, an F-algebra
is a pair 〈A, f 〉 consisting of an object A ∈ C and an arrow f ∈ C(F A,A).
Likewise, an F-coalgebra is a pair 〈A, f 〉 consisting of an object A ∈ C and an
arrow f ∈ C(A,F A). (By abuse of language, we shall use the term (co-) algebra
also for the components of the pair.) The objects µF and νF are the actual fixed
points of the functor F: we have F (µF) ∼= µF and F (νF) ∼= νF. The isomorphisms
are witnessed by the arrows in : F (µF) ∼= µF and out : νF ∼= F (νF).

Some languages such as Charity [7] or Coq [35] allow the user to choose
between initial and final solutions — the datatype declarations are flagged as
inductive or coinductive. Haskell is not one of them. Since Haskell’s underlying
category is Cpo⊥, the category of complete partial orders and strict continu-
ous functions, initial algebras and final coalgebras actually coincide [16, 11]. By
contrast, in Set elements of an inductive type are finite, whereas elements of
a co-inductive type are potentially infinite. Operationally, an element of an in-
ductive type is constructed in a finite number of steps, whereas an element of a
coinductive type is deconstructed in a finite number of steps.
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Turning to our running examples, we view Stack as an initial algebra —
though inductive and coinductive stacks are both equally useful. For sequences
only the coinductive reading makes sense, since the initial algebra of Sequ’s base
functor is the empty set in Set.

Haskell definition 3. In Haskell, initial algebras and final coalgebras can be de-
fined as follows.

newtypeµf = In {in◦ : f (µf )}
newtype ν f = Out◦ {out : f (ν f )}

The definitions use Haskell’s record syntax to introduce the deconstructors in◦

and out in addition to the constructors In and Out◦. The newtype declara-
tion guarantees that µf and f (µf ) share the same representation at run-time,
and likewise for νf and f (νf ). In other words, the constructors and deconstruc-
tors are no-ops. Of course, since initial algebras and final coalgebras coincide
in Haskell, they could be defined by a single newtype definition. However, for
emphasis we keep them separate. �

Working towards a semantics for total , let us first adapt its definition to the
new ‘two-level type’ µStack. (The term is due to Sheard [34]; one level describes
the structure of the data, the other level ties the recursive knot.)

total : µStack → Nat
total (In Empty) = 0
total (In (Push (n, s))) = n + total s

Now, if we abstract away from the recursive call, we obtain a non-recursive base
function of type (µStack → Nat) → (µStack → Nat). Functions of this type
possibly have many fixed points — consider as an extreme example the identity
function, which has an infinite number of fixed points. Interestingly, the problem
disappears into thin air, if we additionally remove the constructor In.

total : ∀x . (x → Nat)→ (Stack x → Nat)
total total (Empty) = 0
total total (Push (n, s)) = n + total s

The type of the base function has become polymorphic in the argument of the
recursive call. We shall show in the next section that this type guarantees that
the recursive definition of total

total : µStack→ Nat
total (In l) = total total l

is well-defined and furthermore that the equation has exactly one solution.
Applying the same transformation to the type Sequ and the function from

we obtain
dataSequ sequ = Next (Nat , sequ)
from : ∀x . (Nat → x )→ (Nat → Sequ x )
from from n = Next (n, from (n + 1))
from : Nat → νSequ
from n = Out◦ (from from n) .
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Again, the base function enjoys a polymorphic type that guarantees that the
recursive function is well-defined.

Abstracting away from the particulars of the syntax, the examples suggest
to consider fixed-point equations of the form

x · in = Ψ x , and dually out · x = Ψ x , (1)

where the unknown x has type C(µF,A) on the left and C(A, νF) on the right.
Arrows defined by equations of this form are known as Mendler-style folds and
unfolds [28]. We shall henceforth drop the qualifier and call the solutions simply
folds and unfolds. In fact, the abuse of language is justified as each Mendler-style
equation is equivalent to the defining equation of an (un-) fold. This is what we
show next, considering folds first.

3.1 Initial Fixed-Point Equations

Let C be some base category and let F : C→ C be some endofunctor. An initial
fixed-point equation in the unknown x ∈ C(µF,A) has the syntactic form

x · in = Ψ x , (2)

where the base function Ψ has type

Ψ : ∀X . C(X ,A)→ C(F X ,A) .

Informally speaking, the naturality of Ψ ensures termination: the first argument
of Ψ , the recursive call of x , can only be applied to proper sub-terms of x ’s
argument — recall that the type argument of F marks the recursive compo-
nents. The naturality condition can be seen as the semantic counterpart of the
guarded-by-deconstructors condition [15]. This becomes more visible, if we move
the isomorphism in : F (µF) ∼= µF to the right-hand side: x = Ψ x · in◦. Here in◦

is the deconstructor that guards the recursive calls.
Termination is an operational notion; how the notion translates to a denota-

tional setting depends on the underlying category. Our primary goal is to show
that Equation 2 has a unique solution. When working in Set this result implies
that the equation admits a solution that is indeed a total function. On the other
hand, if the underlying category is Cpo⊥, then the solution is a continuous func-
tion that does not necessarily terminate for all its inputs, since initial algebras
in Cpo⊥ possibly contain infinite elements.

While the definition of total fits nicely into the framework above, the following
program does not.

Haskell example 4. The naturality condition is sufficient but not necessary as
the example of factorial demonstrates.

data Nat = Z | S Nat
fac : Nat → Nat
fac Z = 1
fac (S n) = S n ∗ fac n
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Like for total , we split the underlying datatype into two levels.

type Nat = µNat

dataNat nat = Z | S nat
instance Functor Natwhere

fmap f Z = Z
fmap f (S n) = S (f n)

The implementation of factorial is clearly terminating. However, the associated
base function

fac : (Nat → Nat)→ (Nat Nat → Nat)
fac fac (Z) = 1
fac fac (S n) = In (S n) ∗ fac n

lacks naturality. In a sense, fac’s type is too concrete, as it reveals that the recur-
sive call takes a natural number. An adversary can make use of this information
turning the terminating program into a non-terminating one:

bogus : (Nat → Nat)→ (Nat Nat → Nat)
bogus fac (Z) = 1
bogus fac (S n) = n ∗ fac (In (S n)) .

We will get back to this example in Section 4.5. �

Turning to the proof of uniqueness, let us first spell out the naturality prop-
erty underlying Ψ ’s type: if h ∈ C(X1,X2), then C(F h, id) · Ψ = Ψ · C(h, id).
Recalling that C(f , g) h = g · h · f , this unfolds to

Ψ (f · h) = Ψ f · F h , (3)

for all arrows f ∈ C(X2,A). This property implies, in particular, that Ψ is
completely determined by its image of id as Ψ h = Ψ id ·F h. Moreover, the type
of Ψ is isomorphic to C(F A,A), the type of F-algebras.

With hindsight, we generalise the isomorphism slightly. Let F : D→ C be an
arbitrary functor, then

φ : ∀A B . C(F A,B) ∼= (∀X : D . D(X ,A)→ C(F X ,B)) . (4)

Readers versed in category theory will notice that this bijection is an instance
of the Yoneda lemma. Let H = C(F−,B) be the contravariant functor H :
Dop → Set that maps an object A ∈ Dop to the set of arrows C(F A,B) ∈
Set. The Yoneda lemma states that this set is isomorphic to a set of natural
transformations:

∀H A . H A ∼= (Dop(A,−) →̇ H) ,

which is (4) in abstract clothing. Let us explicate the proof of (4). The functions
witnessing the isomorphism are

φ f = λκ . f · Fκ and φ◦ Ψ = Ψ id .
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It is easy to see that φ◦ is the left-inverse of φ.

φ◦ (φ f )
= { definition of φ and definition of φ◦ }

f · F id
= { F functor and identity }

f

For the opposite direction, we have to make use of the naturality property (3).
(The naturality property is the same for the more general setting.)

