
A Simple Implementation Technique for
Priority Search Queues

RALF HINZE

Institute of Information and Computing Sciences

Utrecht University

Email: ralf@cs.uu.nl
Homepage: http://www.cs.uu.nl/~ralf/

September, 2001

(Pick the slides at .../~ralf/talks.html#T28.)

Aim of the talk

☞ advertize priority search queues

☞ describe a new implementation technique for priority search queues

☞ promote views

1

Recap: views

A view allows any type to be viewed as a free data type. The following

view (minimum view) allows any list to be viewed as an ordered list.

view (Ord a) ⇒ [a] = Empty | Min a [a] where
[] → Empty
a1 : Empty → Min a1 []
a1 : Min a2 as
| a1 6 a2 → Min a1 (a2 : as)
| otherwise → Min a2 (a1 : as).

A view declaration for a type T consists of an anonymous data type,

the view type, and an anonymous function, the view transformation,

that shows how to map elements of T to the view type.

2

Recap: views (continued)

The view constructors, Empty and Min, can now be used to pattern

match elements of type [a] (where a is an instance of Ord).

selection-sort :: (Ord a) ⇒ [a] → [a]
selection-sort Empty = []
selection-sort (Min a as) = a : selection-sort as.

3

Priority search queues: signature

Priority search queues are conceptually finite maps that support effi-

cient access to the binding with the minimum value, where a binding

is an argument-value pair and a finite map is a finite set of bindings.

A priority search queue supports priority queue operations and search

tree operations (and so-called range queries).

data PSQ k p
-- constructors

∅ :: PSQ k p
{·} :: (k , p) → PSQ k p
insert :: (k , p) → PSQ k p → PSQ k p
from-ord-list :: [(k , p)] → PSQ k p

4

Priority search queues: signature (continued)

-- destructors

view PSQ k p = Empty | Min (k , p) (PSQ k p)
delete :: k → PSQ k p → PSQ k p

-- observers

lookup :: k → PSQ k p → Maybe p
to-ord-list :: PSQ k p → [(k , p)]

-- modifier

adjust :: (p → p) → k → PSQ k p → PSQ k p

NB. Both k and p must be instances of Ord .

5

Application: single-source shortest path

Dijkstra’s algorithm maintains a queue that maps each vertex to its

estimated distance from the source and works by repeatedly removing

the vertex with minimal distance and updating the distances of its

adjacent vertices.

The update operation is typically called decrease:

decrease :: (k , p) → PSQ k p → PSQ k p
decrease (k , p) q = adjust (min p) k q
decrease-list :: [(k , p)] → PSQ k p → PSQ k p
decrease-list bs q = foldr decrease q bs.

6

Application: single-source shortest path (continued)

type Weight = Vertex → Vertex → Double
dijkstra :: Graph → Weight → Vertex

→ [(Vertex ,Double)]
dijkstra g w s = loop (decrease (s, 0) q0)

where
q0 = from-ord-list [(v , +∞) | v ← vertices g]
loop Empty = []
loop (Min (u, d) q)

= (u, d) : loop (decrease-list bs q)
where bs = [(v , d + w u v) | v ← adjacent g u]

7

Implementation: tournament trees

Charles 4 Erik 2 Lennart 1 Mary 6 Phil 3 Richard 7 Simon 5 Warren 8

Erik 2 Lennart 1 Phil 3 Simon 5

Lennart 1 Phil 3

Lennart 1

8

Heaps — priority search trees

Warren 8

Charles 4 Mary 6 Richard 7 Simon 5

Erik 2 Phil 3

Lennart 1

9

Semi-heaps — priority search pennants

Charles 4 Mary 6 Richard 7 Warren 8

Erik 2 Simon 5

Phil 3

Lennart 1

10

Priority search pennants: adding split keys

If we add split keys to the tournament tree and subsequently perform

the matches, we obtain the following priority search pennant.

L1
W

P3
M

E2
E

C4
C

M6
L

S5
R

R7
P

W8
S

11

Priority search pennants: data types

The Haskell data type for priority search pennants is a direct imple-

mentation of these ideas.

data PSQ k p = Void
| Winner (k , p) (LTree k p) k

data LTree k p = Start
| Loser (k , p) (LTree k p) k (LTree k p)

NB. Winner b t m ∼= Loser b t m Start .

The maximum key is accessed using the function max-key.

max-key :: PSQ k p → k
max-key (Winner b t m) = m

12

Priority search pennants: invariants

Semi-heap conditions: 1) Every priority in the pennant must be

greater than or equal to the priority of the winner. 2) For all nodes

in the loser tree, the priority of the loser’s binding must be less than

or equal to the priorities of the bindings of the subtree, from which

the loser originates. The loser originates from the left subtree if its

key is less than or equal to the split key, otherwise it originates from

the right subtree.

