
Histo- and Dynamorphisms Revisited

Ralf Hinze Nicolas Wu ∗

Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, England
{ralf.hinze,nicolas.wu}@cs.ox.ac.uk

Abstract
Dynamic programming algorithms embody a widely used program-
ming technique that optimizes recursively defined equations that
have repeating subproblems. The standard solution uses arrays to
share common results between successive steps, and while effective,
this fails to exploit the structural properties present in these prob-
lems. Histomorphisms and dynamorphisms have been introduced to
expresses such algorithms in terms of structured recursion schemes
that leverage this structure. In this paper, we revisit and relate these
schemes and show how they can be expressed in terms of recursion
schemes from comonads, as well as from recursive coalgebras. Our
constructions rely on properties of bialgebras and dicoalgebras, and
we are careful to consider optimizations and efficiency concerns.
Throughout the paper we illustrate these techniques through several
worked-out examples discussed in a tutorial style, and show how
a recursive specification can be expressed both as an array-based
algorithm as well as one that uses recursion schemes.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—specification techniques

Keywords dynamic programming; recursion schemes; histomor-
phisms; dynamorphisms

1. Introduction
Many important algorithms can be expressed using recursion equa-
tions where solutions are built up from recursive steps. In divide-and-
conquer algorithms such recursion equations can often be executed
efficiently, since a problem is divided up into independent subprob-
lems that are then solved recursively before being combined to form
a final solution. However, in the particular case where a subproblem
is repeated at different stages in the computation, recursion equa-
tions should be considered no more than a specification: the solution
to each repeated subproblem is naively recomputed, often leading
to exponential complexity that can be avoided. The key observation
made by dynamic programming algorithms is that that solutions to
subproblems can be memoized and reused when identical subprob-

∗ This work has been funded by EPSRC grant number EP/J010995/1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WGP ’13, September 28, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2389-5/13/09. . . $15.00.
http://dx.doi.org/10.1145/2502488.2502496

lems are later encountered, thus preventing the expense of needless
recomputation.

The standard approach to implementing a dynamic programming
algorithm is to use a table of values to store intermediate results.
Such tables are usually indexed by the input parameters of the
recursion, and are populated with values the first time a particular
subproblem has been encountered. These values are then used when
the subproblem is revisited. In a functional programming language
with lazy evaluation, such tables are easy to construct, since values
are populated as they are demanded. This leads to implementations
that closely resemble their recursive counterparts, but do not suffer
from their inefficiencies.

We aim to show how categorically-inspired recursion schemes
can be used to solve such problems, and we hope that this study will
become useful to programmers who are interested in understanding
how category theory can be used in the design of algorithms where
the structure of the computation is important. This is not the first
time that dynamic programming algorithms have been investigated
from a categorical perspective, and indeed, this paper provides a
general survey of the existing body of work.

Histomorphisms have long been understood as a means of
capturing course-of-values recursion, which is sufficient for dynamic
programming algorithms where the recursion follows the pattern of
the input data [14]. In particular, histomorphisms are constrained
to work on problems where the input can be expressed as an initial
algebra. However, not all problems follow such a rigid pattern,
and dynamorphisms are a more general recursion scheme that was
introduced to lift this restriction in the setting of CPO [10]. We
extend this development by using recursive coalgebras to prove
uniqueness of both histo- and dynamorphisms for a wider range of
categories.

In order to make this material accessible, we present solutions to
various classic dynamic programming problems. Our development
is in Haskell [13], not only because the ensuing programs can be
efficiently executed, but also because the language allows us to
express solutions that closely resemble the categorical notions that
underpin the theory.

On a more theoretical note, we also show how histo- and
dynamorphisms relate not only to one another, but also how they
can be expressed as recursion schemes from comonads, and as
recursion schemes from recursive coalgebras. This paper serves
as an extended case-study that builds on previous material, where
distributive laws and bialgebras witness the correspondence between
adjoint folds and recursion schemes from comonads [8]. We add to
this by considering the efficiency of the recursion schemes we study.

This paper makes the following novel contributions:

• We demonstrate how histomorphisms and dynamorphisms can
be applied to a number of different problems.

• We show how bialgebras relate histomorphisms to recursion
schemes from comonads, and how dicoalgebras relate dynamor-
phisms to recursion schemes from recursive coalgebras.

1

• We use these relationships to derive optimized versions of histo-
and dynamorphisms.

• We use type families to witness efficient implementations of
inductive types from base functors in Haskell.

The work in this paper draws significantly from categorical
machinery. As such, we assume that the reader has at least some
basic knowledge of the categorical trinity: categories, functors and
natural transformations. Aside from these, we also assume that the
reader has an understanding of initial algebras and comonads; these
notions will be introduced formally, but we will not linger long on
these constructions. No further knowledge will be required, and we
will introduce such notions as cofree comonads, distributive laws,
bialgebras, and the (co)-Eilenberg-Moore category when they are
required.

The paper is structured as follows. Section 2 introduces a
number of dynamic programming algorithms that will be revisited
throughout the paper. A brief overview of some of the basic concepts
we use is given in Section 3. We introduce histomorphisms in
Section 4 and relate these to recursion schemes from comonads in
Section 5. We then introduce dynamorphisms in Section 6 and relate
these to recursion schemes from recursive coalgebras in Section 7.
Finally, we present related work in Section 8, and conclude in
Section 9.

2. Dynamic Programming
Before looking at the construction of histo- and dynamorphisms we
first take a look at at the different kinds of algorithms that fit under
the umbrella of dynamic programming. Dynamic programming
relies on the principle of optimality, where the optimal solution to
a problem can be determined by first breaking the problem into
subproblems, optimally solving those subproblems, and combining
the ensuing subsolutions into a final answer.

The knapsack problem A classic example of of a dynamic algo-
rithm is the unbounded knapsack problem. Suppose we are interested
in maximizing the total value of elements that are placed into a knap-
sack with a fixed weight capacity. The elements are chosen from
a set of items that are assigned a particular weight and value, each
item being unbounded in number. We might represent the set of
items as a list of pairs (w,v), where w is the weight and v is the
value. For instance, consider the following list:

wvs :: [(N,R)]
wvs = [(12,4),(1,2),(2,2),(1,1),(4,10)] .

With a knapsack of capacity 15 the optimal solution is to choose
three elements from the 2nd and 5th items, for a total value of 36.

This problem can be solved using a recursive function, that forms
the basis of a specification:

knapsack1 ::N→ R
knapsack1 c = maximum0

[v+ knapsack1 (c−w) | (w,v)← wvs,0<w ∧ w 6 c] .

The value of a knapsack with capacity c is determined by finding the
item in wvs that maximizes the value of the knapsack when it has
been added: an element of weight w and value v increases the value
of a knapsack by v, and decreases its capacity by w. Only items
with positive weight that can fit into the knapsack are considered.
The function maximum0 returns 0 when given an empty list, and
otherwise returns the maximum value in the list.

This specification makes no attempt to be efficient, and naively
recomputes the values of knapsacks with capacities that have
already been explored. In order to avoid these recomputations, the

intermediate results can be stored in a table that is populated by the
recursion itself, and used to lookup previously visited values.

knapsack2 ::N→ R
knapsack2 n = table ! n where

table = tabulate (0,n) knapsack
knapsack c = maximum0

[v+ table ! (c−w) | (w,v)← wvs,0<w ∧ w 6 c]

This definition closely mirrors the specification, where the main
body of knapsack is almost identical to knapsack1. The key differ-
ence is that the recursive calls have been replaced by looking up
values in a table. This table is constructed by the function tabulate,
which takes as its arguments the bounds of the array that is to be
constructed and a function that produces values for given indices.

tabulate :: (Ix i)⇒ (i, i)→ (i→ a)→ Array i a
tabulate ixs f = array ixs [(i, f i) | i← range ixs]

Thus the function knapsack and the array table are mutually recur-
sive: values are initially tabulated by using the function knapsack,
and knapsack makes use of the table to find values that have already
been computed. This relies on lazy evaluation, where values are
generated only as they are demanded: it is the calling convention
that determines which values are calculated next. We shall see how
this sets the pattern of how dynamic programming algorithms can be
solved using arrays in the problems that follow. Note that there is an
unfulfilled proof obligation here: one must show that the recursion
is well-founded; it is precisely this proof that histomorphisms and
dynamorphisms provide, and, as we shall see, we will have to work
hard to transmogrify the original formulation into the form required
by these schemes.

