Introduction	Definitions 00000	Robot games with states	Robot games	Conclusion

Undecidability of Two-dimensional Robot Games

Reino Niskanen¹ Igor Potapov¹, Julien Reichert²

¹Department of Computer Science University of Liverpool, UK

²LSV, ENS Cachan, France

41st International Symposium on Mathematical Foundations of Computer Science

Introduction	Definitions	Robot games with states	Robot games	Conclusion

Introduction

Introduction ●○○	Definitions 00000	Robot games with states	Robot games	Conclusion
Graph rea	chability			

 Introduction
 Definitions
 Robot games with states
 Robot games
 Conclusion

 •oo
 Ocoo
 Ocoo

Introduction ●○○	Definitions 00000	Robot games with states	Robot games	Conclusion
Graph rea	chability			

Introduction ●○○	Definitions	Robot games with states	Robot games	Conclusion
Graph rea	achability			

Introduction ●○○	Definitions	Robot games with states	Robot games	Conclusion
Graph rea	chability			

Waighted graph reachability						
Introduction 000	Definitions 00000	Robot games with states	Robot games	Conclusion		

Maightad graph reachability						
Introduction ooo	Definitions 00000	Robot games with states	Robot games	Conclusion		

Introduction	Definitions	Robot games with states	Robot games	Conclusion

Maightad graph reachability						
Introduction ooo	Definitions 00000	Robot games with states	Robot games	Conclusion		

Introduction ○○●	Definitions 00000	Robot games with states	Robot games	Conclusion 000

Introduction ○○●	Definitions 00000	Robot games with states	Robot games	Conclusion 000

Introduction ○○●	Definitions 00000	Robot games with states	Robot games	Conclusion 000

Introduction ○○●	Definitions 00000	Robot games with states	Robot games	Conclusion 000

Introduction ○○●	Definitions 00000	Robot games with states	Robot games	Conclusion 000

Introduction ○○●	Definitions 00000	Robot games with states	Robot games	Conclusion 000

Introduction ○○●	Definitions 00000	Robot games with states	Robot games	Conclusion 000

Introduction	Definitions	Robot games with states	Robot games	Conclusion

Definitions

- Played on a labeled directed graph G = (V, E) with edges labeled by x ∈ Zⁿ.
- Two players: Eve (\bigcirc), Adam (\Box).
- A configuration $[v, \mathbf{z}] \in V \times \mathbb{Z}^n$.
- A successor configuration is [v', z + z'], where [v, z', v'] ∈ E and the owner of v chose it.

- The initial and target configurations.
- A play is a finite or an infinite sequence of configurations.
- Eve wins if the target configuration is reachable in a play starting from the initial configuration. Otherwise Adam wins.

Introduction	Definitions 00000	Robot games with states	Robot games	Conclusion
Counter	reachabili	tv dames		

A winning strategy

Eve has a winning strategy if the target configuration is reachable for every choice of Adam.

The decision problem

Given a graph G = (V, E), initial and target configurations, [v_0, z_0] and [$v_f, (0, ..., 0)$]. Does there exist a winning strategy for Eve?

Introduction	Definitions ○○●○○	Robot games with states	Robot games	Conclusion 000
Robot g	ames			

Known for counter reachability games

One-dimensional**EXPSPACE**-completeTwo-dimensionalUndecidable

What if we have a simpler graph?

- Proposed by Doyen and Rabinovich in 2011. Claimed to be undecidable in dimension 9.
- EXPTIME-complete in dimension one [Arul, Reichert, QAPL 2013].
- Undecidable in dimension three [Reichert, PhD thesis 2015].
- Remained open in dimension two.

Introduction	Definitions 000●0	Robot games with states	Robot games	Conclusion 000		
Another way to look at robot games						

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.

Adam's moves:
$$A = \{(1, 2), (2, 0)\}$$

Eve's moves:
$$E = \{(2, 2), (1, 4)\}$$

Introduction	Definitions 000●0	Robot games with states	Robot games	Conclusion 000		
Another way to look at robot games						

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.

Adam's moves:
$$A = \{(1, 2), (2, 0)\}$$

Eve's moves:
$$E = \{(2, 2), (1, 4)\}$$

Introduction	Definitions 000●0	Robot games with states	Robot games	Conclusion 000		
Another way to look at robot games						

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.

