Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion

Robot Games with States in Dimension One

Reino Niskanen

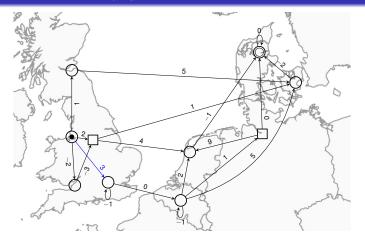
Department of Computer Science University of Liverpool, UK

10th International Workshop on Reachability Problems

000	0000	000

Introduction

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

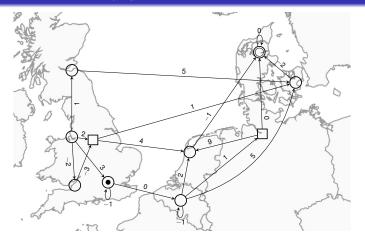


Stress level

_

0

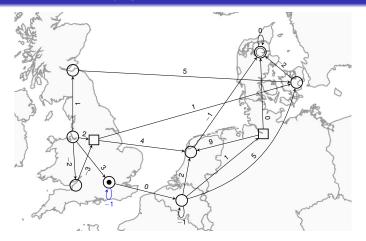
Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				



Stress level

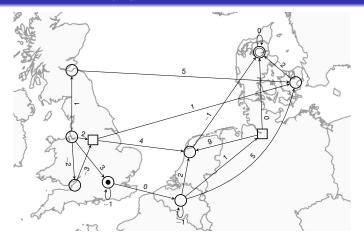
_

0


Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

Stress level

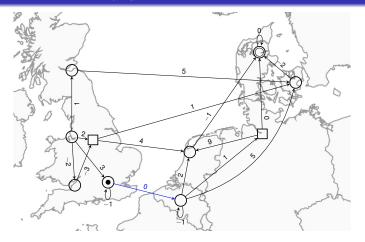
 $\mathbf{0}\to\mathbf{3}$


Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

Stress level

 $\mathbf{0}\to\mathbf{3}$

Counter reachability games

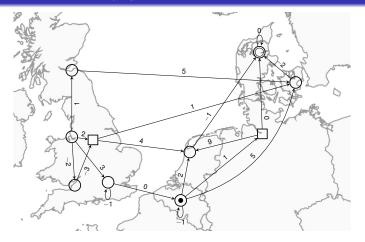


Stress level

 $0 \to 3 \to 2$

Introduction Definitions Robot games with states OCONCLUSION OCOO

Counter reachability games

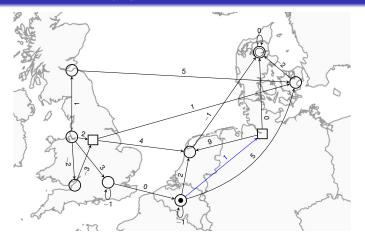


Stress level

 $0 \to 3 \to 2$

Introduction Definitions Robot games with states OCONCLUSION OCOO

