RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendix

Closed and Open Recursion

RALF HINZE

Institut für Informatik III, Universität Bonn Römerstraße 164, 53117 Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf

July 2007

(Pick up the slides at ... /~ralf/talks.html#56.)

Trinity

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

- functional core,
- imperative core,
- object-oriented core,
- [module system].

Open recursion

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendix

Open recursion. Another handy feature offered by most languages with objects and classes is the ability for one method body to invoke another method of the same object via a special variable called self or, in some languages, this. The special behavior of self is that it is late-bound, allowing a method defined in one class to invoke another method that is defined later, in some subclass of the first. **Functions**

Closed and **Open Recursion**

RALF HINZE

Recursive functions

values

fun $(x_1 : \tau_1) \Rightarrow e$

introduction elimination

fun $(x_1 : \tau_1) \Rightarrow e$

 $e_2 e_1$

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

$$\overline{(\mathsf{fun}\;(x_1: au_1)\Rightarrow e)}\Downarrow(\mathsf{fun}\;(x_1: au_1)\Rightarrow e)$$

$$\frac{e_2 \Downarrow (\mathsf{fun} (x_1 : \tau_1) \Rightarrow e)}{e_2 e_1 \Downarrow \nu} \qquad \frac{\mathsf{let val} x_1 = e_1 \mathsf{ in } e \mathsf{ end } \Downarrow \nu}{e_2 e_1 \Downarrow \nu}$$

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendix

rec fun $(n : Nat) \Rightarrow$ if n = 0 then 1 else self (n - 1) * n

Is self refers to the function itself.

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendix

$$(\mathsf{rec} \mathsf{fun} (x_1 : \tau_1) \Rightarrow e) \Downarrow (\mathsf{fun} (x_1 : \tau_1) \Rightarrow e) \{ \mathsf{self} \mapsto \mathsf{rec} \mathsf{fun} (x_1 : \tau_1) \Rightarrow e \}$$

 $\mathbb{I} \mathbb{S}^{\mathbb{S}}$ The recursive knot is tied at the earliest possible point in time: the introduction form.

Objects

RALF HINZE

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendix

 $\frac{m\Downarrow\mu}{\text{object }m\text{ end }\Downarrow\text{ object }\mu\text{ end}}$

 $\frac{e \Downarrow \text{object } \mu \text{ end}}{e.x \Downarrow \nu} \frac{\mu(x) \Downarrow \nu}{\nu}$

```
rec object
method factorial (n: Nat) =
if n == 0 then 1 else self.factorial (n - 1) * n
end
```

IS self refers to the object itself.

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Dynamic semantics

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendix

$\frac{m \Downarrow \mu}{\text{rec object } m \text{ end } \Downarrow \text{ rec object } \mu \text{ end}}$

$$\frac{e \Downarrow \operatorname{rec object} \mu \operatorname{end}}{e.x \Downarrow \nu} \frac{\mu(x) \{ \operatorname{self} \mapsto \operatorname{rec object} \mu \operatorname{end} \} \Downarrow \nu}{e.x \Downarrow \nu}$$

 $\mathbb{I} \mathbb{S}^{\ast}$ The recursive knot is tied at the latest possible point in time: the elimination form.

- Closed recursion: tie the recursive knot in the introduction form.
- > Open recursion: tie the recursive knot in the elimination form.
- Does it make a difference?
- ▶ No! If there is only a single introduction and a single elimination form.
- ► Let's add an additional combining form, for instance, delegation.

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Delegation

```
val math =
  rec object
     method factorial (n : Nat) : Nat =
       if n = 0 then 1 else self.factorial' n * n
     method factorial' (n : Nat) : Nat =
       self.factorial (n-1)
  end
val math' =
  rec object
    include math
     method factorial' (n : Nat) : Nat =
       self.factorial (n-1)+1
  end
```

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Thoughts

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

- Open recursion is not limited to objects.
- It is also useful for functions.
- Let's add an additional combining form for functions.

Open functions

val fac-base = fun open $(0 : Nat) \Rightarrow 1$ val fac-step = rec fun open $(n + 1 : Nat) \Rightarrow self \ n * (n + 1)$ val factorial = fac-base or fac-step

An open function is a *partial function*.
 The combinator **or** combines two partial functions.

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Abstract syntax

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendi×

$e ::= \cdots$ | fun open r | | rec fun open r | $| e_1 or e_2$ $r ::= \epsilon$ $| p \Rightarrow e |$ $| r_1 | r_2$

open functions:

non-recursive open function recursive open function alternation

empty rule single rule sequences of rules

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendix

$$(rec fun open r) \Downarrow (rec fun open r)$$

 $\frac{e_1 \Downarrow (\text{rec fun open } r_1) \qquad e_2 \Downarrow (\text{rec fun open } r_2)}{e_1 \text{ or } e_2 \Downarrow \text{rec fun open } (r_1 \mid r_2)}$

$e_2 \Downarrow (rec fun open r)$	case e_1 of $r\{self \mapsto rec fun open r\}end \Downarrow i$
	$e_2 e_1 \Downarrow \nu$

Application — generic programming

val sum-nat = fun open $\langle Nat \rangle \Rightarrow$ fun $x \Rightarrow x$ val sum-pair = rec sum fun open $\langle (a_1, a_2) \rangle \Rightarrow$ fun $(x_1, x_2) \Rightarrow sum \langle a_1 \rangle x_1 + sum \langle a_2 \rangle x_2$

Instead of a case we have a typecase.

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Conclusion

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendi×

- Open functions are useful in conjunction with open data types.
- Vision: replacement for overloading and type classes.
- Open recursive modules?

```
Objects — example
```

```
val my-account =
  object
    local
      val balance = ref 0
    in
      method deposit (amount : Nat) =
         balance := !balance + amount
      method withdraw (amount : Nat) =
         balance := sub (!balance, amount)
      method balance =
         1 balance
    end
  end
```

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Objects — abstract syntax

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendix

 $m \leftarrow \text{Method}$ $m ::= \epsilon$ | method x = e $| m_1 m_2$ | local d in m end

method declaration

empty declaration method definition sequence of declarations local declaration

Objects — dynamic semantics

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion

Appendix

$\overline{\epsilon \Downarrow \epsilon}$

$$(\mathbf{method}\; x=e)\Downarrow \{x\mapsto e\}$$

$$\frac{m_1 \Downarrow \mu_1}{m_1 m_2 \Downarrow \mu_1, \mu_2} \frac{m_2 \Downarrow \mu_2}{m_1 m_2 \Downarrow \mu_1, \mu_2}$$

$$\frac{d \Downarrow \delta}{\text{local } d \text{ in } m \text{ end } \Downarrow \mu}$$

Finite maps

When X and Y are sets $X \to_{\text{fin}} Y$ denotes the set of finite maps from X to Y. The domain of a finite map φ is denoted dom φ .

- the singleton map is written $\{x \mapsto y\}$
 - $dom\{x \mapsto y\} = \{x\}$

$$(x \mapsto y)(x) = y$$

• when φ_1 and φ_2 are finite maps the map φ_1, φ_2 called φ_1 extended by φ_2 is the finite map with

▶
$$dom(\varphi_1, \varphi_2) = dom \varphi_1 \cup dom \varphi_2$$

▶ $(\varphi_1, \varphi_2)(x) = \begin{cases} \varphi_2(x) & \text{if } x \in dom \varphi_2 \\ \varphi_1(x) & \text{otherwise} \end{cases}$

Closed and Open Recursion

RALF HINZE

Introduction

Recursive functions

Recursive objects

Recursive functions revisited

Conclusion