φ (φ◦ Ψ)
= { definition of φ◦ and definition of φ }
λκ . Ψ id · Fκ

= { naturality of Ψ }
λκ . Ψ (id · κ)

= { identity and extensionality }
Ψ

We are finally in a position to prove that Equation (2) has a unique solution:
we show that x is a solution if and only if x is a standard fold, denoted L−M.

x · in = Ψ x
⇐⇒ { isomorphism }

x · in = φ (φ◦ Ψ) x
⇐⇒ { definition of φ and definition of φ◦ }

x · in = Ψ id · F x
⇐⇒ { initial algebras }

x = LΨ idM

The proof only requires that the initial F-algebra exists in C.

3.2 Final Fixed-Point Equations

The development of the previous section dualises to final coalgebras. For refer-
ence, let us spell out the details.

A final fixed-point equation in the unknown x ∈ C(A, νF) has the syntactic
form

out · x = Ψ x , (5)

where the base function Ψ has type

Ψ : ∀X . C(A,X )→ C(A,F X ) .
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Informally speaking, the naturality of Ψ ensures productivity : every recursive
call is guarded by a constructor. The naturality condition captures the guarded-
by-constructors condition [15]. This can be seen more clearly, if we move the
isomorphism out : νF ∼= F (νF) to the right-hand side: x = out◦ · Ψ x . Here out◦

is the constructor that guards the recursive calls.
The type of Ψ is isomorphic to C(A,F A), the type of F-coalgebras. More

generally, let F : D→ C, then

φ : ∀A B . C(A,F B) ∼= (∀X : D . D(B ,X )→ C(A,F X )) . (6)

Again, this is an instance of the Yoneda lemma: now H = C(A,F−) is a covariant
functor H : C→ Set and

∀H B . H B ∼= (D(B ,−) →̇ H) .

Finally, the functions witnessing the isomorphism are

φ f = λκ . Fκ · f and φ◦ Ψ = Ψ id .

In the following two sections we show that fixed-point equations are quite
general. More functions fit under this umbrella than one might initially think.

3.3 Mutual Type Recursion: C× D

In Haskell, datatypes can be defined by mutual recursion.

Haskell example 5. The type of multiway trees, also known as rose trees, is de-
fined by mutual type recursion.

data Tree = Node Nat Trees
data Trees = Nil | Cons (Tree,Trees)

Functions that consume a tree or a list of trees are typically defined by mutual
value recursion.

flattena : Tree → Stack
flattena (Node n ts) = Push (n,flattens ts)
flattens : Trees → Stack
flattens (Nil) = Empty
flattens (Cons (t , ts)) = stack (flattena t ,flattens ts)

The helper function stack defined

stack : (Stack , Stack)→ Stack
stack (Empty , bs) = bs
stack (Push (a, as), bs) = Push (a, stack (as, bs))

concatenates two stacks, see also Example 14. �
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Can we fit the above definitions into the framework of the previous section? Yes,
we only have to choose a suitable base category, in this case, a product category.

Given two categories C1 and C2, the product category C1×C2 is constructed
as follows: an object of C1 × C2 is a pair 〈A1, A2〉 of objects A1 ∈ C1 and
A2 ∈ C2; an arrow of (C1 × C2)(〈A1, A2〉, 〈B1, B2〉) is a pair 〈f1, f2〉 of ar-
rows f1 ∈ C1(A1,B1) and f2 ∈ C2(A2,B2). Identity and composition are defined
component-wise:

id = 〈id , id〉 and 〈f1, f2〉 · 〈g1, g2〉 = 〈f1 · g1, f2 · g2〉 . (7)

The functor Outl : C1 × C2 → C1, which projects onto the first category, is
defined by Outl 〈A1, A2〉 = A1 and Outl 〈f1, f2〉 = f1, and, likewise, Outr :
C1 × C2 → C2. (As an aside, C1 × C2 is the product in Cat.)

Returning to Example 5, the base functor underlying Tree and Trees can be
seen as an endofunctor over a product category:

F 〈A, B〉 = 〈Nat × B , 1 + A× B〉 .

The Haskell types are given by projections: Tree = Outl (µF) and Trees =
Outr (µF). The functions flattena and flattens are handled accordingly, we bun-
dle them to an arrow

flatten ∈ (C× C)(µF, 〈Stack , Stack〉) ,

The Haskell functions are then given by projections: flattena = Outl flatten and
flattens = Outr flatten.

The following calculation makes explicit that an initial fixed-point equation
in C× D corresponds to two equations, one in C and one in D.

x · in = Ψ x
⇐⇒ { surjective pairing: f = 〈Outl f , Outr f 〉 }

〈Outl x , Outr x 〉 · 〈Outl in, Outr in〉 = Ψ 〈Outl x , Outr x 〉
⇐⇒ { set x1 = Outl x , x2 = Outr x and in1 = Outl in, in2 = Outr in }

〈x1, x2〉 · 〈in1, in2〉 = Ψ 〈x1, x2〉
⇐⇒ { definition of composition }

〈x1 · in1, x2 · in2〉 = Ψ 〈x1, x2〉
⇐⇒ { surjective pairing: f = 〈Outl f , Outr f 〉 }

〈x1 · in1, x2 · in2〉 = 〈Outl (Ψ 〈x1, x2〉), Outr (Ψ 〈x1, x2〉)〉
⇐⇒ { equality of functions }

x1 · in1 = (Outl · Ψ) 〈x1, x2〉 and x2 · in2 = (Outr · Ψ) 〈x1, x2〉
⇐⇒ { set Ψ1 = Outl · Ψ and Ψ2 = Outr · Ψ }

x1 · in1 = Ψ1 〈x1, x2〉 and x2 · in2 = Ψ2 〈x1, x2〉

The base functions Ψ1 and Ψ2 are parametrised both with x1 and x2. Other than
that, the syntactic form is identical to a standard fixed-point equation.

It is a simple exercise to bring the equations of Example 5 into this form.
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Haskell definition 6. Mutually recursive datatypes can be modelled as follows.

newtypeµ1 f1 f2 = In1 {in◦1 : f1 (µ1 f1 f2) (µ2 f1 f2)}
newtypeµ2 f1 f2 = In2 {in◦2 : f2 (µ1 f1 f2) (µ2 f1 f2)}

Since Haskell has no concept of pairs on the type level, that is, no product
kinds, we have to curry the type constructors: µ1 f1 f2 = Outl (µ〈f1, f2〉) and
µ2 f1 f2 = Outr (µ〈f1, f2〉). �

Haskell example 7. The base functors of Tree and Trees are

dataTree tree trees = Node Nat trees
dataTrees tree trees = Nil | Cons tree trees .

Since all functions in Haskell live in the same category, we have to represent
arrows in C× C by pairs of arrows in C.

flattena : ∀x1 x2 .
(x1 → Stack , x2 → Stack)→ (Tree x1 x2 → Stack)

flattena (flattena, flattens) (Node n ts) = Push (n,flattens ts)
flattens : ∀x1 x2 .

(x1 → Stack , x2 → Stack)→ (Trees x1 x2 → Stack)
flattens (flattena, flattens) (Nil) = Empty
flattens (flattena, flattens) (Cons t ts) = stack (flattena t ,

flattens ts)

The definitions of flattena and flattens match exactly the scheme above.

flattena : µ1 Tree Trees→ Stack
flattena (In1 t) = flattena (flattena,flattens) t
flattens : µ2 Tree Trees→ Stack
flattens (In2 ts) = flattens (flattena,flattens) ts

Since the two equations are equivalent to an initial fixed-point equation in C×C,
they indeed have unique solutions. �

No new theory is needed to deal with mutually recursive datatypes and mutually
recursive functions over them.