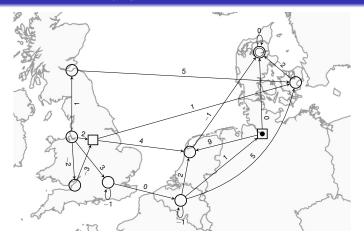
Counter reachability games



Stress level

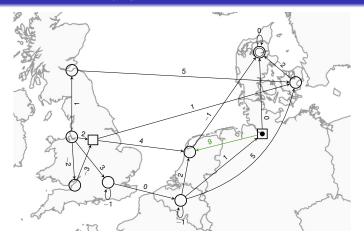
 $0 \to 3 \to 2 \to 2$

Introduction Definitions Robot games with states OCONCLUSION OCOO


Counter reachability games

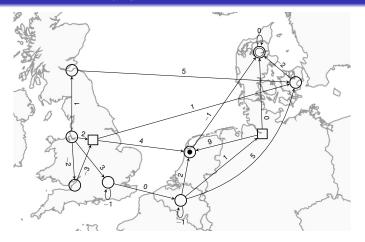
Stress level

 $0 \to 3 \to 2 \to 2$

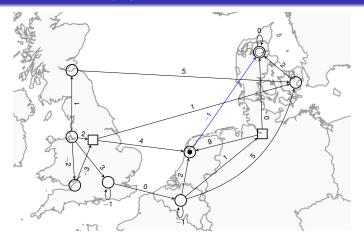

Counter reachability games

Stress level

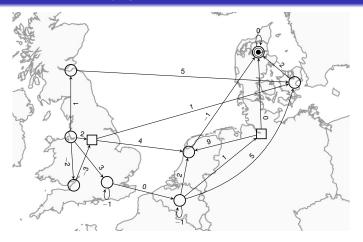
 $0 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3$


Counter reachability games

Stress level

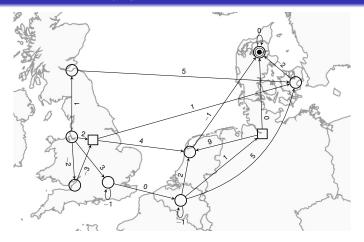

 $0 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3$

Counter reachability games


 $0 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 12$

Counter reachability games

 $0 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 12$


Counter reachability games

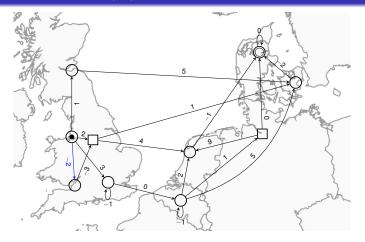
Stress level

$0 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 12 \rightarrow 13$

Counter reachability games

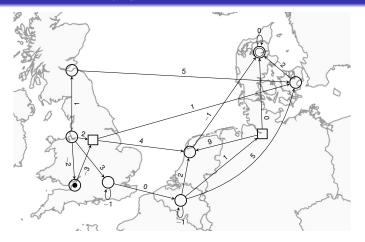
Stress level

$0 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 12 \rightarrow 13 \rightarrow \cdots$


Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

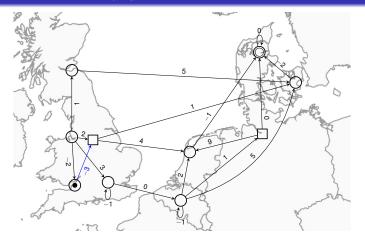
Stress level

0


Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

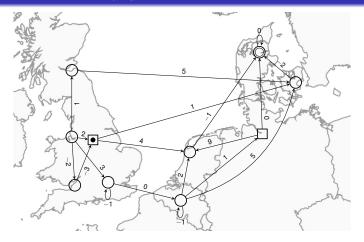
Stress level

0


Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

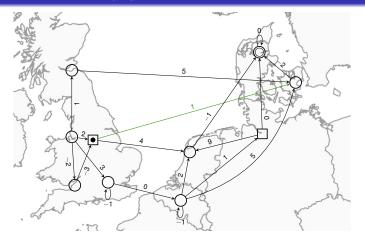
Stress level

 $\mathbf{0} \to -\mathbf{2}$


Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

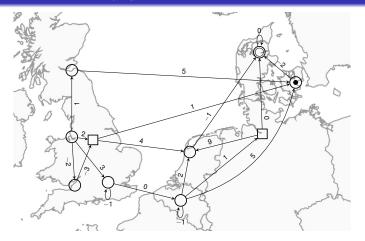
Stress level

 $\mathbf{0} \to -\mathbf{2}$

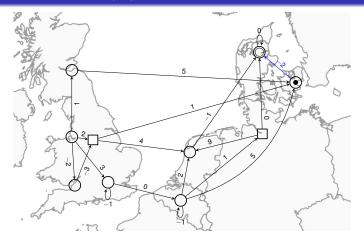

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

Stress level

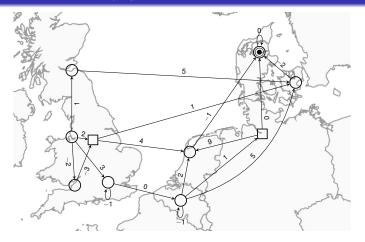
 $0 \rightarrow -2 \rightarrow -5$


Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

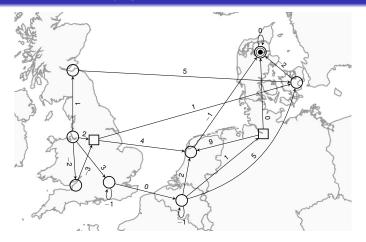
Stress level


 $0 \rightarrow -2 \rightarrow -5$

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				


$$0 \rightarrow -2 \rightarrow -5 \rightarrow -4$$

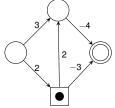
Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				


$$0 \rightarrow -2 \rightarrow -5 \rightarrow -4$$

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

$$0 \rightarrow -2 \rightarrow -5 \rightarrow -4 \rightarrow -6$$

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
•				

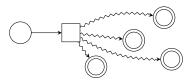

$$0 \rightarrow -2 \rightarrow -5 \rightarrow -4 \rightarrow -6 \rightarrow \cdots$$

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion

Definitions

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
	••••			

- Played on a labeled directed graph G = (V, E) with edges labeled by x ∈ Zⁿ.
- Two players: Eve (\bigcirc), Adam (\Box).
- A configuration $[v, \mathbf{z}] \in V \times \mathbb{Z}^n$.
- A successor configuration is [v', z + z'], where [v, z', v'] ∈ E and the owner of v chose it.



- The initial and target configurations.
- A play is a finite or an infinite sequence of configurations.
- Eve wins if the target configuration is reachable in a play starting from the initial configuration. Otherwise Adam wins.

	000000	000000		
	000000	000000	0000	000
Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion

A winning strategy

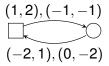
Eve has a winning strategy if the target configuration is reachable for every choice of Adam.

The decision problem

Given a graph G = (V, E), initial and target configurations, [v_0, z_0] and [$v_f, (0, ..., 0$)]. Does there exist a winning strategy for Eve to reach [$v_f, (0, ..., 0)$] from [v_0, z_0]?

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
	000000			

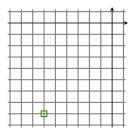
The decision problem


Given a graph G = (V, E), initial and target configurations, [v_0, z_0] and [$v_f, (0, ..., 0$)]. Does there exist a winning strategy for Eve to reach [$v_f, (0, ..., 0)$] from [v_0, z_0]?

Known for counter reachability games:

One-dimensional	EXPSPACE-complete
Two-dimensional	Undecidable

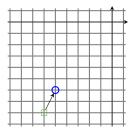
Introduction O	Definitions	Robot games with states	Flat robot games with states	Conclusion 000
Robot g	games			


What if we have a simpler graph?

- Proposed by Doyen and Rabinovich in 2011.
- **EXPTIME**-complete in dimension one [Arul, Reichert, QAPL 2013].
- Undecidable in dimension two [N., Potapov, Reichert, MFCS 2016].

Introduction o	Definitions	Robot games with states	Flat robot games with states	Conclusion

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.



Adam's moves: $\{(1,2), (2,0)\}$

Eve's moves:
$$\{(2,2), (1,4)\}$$

Introduction o	Definitions	Robot games with states	Flat robot games with states	Conclusion

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.

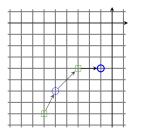


Adam's moves: $\{(1,2), (2,0)\}$

Eve's moves:
$$\{(2,2), (1,4)\}$$

Introduction o	Definitions	Robot games with states	Flat robot games with states	Conclusion

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.

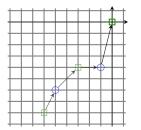


Adam's moves: {(1,2), (2,0)}

```
Eve's moves: \{(2,2), (1,4)\}
```

Introduction o	Definitions	Robot games with states	Flat robot games with states	Conclusion

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.