Adam's moves:
$$A = \{(1, 2), (2, 0)\}$$

Eve's moves:
$$E = \{(2, 2), (1, 4)\}$$

Introduction	Definitions 000●0	Robot games with states	Robot games	Conclusion 000		
Another way to look at robot games						

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.

Adam's moves:
$$A = \{(1, 2), (2, 0)\}$$

Eve's moves:
$$E = \{(2, 2), (1, 4)\}$$

Introduction	Definitions ○○○●○	Robot games with states	Robot games	Conclusion 000
Another	way to loo	k at robot games	5	

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.

Adam's moves:
$$A = \{(1, 2), (2, 0)\}$$

Eve's moves:
$$E = \{(2, 2), (1, 4)\}$$

000	00000	00000		
Another	wav to loo	k at robot games	5	

- Played on integer lattice \mathbb{Z}^n .
- Adam and Eve move a token on the lattice.
- Eve's goal is to reach $(0, \ldots, 0)$. Adam's goal is to avoid it.

Adam's moves:
$$A = \{(1, 2), (2, 0)\}$$

Eve's moves:
$$E = \{(2, 2), (1, 4)\}$$

Theorem

Given moves of Adam and Eve, $A, E \subseteq \mathbb{Z}^2$, an initial vector $\mathbf{x} \in \mathbb{Z}^2$. It is undecidable whether Eve has a winning strategy.

Niskanen, Potapov, and Reichert

Two-dimensional Robot Games

Introduction	Definitions ○○○○●	Robot games with states	Robot games	Conclusion
Robot a	ames with	states		

- To prove the main result, we consider an extension.
- Robot games but players have internal states as well.
- EXPSPACE-complete in dimension one [to be presented at RP'16].

Introduction	Definitions ○○○○●	Robot games with states	Robot games	Conclusion
Robot g	ames with	states		

- To prove the main result, we consider an extension.
- Robot games but players have internal states as well.
- EXPSPACE-complete in dimension one [to be presented at RP'16].

Theorem

It is undecidable which player wins in a two-dimensional robot game with states.

Niskanen, Potapov, and Reichert

Two-dimensional Robot Games

Introduction	Definitions	Robot games with states	Robot games	Conclusion

Robot games with states

Introduction 000	Definitions 00000	Robot games with states ●0000	Robot games	Conclusion
The basis	of undecic	lability proofs		

Marvin Minsky (1927-2016)

Deterministic two-counter Minsky machine (2CM):

- Two counters, c₁ and c₂.
- *m* instructions: $1 : INS_1, \ldots, m : INS_m$, where INS_i is

- *i*: if $c_1=0$ goto k else c_1-- ; goto j, or
- *i*: if $c_2=0$ goto k else $c_2--;$ goto j, or

• *i*: halt.

• The halting problem is undecidable [Minsky, 1967].

Introduction	Definitions 00000	Robot games with states ○●○○○	Robot games	Conclusion
2CM exa	ample			

1: if $c_2=0$ goto 2 else c_2-- ; goto 1 2: if $c_1=0$ goto 5 else c_1-- ; goto 3 3: if $c_1=0$ goto 7 else c_1-- ; goto 4 4: c_2++ ; goto 2 5: if $c_2=0$ goto 2 else c_2-- ; goto 6 6: c_1++ ; goto 5 7: if $c_2=0$ goto 8 else c_2-- ; goto 9 8: halt 9: c_1++ ; goto 9

A Minsky machine that halts on an input (x, y) iff $x = 2^k$ (regardless of y).

Introduction	Definitions 00000	Robot games with states	Robot games	Conclusion
Two-count	er machir	nes to robot dam	es with stat	tes

- Eve simulates transitions of the machine.
- Adam verifies that zero-checks are performed correctly.

Introduction	Definitions 00000	Robot games with states ○○●○○	Robot games	Conclusion
Two-count	er machi	nes to robot gam	es with sta	tes

- Eve simulates transitions of the machine.
- Adam verifies that zero-checks are performed correctly.

To simulate zero-checks, we increase the state space and store information on positivity of counters in the states.

Additionally, we multiply all the values in the first dimension by four to create extra space.

