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Attacker-Defender Games
Two players: Attacker, Defender.

Players play in turns using available moves.

Initial and target configurations.

Configuration is a sequence of alternating moves.

Play is an infinite sequence of configurations.

Attacker wins if the target configuration is reachable in a play
starting from the initial configuration. Otherwise Defender wins.
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Games we consider
1 Weighted Word Games

2 Word Game on pairs of group words

3 Matrix Games on vectors

4 Braid Games

Theorem
It is undecidable whether Attacker has a winning strategy in these
games.
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Weighted Word Games
Players are given sets of words over free group alphabet.

They play words in turns.
concatenation
sum

abab
-7

Attacker’s goal to reach a certain word with zero weight.
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Word Games on pairs of group words
Similar to Weighted Word Games but now the weight is encoded
as a unary word.
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Matrix Games

Players are given sets of matrices from
SL(n,Z).

Attacker: {M1, . . . ,Mk}
Defender: {N1, . . . ,N`}
Initial and target vectors

We encode words from Word Games on
pair of words into 4× 4 matrices.

N1

M1

N2

M2

x0

x
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Braid Games
Two variants - played on 3 (B3) or 5 strands
(B5).
Players are given sets of braid words.
Target is a braid isotopic to a trivial braid.

· · ·

= ↔ ↔

−−−−

−−−−

−−−−
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Universality Problem for Finite Automata
For given Finite Automaton A, over alphabet A, is its language
L(A) = A∗?
For given Büchi Automaton B, over alphabet A, is its language
L(B) = Aω?
Both are known to be decidable.

Example
a

b
b

a

b
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Universality Problem for Weighted Automata
Extend automaton by adding weight function γ to transitions.
For given Weighted Automaton Aγ , over alphabet A, is its
language L(Aγ) = A∗?
Shown to be undecidable by Halava and Harju in 1999.

Example

(a,4)
(b,2)

(b,−2)

(a,1)

(b,−3)

Unfortunately this result is not strong enough for games.
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Weighted Automaton on Infinite Words
Let A = (Q,A, σ,q0,F ,Z) be a finite automaton, where Q is the set of
states, A is the alphabet, σ is the set of transitions, q0 is the initial
state, F is the set of final states, and Z is the additive group of integers.

Transitions
In the form
t = 〈q,a,q′, z〉.

Weight of a path
Let π = ti0 ti1 · · · be an infinite path of A.
Let p ≤ π be a finite prefix.
Weight of p is γ(p) = z0 + . . .+ zn ∈ Z.

Acceptance condition
Let w ∈ Aω. It is accepted by A if there exists a computation π such
that for some prefix p has zero weight.

0w :
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that for some prefix p has zero weight.

(a,1)(a,1)
(b,−2) (a,0), (b,0)

(a,0), (b,0)
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Weight of p is γ(p) = z0 + . . .+ zn ∈ Z.

Acceptance condition
Let w ∈ Aω. It is accepted by A if there exists a computation π such
that for some prefix p has zero weight.

(a,1)(a,1)
(b,−2) (a,0), (b,0)

(a,0), (b,0) Words beginning with aab,
aba or baa are accepted.
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Post Correspondence Problem (Post 46)
Given a finite set of dominoes with words on top and bottom halves,
can we construct a finite sequence of dominoes where words on top
and bottom halves are equal.
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and bottom halves are equal.

Example

Consider P =
{[

ab
abb

]
,
[

bb
baa

]
,
[

aaa
aa

]}
.

[
ab
abb

]

[
bb
baa

][
aaa
aa

][
aaa
aa

]
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Post Correspondence Problem (Post 46)
Given a finite set of dominoes with words on top and bottom halves,
can we construct a finite sequence of dominoes where words on top
and bottom halves are equal.

Example

Consider P =
{[

ab
abb

]
,
[

bb
baa

]
,
[

aaa
aa

]}
.[

ab
abb

][
bb
baa

][
aaa
aa

][
aaa
aa

]
is a solution since both halves read abbbaaaaaa.
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Post Correspondence Problem (Post 46)
Given a finite set of dominoes with words on top and bottom halves,
can we construct a finite sequence of dominoes where words on top
and bottom halves are equal.