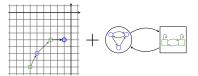


Adam's moves: $\{(1,2), (2,0)\}$

Eve's moves:
$$\{(2,2), (1,4)\}$$

Introduction o	Definitions	Robot games with states	Flat robot games with states	Conclusion

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.



Adam's moves: $\{(1,2), (2,0)\}$

Eve's moves:
$$\{(2,2), (1,4)\}$$

Introduction o	Definitions	Robot games with states	Flat robot games with states	Conclusion
Robot o	games wi [.]	th states		

- A mix between counter reachability games and robot games.
- Robot games but players have internal states as well.
- Undecidable in dimension two [N., Potapov, Reichert, MFCS 2016].

Introduction o	Definitions	Robot games with states	Flat robot games with states	Conclusion
Known	results			

Game	Dimension	
	1	≥ 2
counter reachability games	EXPSPACE-complete	U
robot games with states	?	U
robot games	EXPTIME-complete	U

Introduction o	Definitions ○○○○○●	Robot games with states	Flat robot games with states	Conclusion
Known	results			

Game	Dimension	
	1	≥ 2
counter reachability games	EXPSPACE-complete	U
robot games with states	?	U
robot games	EXPTIME-complete	U

Theorem

Whether Eve has a winning strategy in a one-dimensional robot game with states is **EXPSPACE**-complete.

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion

Robot games with states

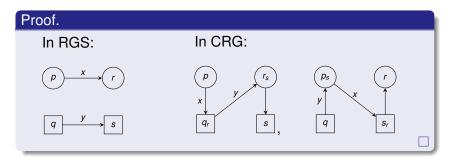
Introduction o	Definitions 0000000	Robot games with states ●○○○○○	Flat robot games with states	Conclusion
Inherited	complex	kity bounds		

Lemma

Deciding winner is **EXPTIME**-hard.

Lemma

Deciding winner is in **EXPSPACE**.


Introduction o	Definitions 0000000	Robot games with states ●○○○○○	Flat robot games with states	Conclusion
Inherited	l comple>	kity bounds		

Lemma

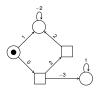
Deciding winner is **EXPTIME**-hard.

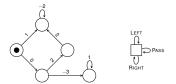
Lemma

Deciding winner is in EXPSPACE.

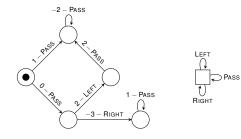
Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion

Proof idea

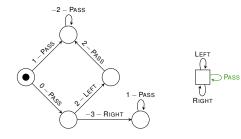

- Given a one-dimensional CRG G.
- wlog deg(\Box) \leq 2.
- Construct a robot game with states where
 - Eve simulates the whole graph.
 - Adam tells which choice he would have made in the original CRG.

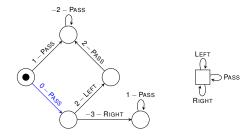


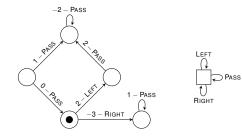
Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
		00000		

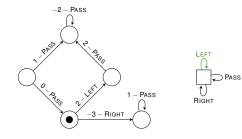

Proof idea

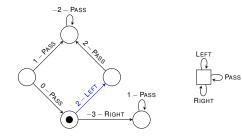
- Given a one-dimensional CRG G.
- wlog deg(\Box) \leq 2.
- Construct a robot game with states where
 - Eve simulates the whole graph.
 - Adam tells which choice he would have made in the original CRG.