Introduction	Definitions 00000	Robot games with states ○○○○●	Robot games	Conclusion
T				

counters

counters

counters

$$\begin{array}{c} [3_{+0},(8,0)] \rightarrow [4_{00},(4,0)] \rightarrow [4_{00},(5,0)] \\ \\ \\ \mbox{state} & \mbox{don't match} \\ \mbox{counters} \end{array}$$

$$\begin{array}{c} [3_{+0},(8,0)] \rightarrow [4_{00},(4,0)] \rightarrow [4_{00},(5,0)] \\ \\ \\ \mbox{state} & \mbox{don't match} \\ \mbox{counters} \end{array}$$

0-move

(0,0),(1,0)

(-4, 0)(-5, 0) positivity

check

Adam wins

2CM does not reach $Q \times (0,0)$

 SIMULATION of 2CM (correct/incorrect)
 EMPTYING MOVE

Eve's moves:

Adam's moves:

0-MOVE
POSITIVITY CHECK

Ε

Α

Adam wins

positivity

check

Niskanen, Potapov, and Reichert

(0,0),(1,0)

0

 $[3_{+0}, (8, 0)]$

counters

(0,0)

state

[] |9

(-4, 0)(-5, 0)

Two-dimensional Robot Games

MFCS 2016 17 / 25

2CM reaches $Q \times (0,0)$

2CM does not reach $Q \times (0,0)$

 SIMULATION of 2CM (correct/incorrect)
 EMPTYING MOVE

Eve's moves:

Adam's moves:

0-MOVE
POSITIVITY CHECK

Adam wins if

Α

0-move

Ε

Α

Adam wins

positivity

check

Niskanen, Potapov, and Reichert

(0,0),(1,0)

0

(1.0) (1.0)

state

(-4, 0)(-5, 0) (0,0) (-1,0)

 $[3_{+0}, (8, 0)]$

counters

Two-dimensional Robot Games

MFCS 2016 17 / 25

2CM reaches $Q \times (0,0)$

2CM does not reach $Q \times (0,0)$

 SIMULATION of 2CM (correct/incorrect)
 EMPTYING MOVE

Eve's moves:

Adam's moves:

0-MOVE
POSITIVITY CHECK

Adam wins if

Α

0-move

$$\begin{array}{c|c} [3_{+0},(8,0)] \rightarrow [4_{+0},(4,0)] \rightarrow [4_{+0},(5,0)] \\ \hline \\ \text{state} & \text{match} \\ \text{counters} \end{array}$$

$$\begin{array}{c} [\mathbf{3}_{+0}, (\mathbf{8}, \mathbf{0})] \rightarrow [\mathbf{4}_{+0}, (\mathbf{4}, \mathbf{0})] \rightarrow [\mathbf{4}_{+0}, (\mathbf{5}, \mathbf{0})] \\ \\ \\ \texttt{state} \qquad \qquad \texttt{match} \\ \texttt{counters} \end{array}$$

Introduction	Definitions	Robot garr 0000●	nes with states	Robot games	Conclusion
-					

Introduction	Definitions 00000	Robot games with states ○○○○●	Robot games	Conclusion
		· · · · · · · · · · · · · · · · · · ·		

Introduction	Definitions 00000	Robot games with states ○○○○●	Robot games	Conclusion
		· · · · · · · · · · · · · · · · · · ·		

Introduction	Definitions	Robot gan oooo●	nes with states	Robot games	Conclusion
					-

$$\begin{array}{c|c} [3_{+0},(8,0)] \to [\top_{+0},(7,0)] \to [\top_{+0},(7,0)] \\ \hline \\ \text{state} & \text{not } 0 \pmod{4} \\ \text{counters} \end{array}$$

Introduction	Definitions 00000	Robot games with states 0000●	Robot games	Conclusion

$$\begin{array}{c|c} [3_{+0},(8,0)] \to [\top_{+0},(7,0)] \to [\top_{+0},(7,0)] \\ \hline \\ \text{state} & \text{not } 0 \pmod{4} \\ \text{counters} \end{array}$$

Introduction	Definitions	Robot games with states	Robot games	Conclusion

Robot games

Introduction	Definitions 00000	Robot games with states	Robot games ●○○	Conclusion		
Robot games with states to robot games						

- The main challenge is to encode the state structure into integers.
- Eve and Adam simulate moves in robot game with states.
- Adam verifies that Eve moves according to the state structure.