By duality, the same is true for final coalgebras. For final fixed-point equa-
tions we have the following correspondence.

out · x = Ψ x ⇐⇒ out1 · x1 = Ψ1 〈x1, x2〉 and out2 · x2 = Ψ2 〈x1, x2〉

3.4 Type Functors: DC

In Haskell, datatypes can be parametrised by types.
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Haskell example 8. The type of perfectly balanced, binary leaf trees, perfect
trees for short, is given by

dataPerfect a = Zero a | Succ (Perfect (a, a))
instance Functor Perfectwhere

fmap f (Zero a) = Zero (f a)
fmap f (Succ p) = Succ (fmap (f × f ) p)

(f × g) (a, b) = (f a, g b) .

The type Perfect is a so-called nested datatype [4] as the type argument is changed
in the recursive call. The constructors represent the height of the tree: a perfect
tree of height 0 is a leaf; a perfect tree of height n +1 is a perfect tree of height n
that contains pairs of elements.

size : ∀a . Perfect a → Nat
size (Zero a) = 1
size (Succ p) = 2 ∗ size p

The function size calculates the size of a perfect tree, making good use of the
balance condition. The definition requires polymorphic recursion [29], as the
recursive call has type Perfect (a, a) → Nat , which is a substitution instance of
the declared type. �

Can we fit the definitions above into the framework of Section 3.1? Again, the
answer is yes. We only have to choose a suitable base category, this time, a
functor category.

Given two categories C and D, the functor category DC is constructed as
follows: an object of DC is a functor F : C→ D; an arrow of DC(F,G) is a natural
transformation � : F →̇ G. (As an aside, DC is the exponential in Cat.)

Now, the base functor underlying Perfect is an endofunctor over a functor
category:

F P = ΛA . A + P (A×A) .

Here we use Λ-notation to define a functor [14]. The second-order functor F
sends a functor to a functor. Since its fixed point Perfect = µF lives in a functor
category, folds over perfect trees are necessarily natural transformations. The
function size is a natural transformation, as we can assign it the type

size : µF →̇ K Nat ,

where K : D→ DC is the constant functor K A = ΛB . A. Again, we can replay
the development in Haskell.

Haskell definition 9. The definition of second-order initial algebras and final
coalgebras is identical to that of Definition 3, except for an additional type
argument.

newtypeµf a = In {in◦ : f (µf ) a }
newtype ν f a = Out◦ {out : f (ν f ) a }
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To capture the fact that µf and νf are functors whenever f is a second-order
functor, we need an extension of the Haskell 98 class system.

instance (∀x . (Functor x )⇒ Functor (f x ))⇒ Functor (µf ) where
fmap f (In s) = In (fmap f s)

instance (∀x . (Functor x )⇒ Functor (f x ))⇒ Functor (νf ) where
fmap f (Out◦ s) = Out◦ (fmap f s)

The declarations use a so-called polymorphic predicate [20], which precisely cap-
tures the requirement that f sends functors to functors. Unfortunately, the ex-
tension has not been implemented yet. It can be simulated within Haskell 98 [36],
but the resulting code is somewhat clumsy. �

Haskell example 10. Continuing Example 8, the base functor of Perfect maps
functors to functors: it has kind (?→ ?)→ (?→ ?).

dataPerfect perfect a = Zero a | Succ (perfect (a, a))
instance (Functor x )⇒ Functor (Perfect x ) where

fmap f (Zero a) = Zero (f a)
fmap f (Succ p) = Succ (fmap (f × f ) p)

Accordingly, the base function of size is a second-order natural transformation
that takes natural transformations to natural transformations.

size : ∀x . (∀a . x a → Nat)→ (∀a . Perfect x a → Nat)
size size (Zero a) = 1
size size (Succ p) = 2 ∗ size p
size : ∀a . µPerfect a → Nat
size (In p) = size size p

The resulting equation fits the pattern of an initial fixed-point equation. Conse-
quently, it has a unique solution. �

The bottom line is that no new theory is needed to deal with parametric data-
types and polymorphic functions over them.

Table 1 summarises our findings so far.

4 Adjoint Fixed-Point Equations

〈. . .〉, good general theory does not search for the
maximum generality, but for the right generality.

Categories for the Working Mathematician—Saunders Mac Lane

We have seen in the previous section that initial and final fixed-point equations
are quite general. However, there are obviously a lot of definitions that do not
fit the pattern. We have mentioned list concatenation in the introduction. Here
is another example along those lines.



14 Ralf Hinze

Table 1. Initial algebras and final coalgebras in different categories.

category
initial fixed-point equation final fixed-point equation

x · in = Ψ x out · x = Ψ x

Set
inductive type coinductive type
standard fold standard unfold

Cpo —
continuous coalgebra (domain)

continuous unfold
(F locally continuous in Cpo⊥)

Cpo⊥

continuous algebra (domain) continuous coalgebra (domain)
strict continuous fold strict continuous unfold

(F locally continuous in Cpo⊥, µF ∼= νF)

C× D mutually recursive inductive types mutually recursive coinductive types
mutually recursive folds mutually recursive unfolds

DC inductive type functor coinductive type functor
higher-order fold higher-order unfold

Haskell example 11. The function shunt pushes the elements of the first onto
the second stack.

shunt : (µStack, Stack)→ Stack
shunt (In Empty, bs) = bs
shunt (In (Push (a, as)), bs) = shunt (as, In (Push (a, bs)))

The definition does not fit the pattern of an initial fixed-point equation as it
takes two arguments and recurses only over the first one. �

Haskell example 12. The functions nats and squares generate the sequence of
natural numbers interleaved with the sequence of squares.

nats : Nat → νSequ
nats n = Out◦ (Next (n, squares n))
squares : Nat → νSequ
squares n = Out◦ (Next (n ∗ n,nats (n + 1)))

The two definitions are not instances of final fixed-point equations, because while
the functions are mutually recursive, the datatype is not. �

In Example 11 the element of the initial algebra is embedded in a context. The
central idea of this paper is to model this context by a functor, generalising
fixed-point equations to

x · L in = Ψ x , and dually R out · x = Ψ x , (8)

where the unknown x has type C(L (µF),A) on the left and C(A,R (νF)) on the
right. The functor L models the context of µF, in the case of shunt , L = −×Stack .
Dually, R allows x to return an element of νF embedded in a context. Section 4.5
discusses a suitable choice for R in Example 12. Of course, we cannot use any
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plain, old functors for L and R; for reasons to become clear later on, we require
them to be adjoint: L a R. (For a calculational introduction to adjunctions, we
refer the interested reader to the paper “Adjunctions” [9].)

Let C and D be categories. The functors L and R are adjoint

C
≺

L

⊥
R
�

D

if and only if there is a bijection

φ : ∀A B . C(L A,B) ∼= D(A,R B) ,

that is natural both in A and B . The isomorphism φ is called the adjoint trans-
position or left adjunct.

The adjoint transposition allows us to trade L in the source for R in the
target of an arrow, which is the key for showing that generalised fixed-point
equations (8) have unique solutions. This is what we do next.

4.1 Adjoint Initial Fixed-Point Equations

One Size Fits All

Frank Zappa and The Mothers of Invention

Let C and D be categories, let L a R be an adjoint pair of functors L : D→ C and
R : C→ D and let F : D→ D be some endofunctor. An adjoint initial fixed-point
equation in the unknown x ∈ C(L (µF),A) has the syntactic form

x · L in = Ψ x , (9)

where the base function Ψ has type

Ψ : ∀X : D . C(L X ,A)→ C(L (F X ),A) .