Catalan numbers A simple example of a course-of-values pro-
gram that makes use of all its subcomponents is the evaluation of
the Catalan numbers. Amongst other things, the Catalan numbers
can be used to find the number of distinct well-formed arrangements
that can be made with a set of n matching parentheses. This can be
expressed by a simple recursive definition.

catalan1 ::N→ N
catalan1 0 = 1
catalan1 (n+1) = sum [catalan1 i∗ catalan1 (n− i) | i← [0 . .n]]

For example, the value of catalan1 3 is 5, which can be seen through
a simple enumeration of the possibilities:

() () (),() (()),(()) (),(() ()),((())) .

The recursive solution works by considering all of the different ways
of splitting an expression with parentheses.

Strictly speaking this is not a dynamic programming problem,
since we are not seeking an optimal solution. However, it does
exhibit the same hallmarks: common subproblems are encountered
time and again, and there is scope to share solutions between
recursive calls to increase the efficiency of this algorithm. As before,
we apply the technique dynamic programming, where array-based
memoization is used to store and share results.

catalan2 ::N→ N
catalan2 p = table ! p where

table = tabulate (0,p) catalan
catalan 0 = 1
catalan (n+1) = sum [table ! i∗ table ! (n− i) | i← [0 . .n]]

Again this implementation builds an array that is indexed in place
of recursive calls.

Chain matrix multiplication The chain matrix multiplication
problem concerns finding the minimal number of operations re-
quired to multiply a chain of matrices of arbitrary length. The mul-
tiplication of a p×q matrix by a q× r matrix yields a matrix of size

2

p× r in pqr scalar operations. This multiplication is associative,
yielding the same result regardless of the order in which more than
two matrices are multiplied. However it is easy to show that different
parenthesizations can lead to different costs. For example, consider
multiplying a chain of three matrices of sizes 2×3, 3×5, and 5×7.
There are two solutions, where multiplying the first two matrices
and then the third costs 100 operations, whereas multiplying the last
two matrices and then the first costs 147 operations.

The naive solution to this problem is to compute the cost of all
possible parenthesizations. This algorithm takes time proportional
to the Catalan numbers to generate all the different sequences,
each of which is checked in isolation. We can improve upon this
solution by using dynamic programming, where the result for any
(sub)-parenthesization is calculated only once and reused where
appropriate. As usual, we start with a recurrence equation that solves
the problem. We assume that the matrices A1 . . . An are given to be
multiplied, and matrix Ak has dimensions given by ak−1×ak.

chain1 :: (N,N)→ N
chain1 (i, j)
| i j = 0
| i< j = minimum [ai ∗ak+1 ∗aj+1 +

chain1 (i,k)+ chain1 (k+1, j) | k← [i . . j−1]]

(In a sense, the specification is geared towards an imperative array-
based solution: the argument to the recursion is represented as a pair,
which is an efficient representation of a contiguous segment when
the data is globally stored in an array.) This solution makes use of
the principle of optimality, by noting that the optimal solutions
to subproblems can be combined to form the final solution. In
this case, the optimal chain for multiplying matrices Ai . . .A j is
given by finding the value k that minimizes the number of scalar
operations, when the optimal values for chaining matrices Ai . . .Ak
and Ak+1 . . .A j are known. The final answer for this is held in
chain1 (1,n), where n is the number of matrices that are being
multiplied.

To turn this into a more efficient array-based version, we employ
the usual technique and memoize the results of the recursion:

chain2 :: (N,N)→ N
chain2 (m,n) = table ! (m,n) where

table = tabulate ((0,0),(n,n)) chain
chain (i, j)
| i j = 0
| i< j = minimum [ai ∗ak+1 ∗aj+1 +

table ! (i,k)+ table ! (k+1, j) | k← [i . . j−1]] .

Although the recursive definition is in two variables, we can capture
this quite simply by creating a multi-dimensional array. Note that
all the complexity is hidden in the function tabulate, which is
overloaded on the type of indices.

The bitonic travelling-salesman problem The bitonic travelling-
salesman problem is a simple variation of the classic NP-hard
travelling-salesman problem: given a set of points and distances
between each pair of points, the task is to find the shortest route that
visits each point exactly once before returning back to the start. The
variation is that the points are assumed to be on a plane, and share
no x coordinate. Furthermore, the solutions are restricted to consider
only bitonic tours: paths that start at the leftmost point, then move
strictly towards the rightmost point, and then move strictly left back
to the start, having covered all points. For convenience we assume
that there are m points, p0 . .pm, ordered by their x coordinate. We
denote the distance between the points pi and pj by pi pj. Under
these circumstances, it can be shown that the optimal path is found
in O(m2) time.

First we present a solution that uses strong induction over the
naturals. We ensure that the value of bitonic1 n is the length of the

p0

p1

pk

pk+1 pn+1

pn+2

bitonic1 k

bitonic1 (n+1)

Figure 1. Adding pn+2 to the tour given by bitonic1 k.

shortest tour that includes all the points p0 . .pn+1. The base case is
bitonic1 0, which is simply twice the distance between the first two
points. For the inductive case, we assume that the result of bitonic1 i
is the shortest tour for all i 6 n, and show how to find the shortest
tour for bitonic1 (n+ 1). Consider the diagram in Figure 1. If we
add the point pn+2, at the far right of the tour, then this must be
connected to the point pn+1, and also to some other point pk where
k 6 n. Since the tour is bitonic, this implies that there must be a
path that connects the points pk+1 . .pn+1 in succession. Therefore,
a bitonic tour with pn+2 at its rightmost point is given by bitonic k
plus these connections, and minus the path between pk and pk+1. We
are obviously interested in finding the shortest tour given by some k.
This is expressed precisely in the following recursive function:

bitonic1 ::N→ R
bitonic1 0 = 2∗p0 p1
bitonic1 (n+1) = minimum [bitonic1 k−pk pk+1 +pk pn+2

+ sum [pi pi+1 | i← [k+1 . .n+1]] | k← [0 . .n]] .

Using this recurrence, the solution is found in bitonic1 (m− 1).
To turn this into an efficient version we must memoize the results
of bitonic1 k to avoid the recomputation of subsolutions. We omit
this definition, since it is similar to the array-based solutions of the
previous examples.

A second solution to the bitonic travelling-salesman problem
can be formulated that has quite a different invariant. The recursion
equation for bitonic′1 i j expresses the minimal traversal of the points
that starts at pi, travels strictly left to p0, and then strictly right to pj.
We assume that i 6 j, and that all points smaller than j are in the
path. Clearly, when i j we have a cycle: the final answer is to be
found in bitonic m m.

bitonic′1 :: (N,N)→ R
bitonic′1 (0,0) = 0
bitonic′1 (0,1) = p0 p1
bitonic′1 (i, j)
| i< j−1 = bitonic′1 (i, j−1)+pj−1 pj
| otherwise = minimum [bitonic′1 (k, i)+pk pj | k← [0 . . i−1]]

There are two base cases for this recursion. The first case is the
tour that contains only the point p0, which has a distance of 0. The
second base case is a path that connects p0 and p1, which has length
p0 p1. Now we consider a path from pi to pj. When i< j−1, then
we must connect pj−1 and pj, since our invariant is that all points
less than j are in the path, so this distance is added to the result of
bitonic′1 i (j− 1). Otherwise, either i j− 1 or i j, and in both
cases we find the minimal path that has one end at i, and the other
end going through some k and immediately to j. To turn this into
an efficient version we must construct a table in two dimensions.
Again, we omit this definition, since as with the previous examples,
it follows quite naturally from the recursive specification.

In each of these examples, we turn a recursive definition into a
more efficient array-based solution that solves the problem. How-
ever, this is unsatisfactory in the sense that we have no guarantee
that the recursion is well-defined. In the remainder of the paper we

3

will focus on recursion schemes where the structure of the lookup
table comes from the data itself.

3. Background
In this section we introduce some of the basic concepts that will be
used in the remainder of the paper, and show how these notions can
be implemented in Haskell.

Inductive types Algebras and coalgebras form the basis for the
categorical description of structured recursion schemes. Given
an endofunctor F : C → C , an F-algebra is a pair (a,A), where
a : F A→ A is an arrow and A : C is an object, which are known as
the action and carrier of the algebra. (This deviates a little from the
standard notation (A,a), since it gives us syntax that distinguishes
algebras from coalgebras.) An F-homomorphism between algebras
(a,A) and (b,B) is an arrow h : A→ B : C such that h · a = b · F h.

F A F B

A B

→a
→F h

→ b

→
h

Since F-homomorphisms compose and have an identity, it follows
that F-algebras and F-homomorphisms form a category, which we
call F-Alg(C). The initial object of this category, if it exists, is
given by (in,µF) and called the initial F-algebra. The initiality
implies that to each F-algebra, (a,A), there exists a unique F-
homomorphism, a : (in,µF)→ (a,A), called a fold. The algebra
in is, in fact, an isomorphism, so µF is a fixed-point of F (the least
fixed-point), a fact known as Lambek’s lemma [12]. We call µF an
inductive type.