Example

Consider P =
{[

ab
abb

]
,
[

bb
baa

]
,
[

aaa
aa

]}
.[

ab
abb

][
bb
baa

][
aaa
aa

][
ab
abb

]
is not a solution as abbbaaaab 6= abbbaaaaabb
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Post Correspondence Problem (Post 46)
Given a finite set of dominoes with words on top and bottom halves,
can we construct a finite sequence of dominoes where words on top
and bottom halves are equal.

Theorem (Matiyasevich, Senizergues 05)
It is undecidable whether PCP with 7 dominoes has a solution.

Proof (idea)
Turing Machine can be simulated with dominoes.[

conf0

][
conf0 · conf1 · · ·
conf1 · conf2 · · ·

][
confhalt

]
Constructed in such way that words are equal if and only if TM halts.

Halava, Harju, Niskanen, Potapov Weighted Automata on Infinite Words in. . . CiE 2015 11 / 30



Post Correspondence Problem (Post 46)
Given a finite set of dominoes with words on top and bottom halves,
can we construct a finite sequence of dominoes where words on top
and bottom halves are equal.

Theorem (Matiyasevich, Senizergues 05)
It is undecidable whether PCP with 7 dominoes has a solution.

Proof (idea)
Turing Machine can be simulated with dominoes.[

conf0

][
conf0 · conf1 · · ·
conf1 · conf2 · · ·

][
confhalt

]
Constructed in such way that words are equal if and only if TM halts.

Halava, Harju, Niskanen, Potapov Weighted Automata on Infinite Words in. . . CiE 2015 11 / 30



Infinite Post Correspondence Problem (ωPCP)
In ωPCP we are given two morphisms h,g : A∗ → B∗.
Does there exist an infinite word w such that for all prefixes p
either h(p) < g(p) or g(p) < h(p)?
Shown to be undecidable by Halava and Harju for domain
alphabets |A| ≥ 9 and improved to |A| ≥ 8 by Dong and Liu.

Example

Consider P =
{[

ab
abb

]
,
[

bb
baa

]
,
[

aaa
aa

]}
. It has an infinite solution[

aaa
aa

][
aaa
aa

][
aaa
aa

]
· · ·
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Application of PCP
Typically dominoes and building a sequence of dominoes are
encoded into the model.
The whole computation is stored.
For this addition dimensions are required.

Our technique
ω PCP is not modeled by the automaton!

1 We guess the position where letters will be unequal.
2 Then we verify that this indeed happens.
3 Can be done with only one counter.
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Idea of construction
The goal is to construct an automaton A such that L(A) = Aω if
and only if the instance of ωPCP has no solution.
An infinite word w ∈ Aω is accepted by A if and only if for some
finite prefix p of w , g(p) ≮ h(p) and h(p) ≮ g(p).
Such a prefix p does exist for all infinite words except for the
solutions of the instance (h,g).
We call the verification of such a prefix p error checking.
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One possible path in the automaton

A

h :

g :

abaab

aba
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h :

g :

abaab ab aab
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One possible path in the automaton

A

h :

g :

abaab ab aab aa

aba a baba ab
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One possible path in the automaton

A B

k

jk

h :

g :

abaab ab aab aa babaa

aba a baba ab a
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One possible path in the automaton

A B C

k

jk

h :

g :

abaab ab aab aa babaa

aba a baba ab a aba
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One possible path in the automaton

A B C

k

jk

h :

g :

abaab ab aab aa babaa

aba a baba ab a aba b
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One possible path in the automaton

A B C D

k

jk

`
i`

h :

g :

abaab ab aab aa babaa

aba a baba ab a aba b abaa
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Example

ω PCP instance
Let g(1) = ab,g(2) = ab,
h(1) = a,h(2) = b.