The unique solution of (9) is called an adjoint fold.
The proof of uniqueness makes essential use of the fact that the adjoint

transposition φ is natural in A: D(h, id) · φ = φ · C(L h, id), which translates to

φ (f · L h) = φ f · h . (10)

We reason as follows.

x · L in = Ψ x
⇐⇒ { adjunction }

φ (x · L in) = φ (Ψ x )
⇐⇒ { naturality of φ }

φ x · in = φ (Ψ x )
⇐⇒ { adjunction }
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φ x · in = (φ · Ψ · φ◦) (φ x )
⇐⇒ { Section 3.1 }

φ x = L(φ · Ψ · φ◦) idM
⇐⇒ { adjunction }

x = φ◦ L(φ · Ψ · φ◦) idM

In three simple steps we have transformed the adjoint fold x ∈ C(L (µF),A) into
the standard fold φ x ∈ D(µF,R A) and, furthermore, the adjoint base function
Ψ : ∀X . C(L X ,A)→ C(L (F X ),A) into the standard base function (φ ·Ψ ·φ◦) :
∀X . D(X ,R A)→ D(F X ,R A). We have shown in Section 3.1 that the resulting
equation has a unique solution. The arrow φ x is called the transpose of x .

4.2 Adjoint Final Fixed-Point Equations

Buy one get one free!

A common form of sales promotion (BOGOF).

Dually, an adjoint final fixed-point equation in the unknown x ∈ D(A,R (νF))
has the syntactic form

R out · x = Ψ x , (11)

where the base function Ψ has type

Ψ : ∀X : C . D(A,R X )→ D(A,R (F X )) .

The unique solution of (11) is called an adjoint unfold.
The proof of uniqueness relies on the fact that the inverse φ◦ of the adjoint

transposition is natural in B : C(id , h) · φ◦ = φ◦ · D(id ,R h), that is,

φ◦ (R h · f ) = h · φ◦ f . (12)

We leave it to the reader to fill in the details.

4.3 Identity: Id a Id

The simplest example of an adjunction is Id a Id, which shows that adjoint
fixed-point equations (8) subsume fixed-point equations (1).

In the following sections we explore more interesting examples of adjunctions.
Each section is structured as follows: we introduce an adjunction, specialise
Equations (8) to the adjoint functors, and then provide some Haskell examples
that fit the pattern.
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4.4 Currying: −×X a −X

The best-known example of an adjunction is perhaps currying. In Set, a function
of two arguments can be treated as a function of the first argument whose values
are functions of the second argument.

φ : ∀A B . (A×X → B) ∼= (A→ BX )

The object BX is the exponential of X and B . In Set, BX is the set of total
functions from X to B . That this adjunction exists is one of the requirements
for cartesian closure. In the case of Set, the isomorphisms are given by

φ f = λ a . λ x . f (a, x ) and φ◦ g = λ (a, x ) . g a x .

Let us specialise the adjoint equations to L = −×X and R = −X in Set.

x · L in = Ψ x
⇐⇒ { definition of L }

x · (in × id) = Ψ x
⇐⇒ { pointwise }

x (in a, c) = Ψ x (a, c)

R out · x = Ψ x
⇐⇒ { definition of R }

(out ·) · x = Ψ x
⇐⇒ { pointwise }

out (x a c) = Ψ x a c

The adjoint fold takes two arguments, an element of an initial algebra and a
second argument (often an accumulator), both of which are available on the
right-hand side. The transposed fold is then a higher-order function that yields
a function. Dually, a curried unfold is transformed into an uncurried unfold.

Haskell example 13. To turn the definition of shunt into the form of an adjoint
equation, we follow the same steps as in Section 3. First, we determine the base
function abstracting away from the recursive call, additionally removing in, and
then we tie the recursive knot. The adjoint functors are L = − × Stack and
R = −Stack .

shunt : ∀x .
(L x → Stack)→ (L (Stack x ) → Stack)

shunt shunt (Empty, bs) = bs
shunt shunt (Push (a, as), bs) = shunt (as, In (Push (a, bs)))
shunt : L (µStack)→ Stack
shunt (In as, bs) = shunt shunt (as, bs)

The definition of shunt matches exactly the scheme for adjoint initial fixed-point
equations. The transposed fold, φ shunt ,

shunt ′ : µStack → R Stack
shunt ′ (In Empty) = λbs → bs
shunt ′ (In (Push (a, as))) = λbs → shunt ′ as (In (Push (a, bs)))

is the curried variant of shunt . �

Lists are parametric in Haskell. Can we adopt the above reasoning to para-
metric types and polymorphic functions?
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Haskell example 14. The type of lists is given as the initial algebra of a higher-
order base functor of kind (?→ ?)→ (?→ ?).

dataList list a = Nil | Cons (a, list a)
instance (Functor list)⇒ Functor (List list) where

fmap f Nil = Nil
fmap f (Cons (a, as)) = Cons (f a, fmap f as)

Lists generalise stacks, sequences of natural numbers, to an arbitrary element
type. The function append concatenates two lists.

append : ∀a . (µList a, List a)→ List a
append (In Nil, bs) = bs
append (In (Cons (a, as)), bs) = In (Cons (a, append (as, bs)))

Concatenation generalises the function stack (see Example 5) to sequences of an
arbitrary element type. �

If we lift products pointwise to functors, (F ×̇ G) A = F A × G A, we can view
append as a natural transformation:

append : List ×̇ List →̇ List .

All that is left to do is to find the right adjoint of the lifted product − ×̇ H.
(One could be led to think that F ×̇ H →̇ G ∼= F →̇ (H →̇ G), but this does not
make any sense as H →̇ G is not a functor. Also, lifting exponentials pointwise
GH A = (G A)H A does not work, because the data does not define a functor as the
exponential is contravariant in its first argument.) For simplicity, let us assume
that the functor category is SetC so that GH : C→ Set. We reason as follows:

GH A
∼= { Yoneda lemma }

C(A,−) →̇ GH

∼= { requirement: − ×̇ H a −H }
C(A,−) ×̇ H →̇ G

∼= { natural transformation }
∀X : C . C(A,X )× H X → G X

∼= { − ×X a −X }
∀X : C . C(A,X )→ (G X )H X .

If we set GH A = ∀X : C . C(A,X ) → (G X )H X and GH f = ΛX . C(f , id) → id ,
then − ×̇ H a −H.

Haskell definition 15. The definition of exponentials goes beyond Haskell 98, as
it requires rank-2 types (the data constructor Exp has a rank-2 type).

newtypeExp h g a = Exp {exp◦ : ∀x . (a → x )→ (h x → g x )}
instance Functor (Exp h g) where

fmap f (Exp h) = Exp (λκ→ h (κ · f ))
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Morally, h and g are functors, as well. However, their mapping functions are not
needed to define the Exp h g instance of Functor . The transpositions are defined

φExp : (Functor f )⇒ (∀x . (f x , h x )→ g x )→ (∀x . f x → Exp h g x )
φExp σ = λs → Exp (λκ→ λt → σ (fmap κ s, t))
φ◦Exp : (∀x . f x → Exp h g x )→ (∀x . (f x , h x )→ g x )
φ◦Exp τ = λ(s, t)→ exp◦ (τ s) id t .

Again, most of the functor instances are not needed. �

Haskell example 16. Returning to Example 14, we may conclude that the defin-
ing equation of append has a unique solution. Its transpose of type List→̇ListList

is interesting as it combines append with fmap:

append ′ : ∀a . List a → ∀x . (a → x )→ (List x → List x )
append ′ as = λf → λbs → append (fmap f as, bs) .

For clarity, we have inlined the definition of Exp List List. �

4.5 Mutual Value Recursion: (+) a ∆ a (×)

The functions nats and squares introduced in Example 12 are defined by mu-
tual recursion. The program is similar to Example 5, which defines flattena and
flattens, with the notable difference that only one datatype is involved, rather
than a pair of mutually recursive ones. Nonetheless, the correspondence suggests
to view nats and squares as a single arrow in a product category.

numbers : 〈Nat , Nat〉 → ∆(νSequ)

Here ∆ : C → C × C is the diagonal functor defined by ∆A = 〈A, A〉 and
∆f = 〈f , f 〉. According to the type, numbers is an adjoint unfold, provided the
diagonal functor has a left adjoint. It turns out that ∆ has both a left and a
right adjoint. We discuss the left one first.