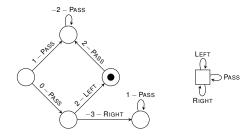


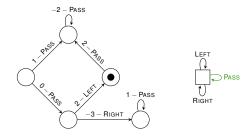

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion 000
Proof ic	dea			

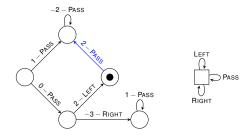

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion 000
Proof ic	dea			

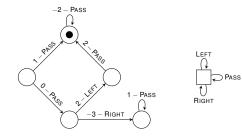

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion 000
Proof ic	dea			

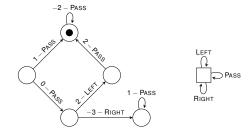

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion 000
Proof ic	dea			


Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion 000
Proof ic	dea			

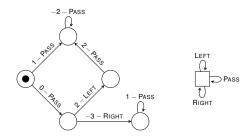

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion 000
Proof ic	dea			

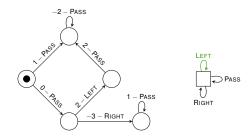

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion 000
Proof ic	dea			


Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion 000
Proof ic	dea			

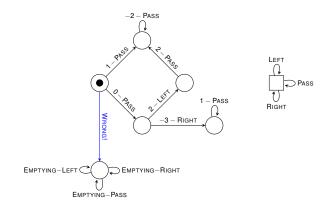

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion 000
Proof ic	dea			

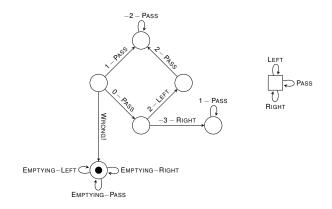
Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion 000
Proof ic	dea			

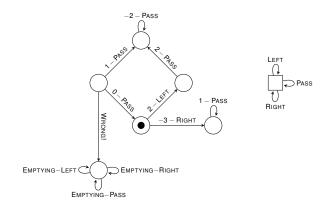

Introduction o	Definitions 0000000	Robot games with states ○o●ooo	Flat robot games with states	Conclusion
Proof id	dea			

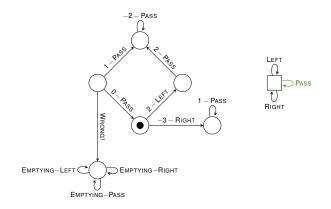

Lemma

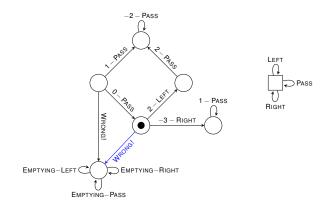
If both players play correctly, then the winner in the RGS is the same as the winner in the CRG.

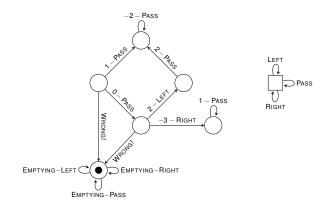

Introduction Definitions Coole Coole

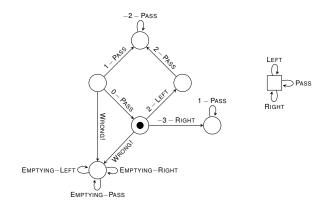

Introduction Definitions Coole Coole


Introduction Definitions cooleo Robot games with states cooleo Conclusion cooleo Robot games with states cooleo Conclusion cooleo Robot games with states c

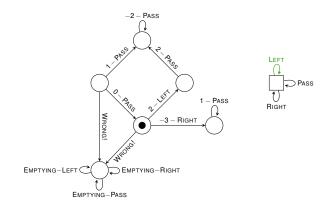

Introduction Definitions cooleoo Robot games with states cooleoo Conclusion cooleoo Co


Introduction Definitions Conclusion Conclusi

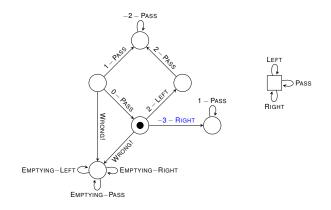

Introduction Definitions Coole Coole


Introduction Definitions cooleo Robot games with states cooleo Conclusion cooleo Robot games with states cooleo Conclusion cooleo Robot games with states c

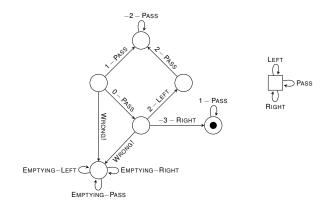
Introduction Definitions coooco Robot games with states coooco Conclusion coo