Corresponding automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

(1,5)
, (2,5

)
(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)
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Example
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(1,3), (2,3)

(1,5)
, (2,5

)
(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)

w = 12122 · · · is accepted.
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Example

ω PCP instance
Let g(1) = ab,g(2) = ab,
h(1) = a,h(2) = b.

Corresponding automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
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(1,3), (2,3)

(1,5)
, (2,5
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(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)

w = 12122 · · · is accepted.

Relevant part of the automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

p = 1
g(p) = ab
h(p) = a
γ(p) = 3
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Example

ω PCP instance
Let g(1) = ab,g(2) = ab,
h(1) = a,h(2) = b.

Corresponding automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

(1,5)
, (2,5

)
(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)

w = 12122 · · · is accepted.

Relevant part of the automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

p = 12
g(p) = abab
h(p) = ab
γ(p) = 3 + 3 = 6

Halava, Harju, Niskanen, Potapov Weighted Automata on Infinite Words in. . . CiE 2015 17 / 30



Example

ω PCP instance
Let g(1) = ab,g(2) = ab,
h(1) = a,h(2) = b.

Corresponding automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)
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(1,5)
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)
(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)

w = 12122 · · · is accepted.

Relevant part of the automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

p = 121
g(p) = ababab
h(p) = aba
γ(p) = 3 + 3 + 1 = 7
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Example

ω PCP instance
Let g(1) = ab,g(2) = ab,
h(1) = a,h(2) = b.

Corresponding automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

(1,5)
, (2,5

)
(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)

w = 12122 · · · is accepted.

Relevant part of the automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

p = 1212
g(p) = abababab
h(p) = abab
γ(p) = 3 + 3 + 1 + (−3) = 4
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Example

ω PCP instance
Let g(1) = ab,g(2) = ab,
h(1) = a,h(2) = b.

Corresponding automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

(1,5)
, (2,5

)
(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)

w = 12122 · · · is accepted.

Relevant part of the automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

p = 12122
g(p) = ababababab
h(p) = ababb
γ(p) = 3+3+1−3+(−4) = 0

Halava, Harju, Niskanen, Potapov Weighted Automata on Infinite Words in. . . CiE 2015 17 / 30



Example

ω PCP instance
Let g(1) = ab,g(2) = ab,
h(1) = a,h(2) = b.

Corresponding automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

(1,5)
, (2,5

)
(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)

w = (12)ω is not accepted.
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Example

ω PCP instance
Let g(1) = ab,g(2) = ab,
h(1) = a,h(2) = b.

Corresponding automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

(1,5)
, (2,5

)
(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)

w = (12)ω is not accepted.

Relevant part of the automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

p = 1
g(p) = ab
h(p) = a
γ(p) = 3
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Example

ω PCP instance
Let g(1) = ab,g(2) = ab,
h(1) = a,h(2) = b.

Corresponding automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

(1,5)
, (2,5

)
(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)

w = (12)ω is not accepted.

Relevant part of the automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

p = 12
g(p) = abab
h(p) = ab
γ(p) = 3 + 1 = 4
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Example

ω PCP instance
Let g(1) = ab,g(2) = ab,
h(1) = a,h(2) = b.

Corresponding automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

(1,5)
, (2,5

)
(1,
−1),

(2,
0)

q3

(1,−4), (2,−5)

(1,5), (1,7)
(2,5), (2,7)

(1,6), (2,6)

(1,−3), (2,−3)

(1,0), (2,0)

w = (12)ω is not accepted.

Relevant part of the automaton

q2

q1q0

(1,
1),

(1,
5)

(2,
1),

(2,
5)

(1,3), (2,3)

(1,−5)
(2,−4)

(1,−3), (2,−3)

q4

(1,0)
(2,0)

(1,3), (2,3)

p = 121
g(p) = ababab
h(p) = aba
γ(p) = 3 + 1 + (−5) = −1
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Additional paths are needed for different forms of PCP instances:
Image under h is longer and error is far away.

(part C is non-empty)
Image under g is longer and error is far away.