Search-tree condition: For all nodes, the keys in the left subtree

must be less than or equal to the split key and the keys in the right

subtree must be greater than the split key.

Key condition: The maximum key and the split keys must also occur

as keys of bindings.

Finite map condition: The pennant must not contain two bindings

with the same key.

13

Constructors: ∅ and {·}

∅ :: PSQ k p
∅ = Void
{·} :: (k , p) → PSQ k p
{b} = Winner b Start (key b).

14

Playing a match

Precondition: the keys in the first tree are strictly smaller than the

keys in the second tree.

b1
m2

b2
m1

t1 t2

b16b2⇐=

b1
m1

t1

&

b2
m2

t2

b1>b2=⇒

b2
m2

b1
m1

t1 t2

NB. b1 6 b2 is shorthand for prio b1 6 prio b2.

15

Playing a match (continued)

(&) :: PSQ k p → PSQ k p → PSQ k p
Void & t ′ = t ′

t & Void = t
Winner b t m & Winner b′ t ′ m ′

| prio b 6 prio b′ = Winner b (Loser b′ t m t ′) m ′

| otherwise = Winner b′ (Loser b t m t ′) m ′

16

Constructors: from-ord-list

from-ord-list :: [(k , p)] → PSQ k p
from-ord-list = foldm (&) ∅ · map (λb → {b})

NB. foldm folds a list in a binary-sub-division fashion.

17

Destructors

view PSQ k p = Empty | Min (k , p) (PSQ k p) where
Void → Empty
Winner b t m → Min b (second-best t m)

The function second-best determines the second-best player by replay-

ing the tournament without the champion.

second-best :: LTree k p → k → PSQ k p
second-best Start m = Void
second-best (Loser b t k u) m
| key b 6 k = Winner b t k & second-best u m
| otherwise = second-best t k & Winner b u m

18

A second view: ps pennants as tournament trees

This view is useful for implementing the search tree operations.

view PSQ k p = ∅ | {(k , p)} | PSQ k p & PSQ k p
where
Void → ∅
Winner b Start m → {b}
Winner b (Loser b′ tl k tr) m
| key b′ 6 k → Winner b′ tl k & Winner b tr m
| otherwise → Winner b tl k & Winner b′ tr m

NB. We have taken the liberty of using ∅, {·} and ‘&’ also as

constructors.

19

Constructors: insert

insert :: (k , p) → PSQ k p → PSQ k p
insert b ∅ = {b}
insert b {b′}
| key b < key b′ = {b} & {b′}
| key b key b′ = {b} -- update

| key b > key b′ = {b′} & {b}
insert b (tl & tr)
| key b 6 max-key tl = insert b tl & tr
| otherwise = tl & insert b tr

20

Destructors: delete

delete :: k → PSQ k p → PSQ k p
delete k ∅ = ∅
delete k {b}
| k key b = ∅
| otherwise = {b}

delete k (tl & tr)
| k 6 max-key tl = delete k tl & tr
| otherwise = tl & delete k tr

21

Adding a balancing scheme

One of the strengths of priority search pennants as compared to priority

search trees is that a balancing scheme can be easily added.

Most balancing schemes use rotations to restore balancing invariants.

However, rotations do not preserve the semi-heap property:

F2
E

D5
B

t1 t2

t3

=⇒

D5
B

t1

F2
E

t2 t3

22

Single rotation

b1
k2

b2
k1

t1 t2

t3

(b2 & b1) & −∞

=⇒

b2
k1

t1

b1
k2

t2 t3

b2 & (b1 & −∞)

b1
k2

b2
k1

t1 t2

t3

(b1 & b2) & −∞

=⇒

b1
k1

t1

b2
k2

t2 t3

b1 & (b2 & −∞)

23

Single rotation (continued)

b1
k2

b2
k1

t1 t2

t3

(b2 & −∞) & b1

=⇒

b2
k1

t1

b1
k2

t2 t3

b2 & (−∞ & b1)

b1
k1

t1

b2
k2

t2 t3

−∞ & (b2 & b1)

b16b2⇐=

b1
k2

b2
k1

t1 t2

t3

(−∞ & b2) & b1

b1>b2=⇒

b2
k1

t1

b1
k2

t2 t3

−∞ & (b2 & b1)

24

Summary

☞ Priority search queues are a versatile ADT.

☞ They can be easily implemented by priority search pennants—using

an arbitrary balancing scheme.

☞ Views were very helpful:

• they provide a convenient interface to the ADT and

• they enhance both the readability and the modularity of the code.

25

Appendix

foldm :: (a → a → a) → a → [a] → a
foldm (∗) e as
| null as = e
| otherwise = fst (rec (length as) as)
where rec 1 (a : as) = (a, as)

rec n as = (a1 ∗ a2, as2)
where m = n ‘div ‘ 2

(a1, as1) = rec (n −m) as
(a2, as2) = rec m as1

26