Dually, given an endofunctor G : C → C , a G-coalgebra is a pair
(C,c), where C : C is the carrier and c : C→ G C is the action of
the coalgebra. A G-homomorphism between coalgebras (C,c) and
(D,d) is an arrow h : C→ D : C that satisfies G h · c = d · h. Just as
before, a category G-Coalg(C) can be formed from G-coalgebras
and G-homomorphisms. The final object of this category, if it exists,
is given by (νG,out) and called the final G-coalgebra. The unique
homomorphism to the G-algebra (C,c), called an unfold, is written
c : C→ νG.

The category F-Alg(C) has more structure than C . The forgetful
or underlying functor UF : F-Alg(C)→ C forgets about the addi-
tional structure: UF (a,A) = A and UF h = h. An analogous functor
can be defined for coalgebras: UG : G-Coalg(C)→ C .

Inductive types in Haskell The standard approach to implement-
ing this machinery in Haskell is to make in a data constructor of a
generic fixed-point constructor: data µF= In {in◦ ::F (µF)}. We
depart from this approach, and instead use Haskell’s type classes
and family synonyms [4] to witness the isomorphism in : F (µF)∼=
µF : in◦. Thus, for inductive types, we introduce the following class:

class (Functor F)⇒ Inductive F where
type µF ::∗
in ::F (µF)→ µF
in◦ ::µF→ F (µF)
- :: (F a→ a)→ (µF→ a) .

Here, in is implemented as a function rather than a data constructor,
and there is an obligation on the implementer to ensure that in
and in◦ are indeed inverses. However, it is possible to define in◦
in terms of a fold, and vice versa, so these form suitable default
implementations:

in◦ = fmap in
a = a · fmap a · in◦ .

This allows us to keep the implementation of the fixed point
abstract, and in turn, gives us the freedom to associate efficient
representations to base functors.

This is particularly useful for primitive types such as natural
numbers. The base functor for these is expressed by Nat:

data Nat n = Zero | Succ n
instance Functor Nat where

fmap f Zero = Zero
fmap f (Succ x) = Succ (f x) .

The Inductive instance for this datatype is simply the natural
numbers, which are implemented efficiently as integers in Haskell:

instance Inductive Nat where
type µNat= N
in Zero = 0
in (Succ n) = n+1
in◦ 0 = Zero
in◦ (n+1) = Succ n .

This lets us freely use properties of the structure of natural numbers
without being too heavily penalized.

Comonads Functional programmers have embraced monads, and
to a lesser extent, comonads, to capture effectful and context-
sensitive computations. We shall use comonads to model ‘recursive
calls in context’. A comonad is a functor N : C → C equipped with
a natural transformation ε : N →̇ Id (counit), that extracts a value
from a context, and a second natural transformation δ : N→̇N◦N
(comultiplication) that duplicates a context. These functions are
subject to the comonad laws:

(ε◦ idN) · δ= idN , (1a)
(idN ◦ε) · δ= idN , (1b)
(δ◦ idN) · δ= (idN ◦δ) · δ . (1c)

The first two properties, the counit laws, state that duplicating a
context and then discarding a duplicate is the same as doing nothing.
The third property, the coassociative law, equates the two ways
of duplicating a context twice. Here we use categorical notation,
where natural transformations can be composed horizontally (◦), and
vertically (·). (Recall that given functors F,F′ : C →D and G,G′ :
D → E , and natural transformations α : F →̇F′ and β : G →̇G′,
the horizontal composition β◦α : G◦F→̇G′ ◦F′ has components
(β◦α) A = G′ (α A) · β (F A) = β (F′ A) · G (α A), for all A.)

4. Histomorphisms
Dynamic programming algorithms make use of solutions to previ-
ously visited subproblems to compute the values of new ones. In
other words, values that are computed are placed in some context,
and then extracted from that context when needed. As a first ap-
proximation, this pattern is captured by a histomorphism, which has
access to the whole history of a computation. Recall that a fold is
made available the result of the recursive calls on the immediate
substructures. By contrast, a histomorphism can make use of the
results of the recursive calls on all substructures.

Before we go into the details of how a histomorphism is defined,
we first introduce the so-called cofree comonad of a functor F, which
we write as F∞. This comonad serves to provide the context in which
results are placed during recursive calls. Loosely speaking, it serves
as a generic counterpart of the memo tables implemented by arrays
above.

Cofree comonad Categorically speaking, the cofree comonad
comes from the following relationship, called an adjunction, be-

4

tween the category of coalgebras and its underlying category.

C F-Coalg(C)→⊥
CofreeF

→ UF

(2)

The forgetful functor UF has a right adjoint CofreeF that maps an
object A to the cofree coalgebra CofreeF A = (F∞ A, tail∞ A). Very
generally speaking, CofreeF can be used to capture the behaviour of
‘systems’. It may help to think of the functor F as a static description
of all possible transitions for a class of different systems, and of
the object A as a type of system states. The elements of F∞ A then
capture the entire behaviour of a system as the infinite unfolding
of all possible transitions. The action of the cofree coalgebra
tail∞ : F∞ A→ F (F∞ A) maps such a description to the F-structure
of all possible successor systems.

The adjunction provides further infrastructure: the so-called
unit and counit, which are natural transformation that obey certain
laws. Given a state-transition function expressed as an F-coalgebra
a : A→ F A, the unit η which we write η (A,a) = a : A→ F∞ A
constructs the infinite unfolding from a given initial state. The
counit ε which we denote head∞ : F∞ A→ A extracts the initial
state of a system. This data satisfies an important property, which
establishes a bijection between certain arrows in C and certain
arrows in F-Coalg(C). Specifically, an F-coalgebra homomorphism
g : (A,a)→ CofreeF B is uniquely determined by a mapping f : A→
B from states of type A to observations of type B. This universal
property can be neatly expressed as an equivalence:

f = head∞ B · g ⇐⇒ F∞ f · a = g , (3)

for all arrows f : A→ B and homomorphisms g : (A,a)→CofreeF B.
Every adjunction induces a comonad [9]. The adjunction (2)

gives rise to the cofree comonad F∞ = UF ◦CofreeF.

The cofree comonad in Haskell One can show that final coalge-
bras and cofree coalgebras are interdefinable. In one direction we
have νF∼= F∞ 1 where 1 is the final object. In the other direction we
have F∞ A∼= ν X . A×F X, which forms the basis for an implemen-
tation in Haskell. Using Haskell’s higher-kinded datatypes, F∞ A
can be readily implemented as follows.

data F∞ a = Cons∞ {head∞ :: a, tail∞ ::F (F∞ a)}
instance (Functor F)⇒ Functor (F∞) where

fmap f (Cons∞ a ts) = Cons∞ (f a) (fmap (fmap f) ts)

Here, Cons∞ is the inverse of the isomorphism head∞M tail∞, where
(M) is the split operator:

(M) :: (a→ b1)→ (a→ b2)→ a→ (b1,b2)
f Mg = λx→ (f x,g x) .

The type F∞ can be seen as the type of generalized streams of
observations—it behaves as a ‘stream’ because each successive
layer has a head∞ that contains a value, and ‘generalized’ because
the ‘tail’ is an F-structure of ‘streams’ rather than just a single
one. A generalized stream is, in fact, very similar to a generalized
rose tree, except that the latter is usually seen as an element of an
inductive type, whereas this construction is patently coinductive.
If we instantiate the base functor of the cofree comonad to Id, we
obtain the type of simple streams.

Given a coalgebra a : A → F A, the implementation of the
unit a : a→ F∞ a is fairly straightforward, where the function
cons∞ :: (a,F (F∞ a))→ F∞ a is the uncurried version of Cons∞:

- :: (Functor F)⇒ (a→ F a)→ (a→ F∞ a)
a = h where h = cons∞ · (idM fmap h · a) .

This takes an initial seed that is used to create the head of the
structure, and is also combined with the algebra to recursively grow
the next level of values in the tails.

As its name suggests, the cofree comonad is comonadic, and so
comes equipped with a means of extracting a value from its context,
ε= head∞, and a means of duplicating a context, δ= tail∞ , which
uses an entire F∞-structure as the state!

We have noted above that Id∞ yields the type of streams. A more
interesting base functor is Nat which gives rise to the type Nat∞ of
non-empty colists. For example, the call in◦ 2 generates the colist

Cons∞ 2 (Succ (Cons∞ 1 (Succ (Cons∞ 0 Zero)))) .

This corresponds to the list containing 2 and all of its predecessors.

Histomorphisms With these basics in place, we are now ready to
give the original formulation of histomorphisms [14].