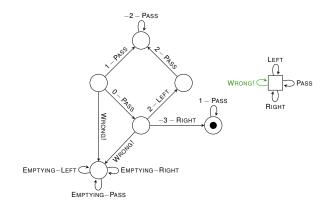


Introduction Definitions coooco Robot games with states coooco Conclusion coo

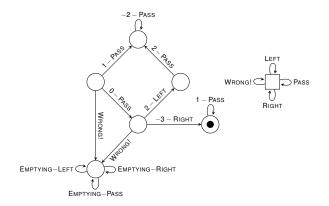


 Introduction
 Definitions
 Robot games with states
 Flat robot games with states
 Conclusion


 What if they don't play correctly?
 Vertical and the states
 Vertical and th


Introduction Definitions cooleo Robot games with states cooleo Conclusion cooleo Robot games with states cooleo Conclusion cooleo Robot games with states c

Introduction Definitions coooco Robot games with states coooco Conclusion coo



Introduction Definitions Conclusion Conclusi

Introduction Definitions Conclusion Conclusi

What if they don't play correctly?

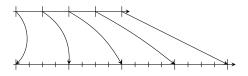
Lemma

If one of the players plays incorrectly, then the opponent is the winner.

Niskanen

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
		000000		

What are PASS, LEFT, RIGHT, etc?


 Introduction
 Definitions
 Robot games with states

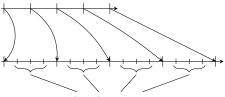
 o
 ooooooo
 ooooooo

Flat robot games with states

Conclusion

What are PASS, LEFT, RIGHT, etc?

• The original values are multiplied by 4.


 Introduction
 Definitions
 Robot games with states

 o
 ooooooo
 ooooooo

Flat robot games with states

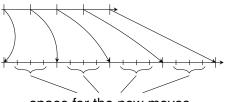
Conclusion

What are PASS, LEFT, RIGHT, etc?

space for the new moves

• The original values are multiplied by 4.

Introduction D

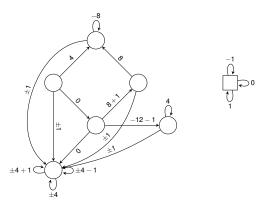

Definitions

Robot games with states

Flat robot games with states

Conclusion

What are PASS, LEFT, RIGHT, etc?



space for the new moves

- The original values are multiplied by 4.
- LEFT, RIGHT and WRONG! modify the value mod 4.
- Pass is 0.

Introduction o	Definitions 0000000	Robot games with states ○○○○○●	Flat robot games with states	Conclusion
-				

The result

Theorem

Whether Eve has a winning strategy in a one-dimensional robot game with states is **EXPSPACE**-complete.

Niskanen

Robot Games with States in Dimension One

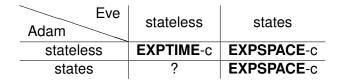
Introduction	Defir
	000

Definitions

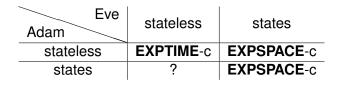
Robot games with states

Flat robot games with states

Conclusion

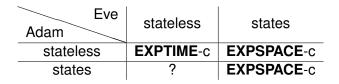

Flat robot games with states

Niskanen


Robot Games with States in Dimension One

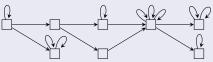
RP 2016 19 / 27

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states ●○○○	Conclusion
Effect c	of states			

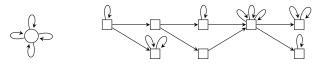


Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
o	0000000		●○○○	000
Effect of	states			

What if Adam's states are flat?


Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states ●○○○	Conclusion
Effect of	f states			

What if Adam's states are flat?