Introduction	Definitions 00000	Robot games with states	Robot games ●○○	Conclusion		
Robot games with states to robot games						

- The main challenge is to encode the state structure into integers.
- Eve and Adam simulate moves in robot game with states.
- Adam verifies that Eve moves according to the state structure.

Introduction	Definitions	Robot games with states	Robot games ●○○	Conclusion	
Robot games with states to robot games					

- The main challenge is to encode the state structure into integers.
- Eve and Adam simulate moves in robot game with states.
- Adam verifies that Eve moves according to the state structure.

Introduction	Definitions	Robot games with states	Robot games ●○○	Conclusion	
Robot games with states to robot games					

- The main challenge is to encode the state structure into integers.
- Eve and Adam simulate moves in robot game with states.
- Adam verifies that Eve moves according to the state structure.

Introduction	Definitions 00000	Robot games with states	Robot games o●o	Conclusion
Removing	the states	from robot game	es with state	S

A move in 2RGS:

The corresponding move in 2RG:

$$(i) \xrightarrow{(\mathbf{x},\mathbf{y})} (j)$$

$$(x, yN - 2^i + 2^j)$$
, where $N \in \mathbb{N}$.

_		e		
Introduction	Definitions	Robot games with states	Robot games	Conclusion

Removing the states from robot games with states

A move in 2RGS:

The corresponding move in 2RG:

$$(i) \xrightarrow{(\mathbf{x}, \mathbf{y})} (j)$$

$$(x, yN - 2^i + 2^j)$$
, where $N \in \mathbb{N}$.

• Too simple: Several wrong moves can result in a right one.

Introduction	Definition	IS	Robot ga	mes with states	Robot games o●o	Conclusion
_						

Removing the states from robot games with states

A move in 2RGS:

The corresponding move in 2RG:

$$(i) \xrightarrow{(\mathbf{x},\mathbf{y})} (j)$$

 $(x, yN - 2^i + 2^j)$, where $N \in \mathbb{N}$.

- Too simple: Several wrong moves can result in a right one.
- Even more space is needed to make sure that wrong moves do not affect the rest of the computation.