The argument to a histomorphism is a ‘context-sensitive’ algebra
a : F (F∞ A)→ A that works on a structure that contains all the
recursive subsolutions, and combines these to form a new solution
of type A. Informally, F∞ A is a hierarchical memo-table where each
successive level contains a subsolution of type A together with an
F-substructure; the deepest level is the base case of the datatype.

A histomorphism is defined to be the unique solution x : µF→ A
of the equation:

x · in = a · F (F∞ x · in◦) . (4)

The coalgebra in◦ :µF→ F∞ (µF) turns an element of an inductive
type into a table of all substructures. The histomorphism x is
recursively applied to each of the substructures, making the results
of the recursive calls readily available to the algebra a.
Remark. There are a number of different variations of this definition,
depending on how the argument of F is expressed. In the definition
above we have used a formulation that is based on the unit of
the adjunction (2): h = F∞ x · in◦ . The original characterization
by Uustalu and Vene [14] is recovered if we identify F∞ A and
ν X . A×F X, thus giving us h = xM in◦ .

Equation (4) specifies the notion of an histomorphism, however,
it does not serve as a blue-print for an efficient implementation.
Indeed, as an implementation it is typically exponential in the sense
that the annotated tree is recomputed at every recursive call. Also, at
the outset it is not clear that the equation (4) has a unique solution.
We postpone both issues until Section 5 where we attack them in a
more general setting.

Histomorphisms in Haskell We can turn the naive definition of a
histomorphism into a recursion scheme in Haskell by making the
most of the fact that in has an inverse, in◦, which is provided by the
Inductive typeclass:

histo1 :: (Inductive F)⇒ (F (F∞ a)→ a)→ (µF→ a)
histo1 a = x where x = a · fmap (fmap x · in◦) · in◦ .

The histomorphism first deconstructs a recursive type to expose
one level of its base functor. The function in◦ ::µF→ F∞ (µF)
is then applied to the functor arguments, turning them into a table
of predecessors, before the histomorphism is recursively applied
with fmap (histo1 a) to produce subsolutions as labels to each
level. Finally, the algebra a takes this structure that contains all
subsolutions, and combines them to form a final solution.

5. Recursion Schemes From Comonads
Histomorphisms involve both an algebra and a coalgebra, and
combine them in an interesting way. We have noted above that
in◦ is a coalgebra, but it is actually a bit more: it is a coalgebra for

the comonad F∞. Furthermore, the algebra in and the coalgebra in◦
go hand-in-hand. They are related by a so-called distributive law λ :
F ◦ F∞ →̇ F∞ ◦ F and form what is known as a λ-bialgebra, a

5

combination of an algebra and a coalgebra with a common carrier.
In particular, in and in◦ satisfy the so-called pentagonal law.

F (µF)

F (F∞ (µF))

µF

F∞ (F (µF))

F∞ (µF)

→in

→
F in◦

→ λ (µF)

→in◦

→

F∞ in

(5)

Loosely speaking, the distributive law λ : F◦F∞ →̇F∞ ◦F defined

λ A = F∞ (F (head∞ A)) · F (tail∞ A) (6)

allows us to swap the functors F and F∞.
The cofree comonad is by no means special. In fact, histomor-

phisms are an instance of recursion schemes from comonads [15].
We postpone a formal introduction of the scheme after we have
provided the necessary background in the following section, which
can be skipped by those already familiar with the material.

5.1 Background
Coalgebras for a comonad A coalgebra for a comonad N is an
N-coalgebra (C,c) that respects ε and δ:

ε C · c = idC , (7a)
δ C · c = N c · c . (7b)

If we first create a context using c and then focus, we obtain the
original value. Creating a nested context is the same as first creating
a context and then duplicating it. For example, the so-called cofree
coalgebra (N C,δ C) is respectful, which follows directly from (1b)
and (1c).

Coalgebras that respect ε and δ and N-coalgebra homomor-
phisms form a category, known as the (co)-Eilenberg-Moore cate-
gory and denoted CN.

Eilenberg-Moore construction As noted above, every adjunction
generates a comonad. The converse is also true: every comonad N
induces an adjunction that generates N—in fact, in two canonical
ways. One construction was discovered by Kleisli [11], the other by
Eilenberg and Moore [5]. We shall need the latter, which constructs
a right adjoint to the forgetful functor UN : CN→ C .

C CN→⊥
CofreeN

→UN

The functor CofreeN maps an object to the cofree coalgebra for N:

CofreeN B = (N B,δ B) , (8a)
CofreeN f = N f . (8b)

The adjunction establishes a bijection between certain arrows in C
and certain arrows in CN. Specifically, an N-coalgebra homomor-
phism h : (A,a)→ CofreeN B is uniquely determined by an arrow
f : A→ B in C . As before, this universal property can be expressed
as an equivalence:

f = ε B · h ⇐⇒ N f · a = h , (9)

for all arrows f : A→ B and homomorphisms h : (A,a)→ (N B,δ B).
The homomorphism h is also called the transpose of f and is
denoted bf c= N f · a. Conversely, f is the transpose of h, denoted
dhe= ε B · h.

Eilenberg-Moore categories generalize categories of coalgebras:
we have F-Coalg(C)∼=CN where N= F∞ is the cofree comonad. In

particular, F-coalgebra homomorphisms are in 1-1 correspondence
to N-coalgebra homomorphisms:

A B

F A F B

→h

→a → b

→
F h

⇐⇒
A B

F∞ A F∞ B

→h

→a → b

→
F∞ h

. (10)

Note that the isomorphism F-Coalg(C) ∼= CN implies that a is
always a coalgebra for the comonad F∞. Conversely, each respectful
F∞-coalgebra is of this form.

Distributive laws A distributive law λ : F◦N→̇N◦F of an endo-
functor F over a comonad N is a natural transformation satisfying
the two coherence conditions:

(ε◦F) · λ= F◦ε , (11a)
(δ◦F) · λ= (N◦λ) · (λ◦N) · (F◦δ) . (11b)

The first law has type F ◦N→ F, and states that there are two
equivalent ways of extracting a value from a comonadic context
that is nested in a functor: either by first exposing the comonad to
the outside by applying a distributive law, and then extracting the
functorial value from the comonadic context; or by working directly
inside the functor, and extracting a value from the comonadic context
that is there. The second law has type F◦N→ N◦N◦F and states
that pushing a functorial value into a context and then duplicating
the context is equivalent to first duplicating the context embedded in
a functor, and then shifting the functorial value inside the contexts.

One can show that the distributive law λ : F◦F∞ →̇F∞ ◦F defined
in equation (6) obeys these laws; the proof is beyond the scope of
this paper.

Bialgebras A bialgebra combines an algebra and a coalgebra
with a common carrier. Bialgebras come in many flavours; we
need the variant that combines F-algebras and coalgebras for a
comonad N. The two functors have to interact coherently, described
by a distributive law.

Let λ : F◦N→̇N◦F be a distributive law for the endofunctor F
over the comonad N. A λ-bialgebra (a,X,c) consists of an F-
algebra a and a coalgebra c for the comonad N such that the
pentagonal law holds:

c · a = N a · λ X · F c . (12)

Loosely speaking, this law allows us to swap the algebra a and the
coalgebra c. A λ-bialgebra homomorphism is both simultaneously
an F-algebra and an N-coalgebra homomorphism.

The pentagonal law (12) has two asymmetric renderings, which
identify the algebra a and the coalgebra c as homomorphisms.

F X F (N X)

X N X

→a

→F c

→ N a·λ X

→c

F X

F (N X)

X

N (F X)

N X

→a
→F c

→ λ X

→c →

N a

X F X

N X N (F X)

→c

→a

→ λ X·F c

→

N a

The diagram on the left shows that c is an F-algebra homomorphism.
Dually, the diagram on the right identifies a as an N-coalgebra
homomorphism.

5.2 Recursion Schemes from Comonads
Now that the terminology is in place, we are in a position to gen-
eralize histomorphisms to recursion schemes from comonads [15].

6

These form a general recursion principle that makes use of a
comonad N to provide ‘contextual information’ to the algebra of the
to-be-defined function.

Let λ : F ◦N →̇N ◦F be a distributive law, and let (in,µF,c)
be a λ-bialgebra, where c = N in · λ (µF) . For any (F ◦N)-
algebra (b,B) there is a unique arrow f : µF→ B such that

f · in = b · F (N f · c) . (13)

The composition N f · c creates a context that makes the results of
recursive calls available to the algebra b. Note that b is a ‘context-
sensitive’ algebra—an (F ◦N)-algebra, rather than merely an F-
algebra.