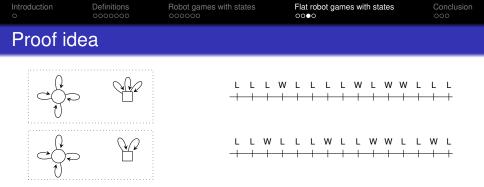

Flat automata

The underlying graph is directed acyclic graph with self-loop.

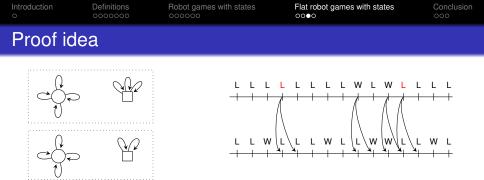
Introduction Definitions Robot games with states Flat robot games with states Conclusion 0000

Flat robot games with states

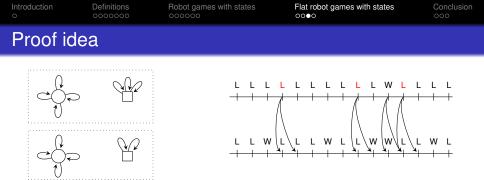
Theorem


Deciding who has a winning strategy in a one-dimensional flat robot game with states is EXPTIME-complete.

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
o	0000000		○○●○	000
Proof ide	ea			



Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion
Proof ide	ea			
උ ලිබ ච				


• As there exists a linear order, we can consider several stateless games that are connected.

- As there exists a linear order, we can consider several stateless games that are connected.
- The algorithm for robot games gives a description of the winning values for Eve.

- As there exists a linear order, we can consider several stateless games that are connected.
- The algorithm for robot games gives a description of the winning values for Eve.
- Check which winning values of the first game become losing when moving to the second game.

- As there exists a linear order, we can consider several stateless games that are connected.
- The algorithm for robot games gives a description of the winning values for Eve.
- Check which winning values of the first game become losing when moving to the second game.
- Check how new losing values affect other winning values.

Introduction O	Definitions	Robot games with states	Flat robot games with states	Conclusion

Check which winning values of the first game become losing when moving to the second game.

Check how new losing values affect other winning values.

Introduction O	Definitions	Robot games with states	Flat robot games with states ○○○●	Conclusion

Check which winning values of the first game become losing when moving to the second game.

Check how new losing values affect other winning values.

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states 000●	Conclusion

Check which winning values of the first game become losing when moving to the second game.

Simple case analysis.

Check how new losing values affect other winning values.

Check which winning values of the first game become losing when moving to the second game.

Simple case analysis.

Check how new losing values affect other winning values.

We can construct an equivalent game on a graph where winning values are computed using the attractor construction.

Both are doable in **PTIME** because the winning sets in robot games are (essentially)

L L L W L L L L W L W W L L L W L L W L L W L L W L L W L L W L L W L L W L L W L L W L L W L L W L L W L L W L

Finite interval where w's appear

$$\{ \mathsf{W} \in d\mathbb{Z}^{\check{}} | \mathsf{W} > b \}$$

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion

Conclusion

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion ●○○
Summa	ary			

Theorem

Given one-dimensional robot games with states. Deciding which player has a winning strategy is **EXPSPACE**-complete.

Game	Dimension	
	1	≥ 2
counter reachability games	EXPSPACE-complete	U
robot games with states	?	U
flat robot games with states	?	?
robot games	EXPTIME-complete	U

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion ●○○
Summary				

Theorem

Given one-dimensional robot games with states. Deciding which player has a winning strategy is **EXPSPACE**-complete.

Game	Dimension	
	1	≥ 2
counter reachability games	EXPSPACE-complete	U
robot games with states	EXPSPACE-complete	U
flat robot games with states	EXPTIME-complete	?
robot games	EXPTIME-complete	U

Introduction o	Definitions 0000000	Robot games with states	Flat robot games with states	Conclusion o●o
Future w	vork			

- Investigate further what kind of state structure increases the complexity.
- Decidability of stateless VASS games.

Introduction	Definitions	Robot games with states	Flat robot games with states	Conclusion
				000

Thank you for your attention!