The left adjoint of the diagonal functor is the coproduct.

φ : ∀A B . C((+) A,B) ∼= (C× C)(A, ∆B)

Note that B is an object of C and A is an object of C × C, that is, a pair of
objects. Unrolling the definition of arrows in C× C we have

φ : ∀A B . (A1 + A2 → B) ∼= (A1 → B)× (A2 → B) .

The adjunction captures the observation that we can represent a pair of functions
to the same codomain by a single function from the coproduct of the domains.
The adjoint transpositions are given by

φ f = 〈f · inl , f · inr〉 and φ◦ 〈f1, f2〉 = f1 O f2 .

The reader is invited to verify that the two functions are inverses.
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Using a similar reasoning as in Section 3.3, we unfold the adjoint final fixed-
point equation specialised to the diagonal functor.

∆out · x = Ψ x
⇐⇒ { definition of ∆ }

〈out , out〉 · x = Ψ x
⇐⇒ { surjective pairing: f = 〈Outl f , Outr f 〉 }

〈out , out〉 · 〈Outl x , Outr x 〉 = Ψ 〈Outl x , Outr x 〉
⇐⇒ { set x1 = Outl x and x2 = Outr x }

〈out , out〉 · 〈x1, x2〉 = Ψ 〈x1, x2〉
⇐⇒ { definition of composition }

〈out · x1, out · x2〉 = Ψ 〈x1, x2〉
⇐⇒ { surjective pairing: f = 〈Outl f , Outr f 〉 }

〈out · x1, out · x2〉 = 〈Outl (Ψ 〈x1, x2〉), Outr (Ψ 〈x1, x2〉)〉
⇐⇒ { equality of functions }

out · x1 = (Outl · Ψ) 〈x1, x2〉 and out · x2 = (Outr · Ψ) 〈x1, x2〉
⇐⇒ { set Ψ1 = Outl · Ψ and Ψ2 = Outr · Ψ }

out · x1 = Ψ1 〈x1, x2〉 and out · x2 = Ψ2 〈x1, x2〉

The resulting equations are similar to those of Section 3.3, except that now the
deconstructor out is the same in both equations.

Haskell example 17. Continuing Haskell Example 12, the base functions of nats
and squares are given by

nats : (Nat → x ,Nat → x )→ (Nat → Sequ x )
nats (nats, squares) n = Next (n, squares n)
squares : (Nat → x ,Nat → x )→ (Nat → Sequ x )
squares (nats, squares) n = Next (n ∗ n,nats (n + 1)) .

The recursion equations

nats : Nat → νSequ
nats n = Out◦ (nats (nats, squares) n)
squares : Nat → νSequ
squares n = Out◦ (squares (nats, squares) n)

exactly fit the pattern above (if we move Out◦ to the left-hand side). Hence,
both functions are indeed uniquely defined. Their transpose, φ◦ 〈nats, squares〉,
combines the two functions into a single one using a coproduct.

numbers : Either Nat Nat → νSequ
numbers (Left n) = Out◦ (Next (n,numbers (Right n)))
numbers (Right n) = Out◦ (Next (n ∗ n,numbers (Left (n + 1))))

The datatype Either defined dataEither a b = Left a | Right b is Haskell’s co-
product. �
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Turning to the dual case, to handle folds defined by mutual recursion we need
the right adjoint of the diagonal functor, which is the product.

φ : ∀A B . (C× C)(∆A,B) ∼= C(A, (×) B)

Unrolling the definition of C× C, we have

φ : ∀A B . (A→ B1)× (A→ B2) ∼= (A→ B1 × B2) .

We can represent a pair of functions with the same domain by a single function
to the product of the codomains. The bijection is witnessed by

φ 〈f1, f2〉 = f1 M f2 and φ◦ f = 〈outl · f , outr · f 〉 .

Specialising the adjoint initial fixed-point equation yields

x ·∆in = Ψ x ⇐⇒ x1 · in = Ψ1 〈x1, x2〉 and x2 · in = Ψ2 〈x1, x2〉 .

If we instantiate the base function to Ψ x = f ·∆(F (φ x )) for some suitable pair
of arrows f , we obtain Fokkinga’s mutomorphisms [10]. Fokkinga observes that
paramorphisms can be seen as a special case of mutomorphisms.

Haskell example 18. We can use mutual value recursion to fit the definition of
factorial, see Example 4, into the framework. The definition of fac has the form of
a paramorphism [26], as the argument that drives the recursion is not only used
in the recursive call. The idea is to ‘guard’ the other occurrence by the identity
function and to pretend that both functions are defined by mutual recursion.

fac : µNat → Nat
fac (In Z) = 1
fac (In (S n)) = In (S (id n)) ∗ fac n
id : µNat → Nat
id (In Z) = In Z
id (In (S n)) = In (S (id n))

If we abstract away from the recursive calls, we find that the two base functions
have indeed the required polymorphic types.

fac : ∀x . (x → Nat , x → Nat)→ (Nat x → Nat)
fac (fac, id) (Z) = 1
fac (fac, id) (S n) = In (S (id n)) ∗ fac n
id : ∀x . (x → Nat , x → Nat)→ (Nat x → Nat)
id (fac, id) (Z) = In Z
id (fac, id) (S n) = In (S (id n))

The transposed fold has type µNat → Nat × Nat and corresponds to the usual
encoding of paramorphisms as folds (using tupling).

As an aside, the trick does not work for the ‘base function’ bogus, as the
resulting function still lacks naturality. �
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Haskell example 19. Incidentally, we can employ a similar approach to also fit
the Fibonacci function into the framework.

fib : Nat → Nat
fib Z = Z
fib (S Z ) = S Z
fib (S (S n)) = fib n + fib (S n)

The definition is sometimes characterised as a histomorphism [37] because in the
third equation fib depends on two previous values, rather than only one. Now,
setting fib′ n = fib (S n), we can transform the nested recursion into a mutual
recursion. (Indeed, this is the usual approach taken when defining the stream of
Fibonacci numbers, see, for example, [19].)

fib : Nat → Nat
fib Z = Z
fib (S n) = fib′ n

fib′ : Nat → Nat
fib′ Z = S Z
fib′ (S n) = fib n + fib′ n

We leave the details to the reader and only remark that the transposed fold
corresponds to the usual linear-time implementation of Fibonacci, called twofib
in [2]. �

The diagram below illustrates the double adjunction (+) a ∆ a (×).

C
≺

+

⊥
∆
�

C× C
≺

∆

⊥
×

�
C

Each double adjunction actually gives rise to four different schemes and transfor-
mations: two for initial and two for final fixed-point equations. We have discussed
(+) a ∆ for unfolds and ∆ a (×) for folds. Their ‘inverses’ are less useful: us-
ing (+) a ∆ we can transform an adjoint fold that works on a coproduct of
mutually recursive datatypes into a standard fold over a product category (see
Section 3.3). Dually, ∆ a (×) enables us to transform an adjoint unfold that
yields a product of mutually recursive datatypes into a standard unfold over a
product category.

4.6 Mutual Value Recursion:
∑

i ∈ I a ∆ a
∏

i ∈ I

In the previous section we have considered two functions defined by mutual
recursion. It is straightforward to generalise the development to n mutually
recursive functions (or, indeed, to an infinite number of functions). Central to
the previous undertaking was the notion of a product category. Now, the product
category C×C can be regarded as a simple functor category: C2, where 2 is some
two-element set. To be able to deal with an arbitrary number of functions we
simply generalise from 2 to an arbitrary index set.