One way to prove uniqueness is to use the Eilenberg-Moore ad-
junction (9) to relate solutions of equation (13) to certain λ-bialgebra
homomorphisms. Abstracting away from in and identifying N f · c
as the transpose of f , one can establish the following equivalence

f · a = b · F h ⇐⇒ h · a = bbc · F h , (14)

where h = bf c= N f · c is the transpose of f . The diagrammatical
rendering makes explicit that h is not only an F-algebra homomor-
phism but also a λ-bialgebra homomorphism.

F A F (N B)

A B

→F h

→a → b

→
f

⇐⇒

F A F (N B)

A N B

N A N (N B)

→F h

→a → bbc

→
h

→c → δ B

→
N h

(15)

For the proof of this fact we refer to [8]. Now, if a is in, the action
of the initial algebra, the homomorphism h is uniquely defined since
it is a fold, and hence f is uniquely defined as well.

Histomorphisms revisited To show that the original formulation
of histomorphisms is an instance of this scheme, we must show
that in and in◦ form a λ-bialgebra, where λ : F◦F∞ →̇F∞ ◦F. To
this end we make use of the following 1-1 correspondence between
id-bialgebras and λ-bialgebras, which is a consequence of the fact
that F-Coalg(C)∼= CN.

F X

F (F X)

X

F (F X)

F X

→
a

→F c

→ id X

→

c

→

F a

⇐⇒

F X

F (F∞ X)

X

F∞ (F X)

F∞ X

→

a

→
F c

→ λ X

→

c

→

F∞ a

(16)

Note that for id-bialgebras there is no coherence requirement on
the F-coalgebra as F is just a functor. Furthermore, recall that c
is always a coalgebra for the comonad F∞ and that each respectful
F∞-coalgebra is of this form.

The proof obligation that (in,µF, in◦) is a λ-bialgebra is now
easy to discharge.

in◦ · in = F∞ in · λ (µF) · F in◦

⇐⇒ { (16) }
in◦ · in = F in · id (µF) · F in◦ .

The latter equation holds trivially.

Efficiency improvements We have noted before that equation (4)
is merely a specification of a histomorphism. Even though it is
executable, it is not fit for public consumption as it implements
the naive recursive definition, which often leads to an exponential
running time. In a sense, the original definitions of knapsack and
friends suffer from two problems: First, it is not clear that the
recursion equations have a solution—framing the algorithm as
an instance of equation (4) solves this problem; and second, as a
program the recursion equations are horribly inefficient—we tackle
this problem next.

Because of the 1-1 correspondence (14) we can implement
f : µF→ B in terms of h : µF→ F∞ B, which constructs an entire
table of answers: f = dhe = head∞ B · h = head∞ B · bbc . So it
remains to derive an efficient implementation of bbc. To this end
observe that (bbc,F∞ B,δ B) forms a λ-bialgebra, which is also
related to an id-bialgebra.

F (F∞ B)

F (F (F∞ B))

F∞ B

F (F (F∞ B))

F (F∞ B)

→
bbc

→
F (tail∞ B)

→ id (F∞ B)

→

tail∞ B

→

F bbc

⇐⇒

F (F∞ B)

F (F∞ (F∞ B))

F∞ B

F∞ (F (F∞ B))

F∞ (F∞ B)

→

bbc
→
F tail∞ B

→ λ (F∞ B)

→

tail∞ B

→

F∞ bbc

The diagram on the left identifies bbc as an F-coalgebra homo-
morphism: tail∞ B · bbc = F bbc · F (tail∞ B). Since furthermore
head∞ B · bbc= b using (9), we can invoke the universal property
of cofree coalgebras (3) and conclude

bbc= F∞ b · F (tail∞ B) .

Consequently, the histomorphism f is given by

f = head∞ B · F∞ b · F (tail∞ B) .

Loosely speaking, we have managed to turn the exponential specifi-
cation into an implementation with a quadratic running-time. The
fold makes a single sweep through the input structure; for each level
the context-sensitive algebra b is mapped over the table to create a
table for the next level of recursion. (Of course, all of this depends
on the particulars of F and b, which is why we said “loosely”.)

Ideally, we would like b to be invoked only once per level.
Interestingly, we can achieve this goal if we make use of the
fact that h is a λ-bialgebra homomorphism; a blend of both an
F-algebra and an F∞-coalgebra homomorphism. Furthermore recall
that F-coalgebra homomorphisms are in 1-1 correspondence to
F∞-coalgebra homomorphisms (10).

F (µF) F (F∞ B)

µF F∞ B

F (µF) F (F∞ B)

→F h

→in → bbc

→
h

→in◦ → tail∞ B

→
F h

⇐⇒

F (µF) F (F∞ B)

µF F∞ B

F∞ (µF) F∞ (F∞ B)

→F h

→in → bbc

→
h

→in◦ → tail∞ B

→
F∞ h

7

Now we use the fact that h is both an F-algebra and an F-coalgebra
homomorphism.

h · in = bbc · F h ∧ F h · in◦ = tail∞ B · h
=⇒ { Leibniz }

head∞ B · h · in = head∞ B · bbc · F h ∧ tail∞ B · h = F h · in◦

⇐⇒ { head∞ B · bbc= b (9) and in isomorphism }
head∞ B · h · in = b · F h ∧ tail∞ B · h · in = F h

⇐⇒ { products }
head∞ B · h · inM tail∞ B · h · in = b · F hMF h

⇐⇒ { fusion }
(head∞ BM tail∞ B) · h · in = (bM id) · F h

⇐⇒ { head∞ BM tail∞ B isomorphism }
h · in = cons∞ · (bM id) · F h

Thus, h = cons∞ · (bM id) and consequently

f = head∞ B · cons∞ · (bM id) .

Finally, we have arrived at an efficient formulation, which is in fact
equivalent to the definition of histomorphisms by Uustalu and Vene
[14], though through a much shorter proof. This final solution folds
over the input in a single sweep with h, which returns the entire
history in a context. Once this is done, the head of this context is
extracted. Note also that this definition does not depend on laziness.

Histomorphisms in Haskell revisited The implementation of
more efficient histomorphisms in Haskell translates easily from
the categorical notation.

histo2 :: (Inductive F)⇒ (F (F∞ b)→ b)→ (µF→ b)
histo2 b = head∞ · cons∞ · (bM id)

This works by ensuring that the input value has an inductive type,
and folds this value in a single sweep into a structure of type F∞ b,
where the head contains the final solution.

5.3 Examples
Let us now apply the framework of histomorphisms to the examples
presented in Section 2. As we have seen, histomorphisms can only be
applied when the input types are initial algebras. This is certainly the
case for knapsack1, catalan1, and bitonic1 since the initial algebra in
question is simply the natural numbers. On the other hand, bitonic′1
and chain1 cannot be expressed as histomorphisms, since the input
to these functions, (N,N), is not an initial algebra.

As we shall see, there is one important modification that needs
to be made when translating the specifications to this version of
the algorithms: indices in both the specifications and the tabular
versions are absolute in the sense that they are indexed from some
fixed origin that is taken as a reference point. With histomorphisms,
the reference point is the ‘current’ point of call in the recursion, and
so indices that refer to subsolutions are relative.

Knapsack problem To express the knapsack problem as a histo-
morphism, we will need to consider the input parameter as an initial
algebra. This is more easily seen when we specialize the recursive
specification to expose the structure of natural numbers in c:

knapsack3 ::N→ R
knapsack3 0 = 0
knapsack3 (c+1) = maximum0
[v+ knapsack3 (c−w) | (w+1,v)← wvs,w 6 c] .

Just as in the array-based version of knapsack2, we will create an
algebra that replaces the recursive call in the body of the algorithm
with a lookup. This time, however, we will be looking up values in
the cofree structure of the naturals, Nat∞ v, rather than an array.

To turn this into a histomorphism, we provide a context-sensitive
algebra knapsack that uses the results of previous subsolutions found
in the Nat∞ v structure and returns the solution. This solution is then
used by histo2 which embeds this value at the top of the context that
is used in the next round of the recursion.

knapsack4 ::N→ R
knapsack4 = histo2 knapsack where

knapsack ::Nat (Nat∞ R)→ R
knapsack Zero = 0
knapsack (Succ table) = maximum0

[v+u | (w+1,v)← wvs,Just u← [lookup∞ table w]]

When knapsack is called for the first time, the lookup table is
Zero and contains no elements, so the result is simply 0. For each
successive call, knapsack has access to previous computed values in
table, one for each smaller knapsack capacity than the one currently
under consideration.

Note that we have adjusted the indices of the lookup: in the
original version, the recursive call is performed with knapsack (c−
w), which is the absolute position of the knapsack capacity minus
the weight of a given item. In the histomorphism version, we
replace the lookup with the value u, which is the result of a relative
indexing, where lookup∞ t (c− (c−w)) = lookup∞ t w. This works
out nicely because the ‘current’ capacity c is not available. Another
difference is that the out-of-bounds guard w 6 c has been replaced
by Just u← [. . .]. The maximum is then calculated just as in the
recursive version.