2RGS counters	emptying states	states of 2RGS	T ₀₀
		~~~~	$\sim$
$(1, 0 \cdot 4 \cdot 8'' +$	$0 \cdot 8^{\circ} + 0 \cdot 8^{\circ} + 0 \cdot 8' + 0 \cdot 8' + 0 \cdot 8^{\circ} + 0 \cdot 8^{\circ} + 0 \cdot 8^{4}$	$+0 \cdot 8^{3} + 0 \cdot 8^{2} + 1 \cdot 8^{1}$	' —1 · 8°)



 $\overbrace{(1,0\cdot4\cdot8^{10}+0\cdot8^{9}+0\cdot8^{8}+0\cdot8^{7}+0\cdot8^{6}+0\cdot8^{5}+0\cdot8^{4}+0\cdot8^{3}+0\cdot8^{2}+1\cdot8^{1}-1\cdot8^{0})}^{(1,0\cdot4\cdot8^{10}+0\cdot8^{9}+0\cdot8^{8}+0\cdot8^{7}+0\cdot8^{6}+0\cdot8^{5}+0\cdot8^{4}+0\cdot8^{3}+0\cdot8^{2}+1\cdot8^{1}-1\cdot8^{0})}$ 



$(1, 0.4 \cdot 8^{10} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{3} + 0.8^{$	0 · 8-	+	1 • 8'	-1 · 8°)
$\downarrow (1, -8^1 + 8^2)$				
$(2, 0 \cdot 4 \cdot 8^{10} + 0 \cdot 8^9 + 0 \cdot 8^8 + 0 \cdot 8^7 + 0 \cdot 8^6 + 0 \cdot 8^5 + 0 \cdot 8^4 + 0 \cdot 8^3 + 0 \cdot 8^6 + 0 \cdot$	$1 \cdot 8^{2}$	+	0 · 8 ¹	- 1 · 8 ⁰ )



	/	~	$\sim - \sim$
$(1, 0 \cdot 4 \cdot 8^{10} + )$	$0 \cdot 8^9 + 0 \cdot 8^8 + 0 \cdot 8^7$	$1 + 0 \cdot 8^{6} + 0 \cdot 8^{5} + 0 \cdot 8^{4}$	4 + 0 $\cdot$ 8 ³ + 0 $\cdot$ 8 ² + 1 $\cdot$ 8 ¹ - 1 $\cdot$



 $\overbrace{(1,0\cdot 4\cdot 8^{10}+0\cdot 8^9+0\cdot 8^8+0\cdot 8^7+0\cdot 8^6+0\cdot 8^5+0\cdot 8^4+0\cdot 8^3+0\cdot 8^2+1\cdot 8^1-1\cdot 8^0)}$ 



$$\downarrow (0, 1 \cdot 4 \cdot 8^{10} - 8^2 + 8^3)$$

$$(1, 1 \cdot 4 \cdot 8^{10} + 0 \cdot 8^9 + 0 \cdot 8^8 + 0 \cdot 8^7 + 0 \cdot 8^6 + 0 \cdot 8^5 + 0 \cdot 8^4 + 1 \cdot 8^3 - 1 \cdot 8^2 + 1 \cdot 8^1 - 1 \cdot 8^6$$



$$\downarrow (0, -8^{10} - 5 \cdot 8^9)$$
  
(1, 1  $\cdot 3 \cdot 8^{10} - 5 \cdot 8^9$ ) + 0  $\cdot 8^8 + 0 \cdot 8^7 + 0 \cdot 8^6 + 0 \cdot 8^5 + 0 \cdot 8^4 + 1 \cdot 8^3 - 1 \cdot 8^2 + 1 \cdot 8^1 - 1 \cdot 8^0$ )


$$\begin{array}{c} \downarrow (0,1\cdot 4\cdot 8^{10}-8^2+8^3) \\ (1,1\cdot 4\cdot 8^{10}+0\cdot 8^9+0\cdot 8^8+0\cdot 8^7+0\cdot 8^6+0\cdot 8^5+0\cdot 8^4+1\cdot 8^3-1\cdot 8^2+1\cdot 8^1-1\cdot 8^0) \\ \downarrow (0,-8^{10}-5\cdot 8^9) \\ (1,1\cdot 3\cdot 8^{10}-5\cdot 8^9+0\cdot 8^8+0\cdot 8^7+0\cdot 8^6+0\cdot 8^5+0\cdot 8^4+1\cdot 8^3-1\cdot 8^2+1\cdot 8^1-1\cdot 8^0) \end{array}$$



$\longrightarrow$					$\sim$
$(1, 0 \cdot 4 \cdot 8^{10} + 0)$	$0 \cdot 8^9 + 0 \cdot 8^8 + 0 \cdot 8^7$	$7 + 0 \cdot 8^6 + 0 \cdot 8$	$8^5 + 0 \cdot 8^4 + 0 \cdot 8^3$	$+0\cdot 8^2 + 1\cdot 8$	¹ –1 · 8 ⁰



2hdo counters	emptying states	states of 2nd/3 100
$(1, 0 \cdot 4 \cdot 8^{10} + 0 \cdot 8^{5})$	$(3^{3} + 0 \cdot 8^{8} + 0 \cdot 8^{7} + 0 \cdot 8^{6} + 0 \cdot 8^{5} + 0 \cdot 8^{8})$	$b^4 + 0 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 - 1 \cdot 8^0$
	$\downarrow (0, -8^{10} - 5$	· 8 ⁹ )
$(1, -1 \cdot 8^{10} - 5 \cdot 8)$	$9 + 0 \cdot 8^8 + 0 \cdot 8^7 + 0 \cdot 8^6 + 0 \cdot 8^5 + 0 \cdot 8^6$	$8^4 + 0 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 - 1 \cdot 8^0$