A set forms a so-called discrete category : the objects are the elements of the
set and the only arrows are the identities. A functor from a discrete category is
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uniquely defined by its action on objects. The category of indexed objects and
arrows CI, where I is some arbitrary index set, is a functor category from a
discrete category: A ∈ CI if and only if ∀i ∈ I . Ai ∈ C and f ∈ CI(A,B) if and
only if ∀i ∈ I . fi ∈ C(Ai ,Bi).

The diagonal functor ∆ : C→ CI now sends each index to the same object:
(∆A)i = A. Left and right adjoints of the diagonal functor generalise the con-
structions of the previous section. The left adjoint of the diagonal functor is (a
simple form of) a dependent sum (also called a dependent product).

∀A B . C(
∑

i ∈ I . Ai ,B) ∼= CI(A, ∆B)

Its right adjoint is a dependent product (also called a dependent function space).

∀A B . CI(∆A,B) ∼= C(A,
∏

i ∈ I . Bi)

The following diagram summarises the type information.

C
≺

∑
i ∈ I
⊥
∆

�
CI ≺

∆

⊥∏
i ∈ I

�
C

It is worth singling out a special case of the construction that we shall need
later on. First of all, note that

CI(∆X , ∆Y ) ∼= I→ C(X ,Y )

Consequently, if the summands of the sum and the factors of the product are
the same, A = ∆X and B = ∆Y , we obtain another adjoint situation:

∀X Y . C(
∑

I . X ,Y ) ∼= I→ C(X ,Y ) ∼= C(X ,
∏

I . Y ) . (13)

The degenerated sum
∑

I . A is also called a copower (sometimes written I•A);
the degenerated product

∏
I . A is also called a power (sometimes written AI).

In Set, we have
∑

I . A = I × A and
∏

I . A = I → A. (Hence,
∑

I a
∏

I is
essentially a variant of currying).

4.7 Type Application: LshX a (−X ) a RshX

Folds of higher-order initial algebras are necessarily natural transformations, as
they live in a functor category. However, many Haskell functions that recurse
over a parametric datatype are actually monomorphic.

Haskell example 20. The function sum defined

sum : µList Nat → Nat
sum (In Nil) = 0
sum (In (Cons (a, as))) = a + sum as

sums a list of natural numbers. �
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The definition of sum looks suspiciously like a fold, but it is not, as it does not
have the right type. The corresponding function on perfect trees does not even
resemble a fold.

Haskell example 21. The function sump sums a perfect tree of natural numbers.

sump : µPerfect Nat → Nat
sump (In (Zero n)) = n
sump (In (Succ p)) = sump (fmap plus p)

Here, plus is the uncurried variant of addition: plus (a, b) = a + b. Note that the
recursive call is not applied to a subterm of Succ p. In fact, it cannot, as p has
type Perfect (Nat ,Nat). (As an aside, this definition requires the functor instance
for µ, see Definition 9.) �

Perhaps surprisingly, the definitions above fit into the framework of adjoint
fixed-point equations. We simply have to view type application as a functor:
given X ∈ D define AppX : CD → C by AppX F = F X and AppX � = �X .
(The natural transformation � is applied to the object X . In Haskell this type
application is invisible, which is why we cannot see that sum is not a standard
fold.) It is easy to show that this data defines a functor: AppX id = id X = idX

and AppX (� · �) = (� · �) X = �X · �X = AppX � · AppX �. Using AppX we
can assign sum the type AppNat (µList)→ Nat . All that is left to do is to check
whether AppX is part of an adjunction. It turns out that AppX has, in fact, both
a left and a right adjoint. We choose to derive the left adjoint.

C(A,AppX B)
∼= { definition of AppX }

C(A,B X )
∼= { Yoneda (6) }
∀Y : D . D(X ,Y )→ C(A,B Y )

∼= { definition of a copower: I→ C(X ,Y ) ∼= C(
∑

I . X ,Y ) }
∀Y : D . C(

∑
D(X ,Y ) . A,B Y )

∼= { define LshX A = ΛY : D .
∑

D(X ,Y ) . A }
∀Y : D . C(LshX A Y ,B Y )

∼= { natural transformation }
LshX A →̇ B

We call LshX the left shift of X , for want of a better name. Dually, the right
adjoint is RshX B = ΛY : D .

∏
D(Y ,X ) . B , the right shift of X . The following

diagram summarises the type information.

CD ≺
LshX

⊥
AppX

�
C
≺

AppX

⊥
RshX

�
CD
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Recall that in Set, the copower
∑

I . A is the cartesian product I × A and
the power

∏
I . A is the set of functions I → A. This correspondence suggests

the Haskell implementation below. However, it is important to note that I is a
set, not an object.

Haskell definition 22. The functors Lsh and Rsh can be defined as follows.

newtype Lshx a y = Lsh (x → y , a)
instance Functor (Lshx a) where

fmap f (Lsh (κ, a)) = Lsh (f · κ, a)
newtypeRshx b y = Rsh {rsh◦ : (y → x )→ b}
instance Functor (Rshx b) where

fmap f (Rsh g) = Rsh (λκ→ g (κ · f ))

The functor Rshx b implements a continuation type — often, but not necessarily
the types x and b are identical. The transpositions are defined

φLsh : (∀y . Lshx a y → b y)→ (a → b x )
φLsh � = λs → � (Lsh (id , s))
φ◦Lsh : (Functor b)⇒ (a → b x )→ (∀y . Lshx a y → b y)
φ◦Lsh g = λ(Lsh (κ, s))→ fmap κ (g s)

φRsh : (Functor a)⇒ (a x → b)→ (∀y . a y → Rshx b y)
φRsh f = λs → Rsh (λκ→ f (fmap κ s))
φ◦Rsh : (∀y . a y → Rshx b y)→ (a x → b)
φ◦Rsh � = λs → rsh◦ (� s) id .

The type variables x , a and b are implicitly universally quantified. �

As usual, let us specialise the adjoint equations.

x · AppX in = Ψ x
⇐⇒ { definition of AppX }

x · in X = Ψ x

AppX out · x = Ψ x
⇐⇒ { definition of AppX }

out X · x = Ψ x
Since both type abstraction and type application are invisible in Haskell, adjoint
equations are, in fact, indistinguishable from standard fixed-point equations.

Haskell example 23. The base function of sump is given by

sump : ∀x . (Functor x )⇒
(x Nat → Nat)→ (Perfect x Nat → Nat)

sump sump (Zero n) = n
sump sump (Succ p) = sump (fmap plus p) .

The definition requires the Perfect functor instance, which in turn induces the
Functor x context. The transpose of sump is a fold that returns a higher-order
function.

sump′ : ∀x . Perfect x → (x → Nat)→ Nat
sump′ (Zero n) = λκ → κn
sump′ (Succ p) = λκ → sump′ p (plus · (κ× κ))
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For clarity, we have inlined the definition of RshNat Nat and slightly optimised
the result. Quite interestingly, the transformation turns a generalised fold in
the sense of Bird and Paterson [5] into an efficient generalised fold in the sense
of Hinze [18]. Both versions have a linear running time, but sump′ avoids the
repeated invocations of the mapping function (fmap plus). �

4.8 Type Composition: LanJ a (− ◦ J) a RanJ

Yes, we can.

Concession speech in the New Hampshire presidential primary—Barack Obama

Continuing the theme of the last section, functions over parametric types, con-
sider the following example.

Haskell example 24. The function concat defined

concat : ∀a . µList (List a) → List a
concat (In Nil) = In Nil
concat (In (Cons (l , ls))) = append (l , concat ls)

generalises the binary function append to a list of lists. �

The definition has the structure of an ordinary fold, but again the type is not
quite right: we need a natural transformation of type µList →̇ G, but concat
has type µList ◦ List →̇ List. Can we fit the definition into the framework of
adjoint equations? The answer is an emphatic “Yes, we Kan!” Similar to the
development of the previous section, the first step is to identify a left adjoint.
To this end, we view pre-composition as a functor: (−◦ List) (µList) →̇ List. (We
interpret List ◦ List as (− ◦ List) List rather than (List ◦ −) List because the outer
list, written µList for emphasis, drives the recursion.)