(part C is non-empty)
Image under h is longer and error is close.

(part C is empty, parts B and D are done simultaneously)
Image under g is longer and error is close.

(part C is empty, parts B and D are done simultaneously)

A B C D

k

jk

`
i`

h :

g :

abaab ab aab aa babaa

aba a baba ab a aba b abaa
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Theorem

It is undecidable whether or not L(A) = Aω holds for 5-state integer
weighted automata A on infinite words over alphabet A.
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Attacker-Defender Games
Two players: Attacker, Defender.

Players play in turns using available moves.

Initial and target configurations.

Configuration is a sequence of alternating moves.

Play is an infinite sequence of configurations.

Attacker wins if target configuration is in reachable in a play
starting from initial configuration. Otherwise Defender wins.
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Games we consider
1 Weighted Word Games
2 Word Game on pairs of group words
3 Matrix Games on vectors
4 Braid Games
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Weighted Word Games
Players are given sets of words over free group alphabet.
Defender plays a word of the automaton letter by letter.
Attacker plays words corresponding to the letter played by
Defender and respecting the structure of the automaton.
Attacker tries to reach the word corresponding to the accepting
configuration starting from the word corresponding to the initial
configuration.
Attacker has a winning strategy if and only if every word that
Defender plays is accepted, that is the automaton is universal.
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Word Games on pairs of group words
Similar to Weighted Word Games but now the weight is encoded
as a unary word.
Using an additional trick, initial and final words are (ε, ε).
Attacker has a winning strategy if and only if every word that
Defender plays is accepted, that is the automaton is universal.
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Idea of construction for Word Game
Initial word q0.
Defender plays letter a.
Current word: q0a

Attacker plays word a q0q1 corresponding to transition 〈q0,a,q1〉.
Current word: q0a(a q0q1) = q1

Defender plays letter b.
Current word: q1b
Attacker plays word bq1q2 corresponding to transition 〈q1,b,q2〉.
Current word: q1b(bq1q2) = q2

If Attacker does not match the letter or plays incorrect transition,
uncancellable elements will remain.
In actual Word Game, the construction is slightly more
complicated.
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Counter Example
(In previous construction, Attacker commits to a path, while Defender
does not commit to a word.)

Universal automaton

(a,1)
(a,−1)
(b,0)

(a,0)
(b,0)

(a,1) (a,0)
(b,−1)

(b,0)
q0

q1

q2

Now from q0, Defender plays a.
If Attacker plays a q0q1, then
Defender will play only b and
there is no path with 0 weight.
If Attacker plays a q0q2, then
Defender will play only a and
there is no path with 0 weight.
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Matrix Games

Players are given sets of matrices from
SL(n,Z).
Starting from initial vector x0, players
apply their matrices in turns.
Attacker’s goal is to reach x0.
We encode words from Word Games on
pair of words into 4× 4 matrices.
Since matrices are from SL(4,Z), this is
only possible when matrix played by the
players is the identity matrix.
Identity matrix is reachable if and only if
the empty word is reachable in the Word
Game.

N1

M1

N2

M2

x0

x
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Braid Games
Two variants - played on 3 (B3) or 5 strands
(B5).
Players are given sets of braid words.
In B3, starting from a braid word
corresponding to the initial word of Weighted
Word Game, Attacker’s aim is to reach the
trivial braid.
B5 contains direct product of two free groups
of rank 2 as a subgroup.
We encode words of Word Game on pair of
words into braids.
In both variants, the trivial braid is reachable
if and only if the empty word is reachable in
the corresponding Word Game.

· · ·

= ↔ ↔

−−−−

−−−−

−−−−
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Conclusion and open questions
Matrix Game is open for dimensions 2,3.
Braid Game starting from particular word is completed.

B2 is isomorphic to (Z ,+).
Braid Game starting from trivial braid is open for B3,B4.

Same technique cannot be applied, as B4 does not have direct
product of two free groups.

Application of the automaton to other games, models, etc . . .
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THANK YOU!
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