$$(1, -1 \cdot 8^{10} - 5 \cdot 8^{9} + 0 \cdot 8^{8} + 0 \cdot 8^{7} + 0 \cdot 8^{6} + 0 \cdot 8^{5} + 0 \cdot 8^{4} + 0 \cdot 8^{3} + 0 \cdot 8^{2} + 1 \cdot 8^{1} - 1 \cdot 8^{0} + 0 \cdot 8^{10} + 5 \cdot 8^{9} + 8^{5} - 1 \cdot 8^{1})$$

$$(1, 0 \cdot 4 \cdot 8^{10} + 0 \cdot 8^{9} + 0 \cdot 8^{8} + 0 \cdot 8^{7} + 0 \cdot 8^{6} + 1 \cdot 8^{5} + 0 \cdot 8^{4} + 0 \cdot 8^{3} + 0 \cdot 8^{2} + 0 \cdot 8^{1} - 1 \cdot 8^{0})$$



$$\begin{array}{c} \downarrow (0, -8^{10} - 5 \cdot 8^9) \\ (1, \hline -1 \cdot 8^{10} - 5 \cdot 8^9) + 0 \cdot 8^8 + 0 \cdot 8^7 + 0 \cdot 8^6 + 0 \cdot 8^5 + 0 \cdot 8^4 + 0 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 \\ \downarrow 0, 8^{10} + 5 \cdot 8^9 + 8^5 - 1 \cdot 8^1) \\ (1, \hline 0 \cdot 4 \cdot 8^{10} + 0 \cdot 8^9 + 0 \cdot 8^8 + 0 \cdot 8^7 + 0 \cdot 8^6 + 1 \cdot 8^5 + 0 \cdot 8^4 + 0 \cdot 8^3 + 0 \cdot 8^2 + 0 \cdot 8^1 - 1 \cdot 8^0) \end{array}$$





(1,0	$4 \cdot 8^{10} + 0 \cdot 8^{9}$	$+ 0 \cdot 8^8 + 0 \cdot 8^4$	$(+0 \cdot 8^{6} +$	0 · 8 ⁵	$+ 0 \cdot 8^4$	$+0 \cdot 8^3$	$+ 0 \cdot 8^2 +$	1 · 8 ¹	-1 ·	8 ⁰ )
			Ļ	(0, 8 ¹⁰	$0^{0} + 5 \cdot 8^{9}$	$9 + 8^5 -$	$1 \cdot 8^{1})$			
(1,	$1 \cdot 8^{10} + 5 \cdot 8^{9}$	$+ 0 \cdot 8^8 + 0 \cdot 8^7$	$+ 0 \cdot 8^{6} +$	1 · 8 ⁵	+ 0 · 8 ⁴	$+ 0 \cdot 8^{3}$	$+ 0 \cdot 8^2 +$	0 · 8 ¹	- 1 -	· 8 ⁰



$$\downarrow (0, 8^{10} + 5 \cdot 8^{9} + 8^{3} - 1 \cdot 8^{1})$$
(1, 
$$1 \cdot 8^{10} + 5 \cdot 8^{9} + 0 \cdot 8^{8} + 0 \cdot 8^{7} + 0 \cdot 8^{6} + \frac{1 \cdot 8^{5}}{1 \cdot 8^{5}} + 0 \cdot 8^{4} + 0 \cdot 8^{3} + 0 \cdot 8^{2} + \frac{0 \cdot 8^{1}}{1 \cdot 8^{10}} - 1 \cdot 8^{0})$$

Introduction	Definitions 00000	Robot games with states	Robot games	Conclusion

## Conclusion

Introduction	Definitions 00000	Robot games with states	Robot games	Conclusion ●○○
Summar	V			

## Theorem

Given moves of Adam and Eve,  $A, E \subseteq \mathbb{Z}^2$ , an initial vector  $\mathbf{x} \in \mathbb{Z}^2$ . It is undecidable whether Eve has a winning strategy.

Game	Dimension		
	1	2	≥ <b>3</b>
counter reachability games	EXPSPACE-complete	U	_
robot games with states	EXPSPACE-complete	U	_
robot games	EXPTIME-complete	?	U

Introduction	Definitions 00000	Robot games with states	Robot games	Conclusion ●○○
Summar	V			

## Theorem

Given moves of Adam and Eve,  $A, E \subseteq \mathbb{Z}^2$ , an initial vector  $\mathbf{x} \in \mathbb{Z}^2$ . It is undecidable whether Eve has a winning strategy.

Game	Dimension		
	1	2	≥ <b>3</b>
counter reachability games	EXPSPACE-complete	U	_
robot games with states	EXPSPACE-complete	U	_
robot games	EXPTIME-complete	U	_

Introduction	Definitions 00000	Robot games with states	Robot games	Conclusion ○●○
Future w	ork			

- Better bounds on number of moves for each player.
- Embedding two-counter machines into different games.
- Decidability of stateless VASS games.

Introduction	Definitions	Robot games with states	Robot games	Conclusion ○○●

## Thank you for your attention!