In order to find values in the Nat∞ v structure, we introduce
function lookup∞, which provides access to the results stored in the
head:

lookup∞ ::Nat∞ a→ N→Maybe a
lookup∞ (Cons∞ a) 0 = Just a
lookup∞ (Cons∞ a Zero) (n+1) = Nothing
lookup∞ (Cons∞ a (Succ as)) (n+1) = lookup∞ as n .

The effect of lookup∞ table n is to return the result that was
computed n ‘steps’ before the current point of call, since more
recent values are found at the head of a Cons∞ constructor.

Catalan numbers The generation of Catalan numbers proves to
be an instructive example, since it is not expressible as a histomor-
phism. First notice that each successive value makes use of all of the
subsolutions: this can be seen in the definition of catalan2, where
computing the value of catalan2 (n+1) must access all of the values
with indices in the range [0 . .n]. It may be tempting to admit the
following bogus definition as a histomorphism, where a Catalan
number is simply the result of the convolution, that is, summing the
multiplication of a list of prior elements with its reversal.

catalan3 ::N→ N -- BOGUS!
catalan3 = histo2 catalan where

catalan ::Nat (Nat∞ N)→ N
catalan Zero = 1
catalan (Succ table) = sum (zipWith (∗) xs (reverse xs))

where xs = elems∞ table

At each step of the histomorphism the table in scope contains only
the solutions to subproblems, so instead of pulling out values from
the table using an index, we can instead select all of the elements at
once, returning a list of all the previously computed solutions. So,
why is this function not well-defined?

The function at fault is elems∞, that extracts all of the values:

elems∞ ::Nat∞ v→ [v] -- BOGUS!
elems∞ (Cons∞ a Zero) = [a]
elems∞ (Cons∞ a (Succ as)) = a : elems∞ as .

This definition is bogus because we are converting the coinductive
Nat∞ v to a simple inductive list. Of course, this does not work in

8

general. We shall revisit the Catalan numbers later, and show how
they can be expressed as a dynamorphism.

The bitonic travelling-salesman problem The specification ex-
pressed by bitonic1 is another example where histomorphisms can-
not be used in an algorithm where the input type is an initial algebra.
The closest we can get is the following definition, which follows
directly from the specification. As before, the lookup is performed
on a table with a relative index.

bitonic2 ::N→ R -- BOGUS!
bitonic2 = histo2 bitonic where

bitonic ::Nat (Nat∞ R)→ R
bitonic Zero = 2∗p0 p1
bitonic (Succ table) = minimum [u−pk pk+1 +pk pn+2

+ sum [pi pi+1 | i← [k+1 . .n+1]] | k← [0 . .n],
Just u← [lookup∞ table (n− k)]]

where n = length∞ table

Since the input parameter n is not present, this definition makes use
of the function length∞, but this is unfortunately bogus:

length∞ ::Nat∞ v→ Int -- BOGUS!
length∞ (Cons∞ a Zero) = 0
length∞ (Cons∞ a (Succ as)) = 1+ length∞ as .

Again, we are handling values with coinductive types incorrectly:
this function has no solution when the input is infinite.

The heart of the problem with these examples lies in the fact that
we need access to the original parameter to the function, n, but this is
not available to us. Our attempts to recover this value resort to using
bogus functions that are not well-defined when the input is infinite.
We will revisit this problem after we introduce dynamorphisms.

6. Dynamorphisms
Histomorphisms insist that the input is an element of some initial
algebra. Looking back at Section 2 we note that this is the case
for some but not all of the examples: chain1 and bitonic′1, for
instance, take a pair of natural numbers as input. For these examples
dynamorphisms come to the rescue. The basic idea is simple, but
far reaching:

When we implemented histomorphisms

x · in = a · F (F∞ x · in◦) ,

we made most of the fact that in has an inverse, turning the algebra
on the left into a coalgebra on the right:

x = a · F (F∞ x · in◦) · in◦ .

The idea of dynamorphisms is to replace in◦ by a so-called recursive
coalgebra c.

x = a · F (F∞ x · c) · c . (17)
Loosely speaking, recursiveness guarantees that the equation still
has a unique solution. We shall say more about recursive coalgebras
in Section 7.1.
Remark. Dynamorphisms were originally introduced in the setting
of partial orders and continuous functions with no restriction on the
coalgebra c [10]. Under these assumptions (17) has only a canonical
solution, not a unique solution. We do not wish to go down this
route.

As with histomorphisms, it is useful to abstract away from the
cofree comonad F∞ and develop the recursion scheme in a more
general setting. Before we do so, we record an implementation of
this (inefficient) version of dynamorphisms in Haskell.

Dynamorphisms in Haskell The implementation is

dyna1 :: (Functor F)⇒ (F (F∞ a)→ a)→ (c→ F c)→ (c→ a)
dyna1 a c = x where x = a · fmap (fmap x · c) · c .

As with the definition of histo1, this is not efficient, since the
intermediary structure is built in exponential time.

7. Recursion Schemes From Recursive Coalgebras
Histomorphisms combine an algebra and a coalgebra. For dynamor-
phisms we have transmogrified the algebra into a coalgebra. Thus,
dynamorphisms combine two coalgebras, of which one is a coalge-
bra for a comonad. As before, the two ingredients are related by a
distributive law λ : F◦F∞ →̇F∞ ◦F.

F C

F (F∞ C)

C

F∞ (F C)

F∞ C

→
F c

→ λ C

→

c
→

c

→
F∞ c

This is essentially the same diagram as in (5), only that the arrows
previously labelled with in and F∞ in have been flipped. There is
no established name for the resulting structure. Capretta et al. [3]
have coined the combination of two coalgebras a λ-dicoalgebra. We
adopt the terminology, even though this is likely to cause confusion
(there are also dialgebras, which are entirely different beasts).

As usual, we postpone a formal introduction of the scheme after
we have provided the necessary background.

7.1 Background
Hylomorphisms and recursive coalgebras A hylomorphism (or
algebra-from-coalgebra homomorphism) is a recursion scheme
that captures the essence of divide-and-conquer algorithms. Such
algorithms have three phases: first, a problem is broken into sub-
problems by a coalgebra c : C→ F C; second, sub-problems are
recursively turned into sub-solutions; and finally, sub-solutions are
combined by an algebra a : F A→ A to form a solution. An arrow
h : C→ A is a hylomorphism, h : (C,c)→ (a,A), if it satisfies

h = a · F h · c . (18)

A coalgebra (C,c) is recursive (or algebra-initial) if for every
algebra (a,A) there is a unique hylomorphism (C,c) → (a,A)
satisfying (18). An important recursive coalgebra is (µF, in◦), which
is also the final recursive coalgebra. Thus, using recursive coalgebras
allows us to generalize the development of histomorphisms, which
are a special case of dynamorphisms where the coalgebra is in◦.

Dicoalgebras Let λ : F ◦N →̇N ◦F be a distributive law for the
endofunctor F over the comonad N. A λ-dicoalgebra (X,c,d)
consists of an F-coalgebra c and a coalgebra d for the comonad N
such that the pentagonal law holds:

N c · d = λ X · F d · c . (19)

The pentagonal law (19) also has an asymmetric rendering, which
identifies the coalgebra c as an N-coalgebra homomorphisms.

F X

F (N X)

X

N (F X)

N X

→F d

→ λ X

→

c

→d
→
N c

X F X

N X N (F X)

→d

→c

→ λ X·F d

→
N c

(20)

9

7.2 Recursion Schemes From Recursive Coalgebras
Let λ : F ◦N →̇N ◦F be a distributive law, and let (C,c,d) be a
λ-dicoalgebra where c : C → F C is recursive. For any (F ◦N)-
algebra (a,A) there is a unique arrow f : C→ A such that

f = a · F (N f · d) · c . (21)

Quite amazingly, everything we said about histomorphisms
and recursion schemes from comonads generalizes to this more
expressive setting. In particular, there is a 1-1 correspondence
between two kinds of hylomorphisms:

f = a · F h · c ⇐⇒ h = bac · F h · c ,

where h = bf c=N f · d is the transpose of f . Since the coalgebra c is
recursive, the equation on the right has a unique solution and hence
the original equation (21), as shown by Capretta et al. [3].

Dynamorphisms revisited To show that dynamorphisms are an
instance of this scheme, we have to prove that c and c form a λ-
dicoalgebra, where λ : F◦F∞ →̇F∞ ◦F. Like for bialgebras, there is
a 1-1 correspondence between id-dicoalgebras and λ-dicoalgebras.