Given a functor J : C → D, define the higher-order functor PreJ : ED → EC

by PreJ F = F ◦ J and PreJ � = � ◦ J. (The natural transformation � is composed
with the functor J. In Haskell, type composition is invisible. Again, this is why
the definition of concat looks like a fold, but it is not.) As usual, we should make
sure that the data actually defines a functor: PreJ idF = idF ◦ J = idF◦J and
PreJ (� · �) = (� · �) ◦ J = (� ◦ J) · (� ◦ J) = PreJ � · PreJ �. Using the higher-order
functor we can assign concat the type PreList (µList) →̇ List. As a second step,
we have to construct the right adjoint of the higher-order functor. Similar to the
situation of the previous section, PreJ has both a left and a right adjoint. For
variety, we derive the latter.

F ◦ J →̇ G
∼= { natural transformation as an end }
∀A: C . E(F (J A),G A)

∼= { Yoneda (4) }
∀A: C . ∀X : D . D(X , J A)→ E(F X ,G A)

∼= { definition of power: I→ C(A,B) ∼= C(A,
∏

I . B) }
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∀A: C . ∀X : D . E(F X ,
∏

D(X , J A) . G A)
∼= { interchange of quantifiers }
∀X : D . ∀A: C . E(F X ,

∏
D(X , J A) . G A)

∼= { the functor E(F X ,−) preserves ends }
∀X : D . E(F X ,∀A: C .

∏
D(X , J A) . G A)

∼= { define RanJ G = ΛX : D . ∀A: C .
∏

D(X , J A) . G A }
∀X : D . E(F X ,RanJ G X )

∼= { natural transformation as an end }
F →̇ RanJ G

The functor RanJ G is called the right Kan extension of G along J. (If we view
J : C→ D as an inclusion functor, then RanJ G : D→ E extends G : C→ E to the
whole of D.) Dually, the left adjoint is called the left Kan extension and is defined
LanJ F = ΛX : D . ∃A: C .

∑
D(J A,X ) . F A. The universally quantified object

in the definition of RanJ is a so-called end, which corresponds to a polymorphic
type in Haskell. We refer the interested reader to Mac Lane’s textbook [22] for
further information. Dually, the existentially quantified object is a coend, which
corresponds to an existential type in Haskell (hence the notation). The following
diagrams summarise the type information.

C

E ≺
G

≺
LanJ F

≺

F

D

J

g

ED ≺
LanJ

⊥
(− ◦ J)

�
EC ≺

(− ◦ J)

⊥
RanJ

�
ED

C

D

J

g F
�

RanJ G
� E

G

�

Haskell definition 25. Like Exp, the definition of the right Kan extension requires
rank-2 types (the data constructor Ran has a rank-2 type).

newtypeRani g x = Ran {ran◦ : ∀a . (x → i a)→ g a }
instance Functor (Rani g) where

fmap f (Ran h) = Ran (λκ→ h (κ · f ))

The type Rani g can be seen as a generalised continuation type — often, but
not necessarily the type constructors i and g are identical. Morally, i and g
are functors. However, their mapping functions are not needed to define the
Rani g instance of Functor . Hence, we omit the (Functor i ,Functor g) context.
The adjoint transpositions are defined

φRan : ∀i f g . (Functor f )⇒ (∀x . f (i x )→ g x )→ (∀x . f x → Rani g x )
φRan � = λs → Ran (λκ→ � (fmap κ s))
φ◦Ran : ∀i f g . (∀x . f x → Rani g x )→ (∀x . f (i x )→ g x )
φ◦Ran � = λs → ran◦ (� s) id .

Again, we omit Functor contexts that are not needed.
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Turning to the definition of the left Kan extension we require another exten-
sion of the Haskell 98 type system: existential types.

data Lani f x = ∀a . Lan (i a → x , f a)
instance Functor (Lani f ) where

fmap f (Lan (κ, s)) = Lan (f · κ, s)

The existential quantifier is written as a universal quantifier in front of the data
constructor Lan. Ideally, LanJ should be given by a newtype declaration, but
newtype constructors must not have an existential context. For similar reasons,
we cannot use a deconstructor, that is, a selector function lan◦. The type Lani f
can be seen as a generalised abstract data type: f a is the internal state and
i a → x the observer function — again, the type constructors i and f are likely
to be identical. The adjoint transpositions are given by

φLan : ∀i f g . (∀x . Lani f x → g x )→ (∀x . f x → g (i x ))
φLan � = λs → � (Lan (id , s))
φ◦Lan : ∀i f g . (Functor g)⇒ (∀x . f x → g (i x ))→ (∀x . Lani f x → g x )
φ◦Lan � = λ(Lan (κ, s))→ fmap κ (� s)

The duality of the construction is somewhat obfuscated in the Haskell code. �

Again, let us specialise the adjoint equations.

x · PreJ in = Ψ x
⇐⇒ { definition of PreJ }

x · (in ◦ J) = Ψ x
⇐⇒ { pointwise }

x A (in (J A) s) = Ψ x A s

PreJ out · x = Ψ x
⇐⇒ { definition of PreJ }

(out ◦ J) · x = Ψ x
⇐⇒ { pointwise }

out (J A) (x A s) = Ψ x A s

Note that ‘·’ in the original equations denotes the (vertical) composition of nat-
ural transformations: (� · �) X = �X · �X . Also note that the natural trans-
formations x and in are applied to different type arguments. The usual caveat
applies when reading the equations as Haskell definitions: as type application is
invisible, the derived equation is indistinguishable from the original one.

Haskell example 26. Continuing Haskell Example 24, the base function of concat
is straightforward, except perhaps for the types.

concat : ∀x . (∀a . x (List a)→ List a)→
(∀a . List x (List a)→ List a)

concat concat (Nil) = In Nil
concat concat (Cons (l , ls)) = append (l , concat ls)

The base function is a second-order natural transformation. The transpose of
concat is quite revealing. First of all, its type is

φ concat : List →̇ RanList List ∼= ∀a . List a → ∀b . (a → List b)→ List b .
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The type suggests that φ concat is the bind of the list monad (written >>= in
Haskell), and this is indeed the case!

concat ′ : ∀a b . µList a → (a → List b)→ List b
concat ′ as = λκ → concat (fmap κ as)

For clarity, we have inlined RanList List. �

Kan extensions generalise the constructions of the previous section: we have
LshA B ∼= Lan(K A) (K B) and RshA B ∼= Ran(K A) (K B), where K is the constant
functor. The double adjunction LshX a (−X ) a RshX is implied by LanJ a
(− ◦ J) a RanJ. Here is the proof for the right adjoint:

F A→ B
∼= { arrows as natural transformations }

F ◦ K A →̇ K B
∼= { (− ◦ J) a RanJ }

F →̇ RanK A (K B)
∼= { RanK A (K B) ∼= RshA B }

F →̇ RshA B .

Table 2 summarises our findings.

5 Related Work

Building on the work of Hagino [17], Malcolm [23] and many others, Bird and
de Moor gave a comprehensive account of the “Algebra of Programming” in their
seminal textbook [3]. While the work was well received and highly appraised in
general, it also received some criticism. Poll and Thompson write in an otherwise
positive review [33]:

The disadvantage is that even simple programs like factorial require some
manipulation to be given a catamorphic form, and a two-argument func-
tion like concat requires substantial machinery to put it in catamorphic
form, and thus make it amenable to manipulation.

The term ‘substantial machinery’ refers to Section 3.5 of the textbook where
Bird and de Moor address the problem of assigning a unique meaning to the
defining equation of append (called cat in the textbook). In fact, they generalise
the problem slightly, considering equations of the form

x · (in × id) = h · G x · φ , (14)

where φ is some suitable natural transformation and h a suitable arrow. Clearly,
their approach is subsumed by the framework of adjoint folds.

The seed for this framework was laid in Section 6 of the paper “Generalised
folds for nested datatypes” by Bird and Paterson [5]. In order to show that gener-
alised folds are uniquely defined, they discuss conditions to ensure that the more
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Table 2. Adjunctions and types of recursion.

adjunction initial fixed-point equation final fixed-point equation

L a R
x · L in = Ψ x R out · x = Ψ x

φ x · in = (φ · Ψ · φ◦) (φ x ) out · φ◦ x = (φ◦ · Ψ · φ) (φ◦ x )

Id a Id
standard fold standard unfold
standard fold standard unfold

(−×X ) a (−X )
parametrised fold curried unfold

fold to an exponential unfold from a pair

(+) a ∆

recursion from a coproduct of
mutual value recursion

mutually recursive types
mutual value recursion on single recursion from a
mutually recursive types coproduct domain

∆ a (×)
mutual value recursion

recursion to a product of
mutually recursive types

single recursion to a mutual value recursion on
product domain mutually recursive types

LshX a (−X ) —
monomorphic unfold

unfold from a left shift

(−X ) a RshX
monomorphic fold

—
fold to a right shift

LanJ a (− ◦ J) —
polymorphic unfold

unfold from a left Kan extension

(− ◦ J) a RanJ
polymorphic fold

—
fold to a right Kan extension

general equation x ·L in = Ψ x , our adjoint initial fixed-point equation, uniquely
defines x . Two solutions are provided to this problem, the second of which re-
quires L to have a right adjoint. They also show that the right Kan extension is
the right adjoint of pre-composition. Somewhat ironically, the rest of the paper,
which is concerned with folds for nested datatypes, does not build upon this el-
egant approach. Also, they do not consider (adjoint) unfolds. Nonetheless, Bird
and Paterson deserve most of the credit for their fundamental insight, so three
cheers to them! (As an aside, the first proof method uses colimits and is strictly
more powerful. It can be used to give a semantics to functions such as zip that
are defined by simultaneous recursion over a pair of datatypes: ×(µF) → A.
Since the product is not a left adjoint, the framework developed in this paper
is not applicable.) A slight variation of adjoint folds was introduced by Matthes
and Uustalu [25] under the name generalised iteration. They essentially gener-
alise (14) to an arbitrary left adjoint L:

x · L in = h · G x · φ ,

where x : L (µF)→ A, φ : L ◦ F →̇ G ◦ L and h : G A→ A.
An alternative, type-theoretic approach to (co-) inductive types was proposed

by Mendler [28]. His induction combinators Rµ and Sν map a base function to its
unique fixed point. Strong normalisation is guaranteed by the polymorphic type
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of the base function. The first categorical justification of Mendler-style recursion
was given by de Bruin [6]. Interestingly, in contrast to traditional category-
theoretic treatments of (co-) inductive types there is no requirement that the
underlying type constructor is a covariant functor. Indeed, Uustalu and Vene
have shown that Mendler-style folds can be based on difunctors [38]. It remains
to be seen whether adjoint folds can also be generalised in this direction. Abel,
Matthes and Uustalu extended Mendler-style folds to higher kinds [1]. Among
other things, they demonstrate that suitable extensions of Girard’s system Fω

retain the strong normalisation property and they show how to transform gen-
eralised Mendler-style folds into standard ones.

There is a large body of work on ‘morphisms’. Building on the notions of
functors and natural transformations Malcolm generalised the Bird-Meertens for-
malism to arbitrary datatypes [23]. Incidentally, he also discussed how to model
mutually recursive types, albeit in an ad-hoc manner. His work assumed Set as
the underlying category and was adapted by Meijer, Fokkinga and Paterson to
the category Cpo [27]. The latter paper also popularised the now famous terms
catamorphism and anamorphism (for folds and unfolds), along with the banana
and lens brackets (L−M and [(−)]). (The term catamorphism was actually coined
by Meertens, the notation L−M is due to Malcolm, and the name banana bracket
is attributed to van der Woude.) The notion of a paramorphism was introduced
by Meertens [26]. Roughly speaking, paramorphisms generalise primitive recur-
sion to arbitrary datatypes. Their duals, apomorphisms, were only studied later
by Vene and Uustalu [39]. (While initial algebras have been the subject of inten-
sive research, final coalgebras have received less attention — they are certainly
under-appreciated [13].) Fokkinga captured mutually recursive functions by mu-
tomorphisms [10]. He also observed that Malcolm’s zygomorphisms arise as a
special case, where one function depends on the other, but not the other way
round. (Paramorphisms further specialise zygomorphisms in that the indepen-
dent function is the identity.) An alternative solution to the ‘append -problem’
was proposed by Pardo [31]: he introduces folds with parameters and uses them to
implement generic accumulations. His accumulations subsume Gibbons’ down-
wards accumulations [12].

The discovery of nested datatypes and their expressive power [4, 8, 30] led
to a flurry of research. Standard folds on nested datatypes, which are natural
transformations by construction, were perceived as not being expressive enough.
The aforementioned paper by Bird and Paterson [5] addressed the problem by
adding extra parameters to folds leading to the notion of a generalised fold.
The author identified a potential source of inefficiency — generalised folds make
heavy use of mapping functions — and proposed efficient generalised folds as a
cure [18]. The approach being governed by pragmatic concerns was put on a firm
theoretical footing by Martin, Gibbons and Bayley [24] — rather imaginatively
the resulting folds were called disciplined, efficient, generalised folds. The fact
that standard folds are actually sufficient for practical purposes — every adjoint
fold can be transformed into a standard fold — was later re-discovered by Johann
and Ghani [21].
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We have shown that all of these different morphisms and (un-) folds fall
under the umbrella of adjoint (un-) folds. (Paramorphisms and apomorphisms
require a slight tweak though: the argument or result must be guarded by an
invocation of the identity.) It remains to be seen whether more exotic species such
as histomorphisms or futomorphisms [37] are also subsumed by the framework.
(It does work for the simple example of Fibonacci.)

6 Conclusion

I had the idea for this paper when I re-read “Generalised folds for nested
datatypes” by Bird and Paterson [5]. I needed to prove the uniqueness of a
certain function and I recalled that the paper offered a general approach for do-
ing this. After a while I began to realise that the approach was far more general
than I and possibly also the authors initially realised.

Adjoint folds and unfolds strike a fine balance between expressiveness and
ease of use. We have shown that many if not most Haskell functions fit under this
umbrella. The mechanics are straightforward: given a (co-) recursive function, we
abstract away from the recursive calls, additionally removing occurrences of in
and out that guard those calls. Termination and productivity are then ensured
by a naturality condition on the resulting base function.

The categorical concept of an adjunction plays a central role in this devel-
opment. In a sense, each adjunction captures a different recursion scheme —
accumulating parameters, mutual recursion, polymorphic recursion on nested
datatypes etc. — and allows the scheme to be viewed as an instance of an ad-
joint (un-) fold.

Of course, the investigation of adjoint (un-) folds is not complete; it has
barely begun. For one thing, it remains to develop the calculational properties
of adjoint (un-) folds. Their definitions

x = LΨML ⇐⇒ x · L in = Ψ x
x = [(Ψ)]R ⇐⇒ R out · x = Ψ x

gives rise to the usual reflection, computation and fusion laws. In addition, one
might hope for elegant laws manipulating the underlying adjoint functors. For
another thing, it will be interesting to see whether other members of the mor-
phism zoo can be fitted into the framework.

A final thought: most if not all constructions in category theory are paramet-
ric in the underlying category, resulting in a remarkable economy of expression.
Perhaps, we should spend more time and effort into utilising this economy for
programming. This possibly leads to a new style of programming, which could
be loosely dubbed as category-parametric programming.
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