F X

F (F X)

X

F (F X)

F X

→F g

→ id X

→

f

→g
→
F f

⇐⇒

F X

F (F∞ X)

X

F∞ (F X)

F∞ X

→F g

→ λ X

→

f

→g

→
F∞ f

(22)

Using this property, the proof that (C,c, c) forms a λ-dicoalgebra
is a one-liner.

F∞ c · c = λ X · F c · c
⇐⇒ { (22) }

F c · c = id X · F c · c

Thus dynamorphisms are indeed an instance of the scheme above. In
addition, histomorphisms are also an instance, since they are simply
the case where we specialize further and instantiate C :=µF and
c := in◦.

Efficiency improvements First of all, note that (bac,F∞ A,δ A)
still forms a λ-bialgebra and that h can be seen as an arrow from a
λ-dicoalgebra to a λ-bialgebra, see the diagram on the right below.

F C F (F∞ A)

C F∞ A

F C F (F∞ A)

→F h

→ bac

→
h

→c

→c

→ tail∞ A

→
F h

⇐⇒

F C F (F∞ A)

C F∞ A

F∞ C F∞ (F∞ A)

→F h

→ bac

→
h

→c

→c

→ tail∞ A

→
F∞ h

Again, we leverage the fact that F-coalgebra homomorphisms are
in 1-1 correspondence to F∞-coalgebra homomorphisms (10). The
derivation of an efficient implementation of h follows the template

laid out in Section 5.2—the proof below is even somewhat simpler,
even though it establishes a more general result.

h = bac · F h · c ∧ tail∞ · h = F h · c
=⇒ { Leibniz }

head∞ · h = head∞ · bac · F h · c ∧ tail∞ · h = F h · c
⇐⇒ { head∞ · bac= a (9) }

head∞ · h = a · F h · c ∧ tail∞ · h = F h · c
⇐⇒ { products }

head∞ · hM tail∞ · h = a · F h · cMF h · c
⇐⇒ { fusion }

(head∞ M tail∞) · h = (aM id) · F h · c
⇐⇒ { head∞ M tail∞ isomorphism }

h = cons∞ · (aM id) · F h · c
Since c is a recursive coalgebra, the last equation has a unique
solution.

Dynamorphisms in Haskell revisited The translation of this cate-
gorical machinery into Haskell is entirely straightforward:

dyna2 :: (Functor F)⇒ (F (F∞ a)→ a)→ (c→ F c)→ (c→ a)
dyna2 a c = head∞ · h where h = cons∞ · (aM id) · fmap h · c .

7.3 Examples
Dynamorphisms work by constructing an intermediate structure
with a coalgebra that stores the history of all subresults. One way
to interpret this is that the intermediate structure holds a call stack
of previous values that can be referenced. While more elaborate
functors are supported by the scheme, using a linear structure—
such as lists—is a particularly versatile option since we can flatten
more complex structures by providing a specific traversal. The base
functor for polymorphic nonempty lists has two constructors: one
for when there is a single element, and the other to add elements to
the list.

data List v x = Some v | Cons v x
instance Functor (List v) where

fmap f (Some v) = Some v
fmap f (Cons v x) = Cons v (f x)

To query values from this structure, we develop a number of
operations. First, we provide an indexing operator that takes a natural
number and returns the corresponding value, working back through
the hierarchy the given number of times. The interface is very similar
to the indexing operator for standard lists.

(!!∞) :: (Show a,Show v)⇒ (List v)∞ a→ N→ a
(Cons∞ a) !!∞ 0 = a
(Cons∞ a (Cons v as)) !!∞ (n+1) = as !!∞ n

Of course we could have defined this to be a total function, returning
a value of type Maybe a in case the indexing is out of bounds. For
our purposes, we use this operator since it reduces clutter in the code
that follows.

When more than one value is required at once, and assuming
they appear in a contiguous section, it is convenient to make use
of the function take∞ n, which takes n consecutive values from the
hierarchy.

take∞ ::N→ (List v)∞ a→ [a]
take∞ 0 = []
take∞ (n+1) (Cons∞ a (Some v)) = [a]
take∞ (n+1) (Cons∞ a (Cons v as)) = a : take∞ n as

Note that it might be tempting to define a related operator, drop∞ ::
N→ (List v)∞ a→ [a], which drops a given number of values from
the hierarchy before returning the values that remain. However, such

10

a definition would be bogus, since we cannot validly use induction
over values of type (List v)∞ v. The definition of take∞, however, is
perfectly valid, since are using induction over the natural numbers.

With these basic ingredients in place, we are now ready to define
some dynamorphisms.

Catalan numbers revisited We now revisit the Catalan numbers,
and show how they can be defined in terms of a dynamorphism.
The problem we had previously was that there was no means of
knowing where in the recursion a call was being made. To store this
information, we can define the coalgebra natural as follows:

natural ::N→ (List N N)
natural 0 = Some 0
natural (n+1) = Cons (n+1) n .

To validly apply this in a dynamorphism, we must argue that it is
a recursive coalgebra. This amounts to showing that when applied
recursively this has the halting property [1]. In this case we observe
that in the recursive case, the value n+ 1 is reduced by 1 at each
step.

Using this coalgebra, we can form the following definition:

catalan4 ::N→ N
catalan4 = dyna2 catalan natural where

catalan ::List N ((List N)∞ N)→ N
catalan (Some 0) = 1
catalan (Cons n table) = sum (zipWith (∗) xs (reverse xs))

where xs = take∞ n table .

The key here is that the algebra catalan knows about the current
depth of its application, which is held in n. Thus, the appropriate
number of values can be extracted from the table of previous values,
and convoluted just as in previous definitions.

The bitonic travelling-salesman problem revisited Clearly, using
the same technique as in the definition of catalan4, we can encode
the parameter n as a parameter. From here, producing a correct
version with a few modifications to bitonic2 is trivial.

For variety, we now discuss a solution that reflects the algorithm
described by bitonic′1. First we must consider which coalgebra and
algebra should be used. The carrier for both of these is already
determined by the type of the recursion, and must be (N,N). What
remains to be decided is the base functor for this computation. A
crucial part of the solution involves looking up distances between
points, and so it is important to keep track of the current point that is
being processed during the recursion steps. Therefore, to store these
values, we use a base functor of type List (N,N).

Let us consider the coalgebra that constructs the lookup structure.
One of the conditions we can impose is that i 6 j, since this formed
part of our invariant. With this in consideration, it makes sense that
only a triangle of values needs to be computed.

triangle1 :: (N,N)→ List (N,N) (N,N)
triangle1 (0,0) = Some (0,0)
triangle1 (0,1) = Some (0,1)
triangle1 (0, j) = Cons (0, j) (j−1, j−1)
triangle1 (i, j) = Cons (i, j) (i−1, j)

To argue that this coalgebra is recursive, we observe that the reverse
lexicographic ordering of the pair (i, j) always decreases, where the
relationship with a new pair (i′, j′) is given by (i, j)> (i′, j′)⇐⇒
j> j′ ∨ (j j′ ∧ i> i′). This strategy of building a triangle stores the
coordinates in scope as it goes, since this information becomes vital
when applying the algebra. Note that here we have included two

(0,0)

(0,1) (1,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3) (3,3)

Figure 2. Coordinate ordering given by triangle2.

base cases, both of which follow from the recursive definition of the
algorithm.

bitonic′2 :: (N,N)→ R
bitonic′2 = dyna2 bitonic triangle1 where

bitonic ::List (N,N) ((List (N,N))∞ R)→ R
bitonic (Some (0,0)) = 0
bitonic (Some (0,1)) = p0 p1
bitonic (Cons (i, j) table)
| i < j−1 = table !!∞ (j−1)+pj−1 pj
| i j−1 = minimum
[table !!∞ (k+ j)+pi−k−1 pj | k← [0 . . i−1]]
| i j = minimum
[table !!∞ k+pi−k−1 pj | k← [0 . . i−1]]

While this definition has some similarities to the specification in
bitonic′1, the indices are clearly quite different. As with histomor-
phisms, this is because in this definition we no longer have the
ability to make references to previously computed values by using
absolute indices: all the indexing into the t structure is relative to the
point of call. This is why the ‘otherwise’ clause from the recursive
definition has been split into two different cases.

Chain matrix multiplication The chain matrix multiplication
problem also involves computing a triangle of values, since in the
definition of chain1 i j we have the invariant that i 6 j. However, the
order in which this triangle is built is different to the definition of
triangle1. For one, we must ensure that i > 0, and furthermore, the
access pattern for values in the triangle is somewhat different, since
values are instead built from the diagonal to an edge.

triangle2 :: (N,N)→ List (N,N) (N,N)
triangle2 (0,0) = Some (0,0)
triangle2 (i, j)
| i j = Cons (i, j) (0, j−1)
| otherwise = Cons (i, j) (i+1, j)

Again, we must argue that this coalgebra is recursive, which is only
true when i 6 j. If i< j then i is increased until i j. When this is
the case, i is set to 0 and j is decreased by 1. Thus at any point in
the recursion, over the course of at most j steps the value will be
reduced to (0, j−1), and eventually this terminates.

The definition of the algebra of chain3 requires particular at-
tention to the relative indices: the base case is straightforward, but
when i< j we must calculate the offset carefully.

chain3 :: (N,N)→ N
chain3 = dyna2 chain triangle2 where

chain ::List (N,N) ((List (N,N))∞ N)→ N
chain (Some) = 0
chain (Cons (i, j) table)
| i j = 0
| i < j = minimum (zipWith (+) [ai ∗ak+1 ∗aj+1 +

table !!∞ offset k | k← [i . . j−1]] (take∞ (j− i) table))
where offset k = ((j∗ (j+1)− k ∗ (k+1)) ‘div‘ 2)− k+ j−1

To understand this definition, we first note that a cell with index
(i, j) is dependent on all the cells that are ‘above’ and to the ‘right’,
relative to the ordering imposed in triangle2, as depicted in Figure 2.

11

Taking values from the right is simple, since these are in order, and
can be extracted directly with the take∞ function. However, indices
of values that are picked from an offset above the current node
require careful calculation. The definition of offset k arises as a
consequence of the triangle numbers T (n) = ∑

n
x=1 x = n(n+1)/2,

where we subtract one triangle number from the other.

8. Related Work
Histo- and dynamorphisms The work we have presented builds
on the foundations that were set out in the original paper on his-
tomorphisms [14], where course-of-values iteration was captured
as a categorically-inspired recursion scheme. This work was later
extended to include dynamorphisms [10], with the specific goal
of extending the reach of histomorphisms to cover dynamic pro-
gramming algorithms. The authors there also present a number of
classic dynamic programming algorithms are given in terms of this
framework, and the derivation of efficient dynamorphisms rests on
the connection with hylomorphisms. The constructions presented
there differ in that they are all within CPO, where initial algebras
and final coalgebras coincide.

Recursion schemes from comonads The construction of recur-
sion schemes from comonads was first presented by Uustalu et al.
[15], where the relationship with histomorphisms is explored in
detail. That paper also provides an implementation of various recur-
sion schemes in Haskell although it does not make use of type class
synonyms, since it predates that work. The correspondence between
histomorphisms and recursion schemes from comonads is a direct
application of the unification of structured recursion schemes [8],
which further explores material on the relationship between recur-
sion schemes from comonads and the adjoint folds [6].

Recursion schemes from recursive coalgebras The notion of
obtaining uniqueness properties through recursive coalgebras comes
directly from the seminal paper on the topic [3], and a more gentle
introduction to recursive coalgebras can be found in the work
of Hinze et al. [7].

9. Conclusion
In this paper we have demonstrated the use of histomorphisms and
dynamorphisms through a number of examples, and have shown how
these categorically-inspired recursion schemes can be implemented
efficiently. The derivation of the efficient versions of histomorphisms
relies on their formulation as recursion schemes from comonads
and a correspondence between certain bialgebras. Similarly, the
derivation of efficient dynamorphisms relies on their formulation as
recursion schemes from recursive coalgebras and a correspondence
between certain dicoalgebras. In both cases, the Eilenberg-Moore
adjunction is at the heart of the development.

Future work There are a number of avenues for future work. One
aspect of dynamorphisms which we have not discussed is the choice
of base functor. In this paper, we linearized all structures, and this
has required us to pay particular attention to the relative indexing
schemes. Another option worth exploring are using a more direct
approach such as arrays with a focus. A more structured approach
would be to change the base functor to one that both deals with
sharing, and that also maintains the structure of the recursion. A
similar strategy was employed to turn hylomorphisms with nexuses
into dynamic algorithms [2].

Recursive coalgebras are modular in the sense that they can be
combined to form even more expressive schemes. For example, it
will be convenient to also avail the algebra to the original argument
of the function: this arises from considering parametrically recursive
coalgebras, which we do not explore here.

Acknowledgments
This work has been funded by EPSRC grant number EP/J010995/1,
on Unifying Theories of Generic Programming. The authors would
like to thank the anonymous reviewers for their helpful and con-
structive comments. In particular, they identified areas where further
explanation of our algorithms was needed, and prompted us to add
more diagrams to clarify the material.

References
[1] J. Adámek, D. Lücke, and S. Milius, “Recursive coalgebras of finitary

functors,” Theoret. Informatics Appl., vol. 41, no. 4, pp. 447–462, 2007.
doi:10.1051/ita:2007028

[2] R. Bird, Pearls of Functional Algorithm Design. Cambridge University
Press, 2010.

[3] V. Capretta, T. Uustalu, and V. Vene, “Recursive coalgebras from
comonads,” Information and Computation, vol. 204, no. 4, pp. 437–468,
2006. doi:10.1016/j.ic.2005.08.005

[4] M. M. T. Chakravarty, G. Keller, and S. P. Jones, “Associated type
synonyms,” in Proceedings of the 10th ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP ’05. ACM, 2005,
pp. 241–253. doi:10.1145/1086365.1086397

[5] S. Eilenberg and J. C. Moore, “Adjoint functors and triples,” Illinois J.
Math, vol. 9, no. 3, pp. 381–398, 1965.

[6] R. Hinze, “Adjoint folds and unfolds—an extended study,” Science of
Computer Programming, Aug. 2012. doi:10.1016/j.scico.2012.07.011

[7] R. Hinze, D. W. James, and T. Harper, “Theory and practice of fusion,”
in Proceedings of the 22nd Symposium on the Implementation and
Application of Functional Languages (IFL ’10), ser. Lecture Notes
in Computer Science, vol. 6647. Springer Berlin / Heidelberg, Sep.
2011, pp. 19–37. doi:10.1007/978-3-642-24276-2 2

[8] R. Hinze, N. Wu, and J. Gibbons, “Unifying structured recursion
schemes,” in Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP ’13. ACM, 2013.
doi:10.1145/2500365.2500578

[9] P. J. Huber, “Homotopy theory in general categories,” Mathematische
Annalen, vol. 144, pp. 361–385, 1961. doi:10.1007/BF01396534

[10] J. Kabanov and V. Vene, “Recursion schemes for dynamic program-
ming,” in Mathematics of Program Construction, 8th International
Conference, MPC 2006. Springer Berlin / Heidelberg, 2006, pp.
235–252. doi:10.1007/11783596 15

[11] H. Kleisli, “Every standard construction is induced by a pair of
adjoint functors,” Proceedings of the American Mathematical Society,
vol. 16, no. 3, pp. 544–546, Jun. 1965. doi:10.1090/S0002-9939-1965-
0177024-4

[12] J. Lambek, “A fixpoint theorem for complete categories,” Math.
Zeitschr., vol. 103, pp. 151–161, 1968. doi:10.1007/BF01110627

[13] S. Peyton Jones, Haskell 98 Language and Libraries. Cambridge
University Press, 2003.

[14] T. Uustalu and V. Vene, “Primitive (co)recursion and course-of-value
(co)iteration, categorically,” Informatica, Lith. Acad. Sci., vol. 10, no. 1,
pp. 5–26, 1999.

[15] T. Uustalu, V. Vene, and A. Pardo, “Recursion schemes from comon-
ads,” Nordic J. of Computing, vol. 8, no. 3, pp. 366–390, Sep. 2001.

12

http://dx.doi.org/10.1051/ita:2007028
http://dx.doi.org/10.1016/j.ic.2005.08.005
http://dx.doi.org/10.1145/1086365.1086397
http://dx.doi.org/10.1016/j.scico.2012.07.011
http://dx.doi.org/10.1007/978-3-642-24276-2_2
http://dx.doi.org/10.1145/2500365.2500578
http://dx.doi.org/10.1007/BF01396534
http://dx.doi.org/10.1007/11783596_15
http://dx.doi.org/10.1090/S0002-9939-1965-0177024-4
http://dx.doi.org/10.1090/S0002-9939-1965-0177024-4
http://dx.doi.org/10.1007/BF01110627

	Introduction
	Dynamic Programming
	Background
	Histomorphisms
	Recursion Schemes From Comonads
	Background
	Recursion Schemes from Comonads
	Examples

	Dynamorphisms
	Recursion Schemes From Recursive Coalgebras
	Background
	Recursion Schemes From Recursive Coalgebras
	Examples

	Related Work
	Conclusion

