More haste, less speed:
lazy versus eager evaluation

Richard Bird, Geraint Jones, Oege de Moor

Ozford University Computing Laboratory
Wolfson Building, Parks Road, Ozford OX1 3QD, United Kingdom

Abstract

Nicholas Pippenger has recently given a problem that, under two simple restrictions, can
be solved in linear time by an impure Lisp program, but requires 2(nlogn) steps to be
solved by any eager pure Lisp program. By showing how to solve the problem in linear
time with a lazy functional program, we demonstrate that — for some problems at least —
lazy evaluators are strictly more powerful than eager ones.

1 Introduction

In a recent paper Pippenger (1996) proves that impure Lisp — with mutable variables
and assignment statements — is strictly more powerful than pure Lisp. He exhibits a
task that can be done in real time with an impure Lisp program, but which requires
2(nlogn) steps in one written without using assignments. His proof of the lower
bound makes use of the eagerness of pure Lisp evaluators; in this note we show
that a lazy functional program can solve the problem with the same efficiency as
an impure Lisp program.

In outline, Pippenger’s example program is required to apply a given permutation
repeatedly to groups of symbols drawn from a potentially infinite sequence of inputs.
The heart of the computation is the application of a function doperms, which might
be defined by:

dopermsnps = concat - map (perm ps) - groupn.

The list ps is an encoding of a permutation on n-tuples, and perm ps applies that
permutation to a single n-tuple. The function group n divides a potentially infinite
list into a list of n-tuples, each represented by a list of length n. These subsidiary
functions could be defined by:

perm i [Int] = [a] = [a]
permps = zipwith index ps - repeat

where indexn = head - dropn
group o Int — [a] — [[a]]

groupn = unfold (not - null) (take n) (drop n)

2 Bird, Jones and de Moor

The standard functions zipwith and unfold are defined by:

zipwith w2 (a=b-oc)= ([a] = [b] = [d])

zipwith f [ys =[]

zipwith f (z : xs) 1 = 1]

zipwith f (z : xs) (y 1 ys) = faxy: zipwith f zsys

unfold i (a— Bool) = (a—b) = (a—a) = (a—[b])
unfoldpht = map h - takewhile p - iterate t

Definitions of other standard functions and operators are omitted here.

The functions concat and group n each take time linear in the length of the input
consumed. It is easy to see that perm ps takes O(n?) steps, where n is the length
of ps. A more sophisticated implementation of perm could bring the time down to
O(nlogn) steps, however the precise running time of perm will be unimportant so
long as it is no greater than quadratic.

2 The problem to be solved

In order to distinguish the contribution of assignment to the time complexity of
programs, Pippenger imposes two constraints: that the computation be both on
line and symbolic.

That a computation be on line means that for each m, the m-th output should
be produced by the computation before the (m + 1)-th input is received. In the
context of lazy functional programming this means that the program, machine say,
should be a non-destructive function, which is to say that

take m - machine = machine - (H undefined) - take m

for all m.

As defined above, dopermsn ps could not be on line for all arguments ps, in
particular if ps represents the reverse permutation, the first element of a reversed
n-tuple cannot be output until all n of the components have been read. In order
to guarantee that an on-line solution is possible machine is defined to interleave
inputting with outputting, adding a copy of each significant symbol of its input
to the output, and dually reading and ignoring a dummy symbol of input for each
significant symbol of the output. These extra transactions are immaterial to the real
computation being performed, and are present only to ‘clock’ the computation.

To accommodate these extra transactions doperms is modified to be:

dopermsnps = concat - map (echo (perm ps) - taken) - group (2 x n)
where echo fzs = zsH fuas

Note that although this function doperms is on line, it is not real time, which is to
say that it does not produce each output within a bounded number of steps after
consuming the corresponding input. To see this, observe that an output of length
m requires O(m/n) applications of perm, and so takes O(mmn) steps if perm takes
O(n?) steps. Even if an O(nlogn) implementation of perm were substituted, the
computation would still require O(mlogn) steps.

More haste, less speed 3

That a computation be symbolic means essentially that the function being com-
puted should be fully polymorphic in the type of the list being processed, excepting
only that list elements may be compared for equality. In a language with type
classes this means that the function machine should have type

machine : Egqa=[a] - [a].

The function used as a touchstone in Pippenger’s paper is made symbolic by its
reading of a prologue which encodes the permutation to be applied. Two distinct
symbols, say a and b, are first read from the input: these are to be used to represent
natural numbers in what follows. The numbers are each encoded in unary notation
as runs of a symbols terminated by a single b. After a and b, a representation of
the length n of the permutation is read, followed by a sequence of n unary numbers
which represent the permutation. The prologue ends with sufficient additional in-
puts to bring the total number of symbols read up to 2 +n + n?. (These additional
symbol are ignored, and seem not to be essential to the complexity result, but we
will duplicate the behaviour anyway.)

Thereafter the computation proceeds in the phases described by doperms, with
each phase consisting of reading n additional symbols from the input while echoing
them to the output, and then printing the corresponding permutation as specified
in the prologue while discarding n further dummy inputs.

machinexs = [a,b] +
takewhile (= a) ys + [head (dropwhile (= a) ys)] H
take (n x n) (after ys) +
doperms n ps (drop (2+n+n X n) xs)

where a = head zs
b = head (tail zs)
ys = tail (tail zs)
n = headns+1
ps = taken (tail ns)

ns = unfold (const True) unary after ys
unary = length - takewhile (= a)
after = tail - dropwhile (= a)

For example, with spacing added to emphasize the structure,

machine “ab aaab aabaaababb xxxxxx 0123 xxxx 4567 xxxX”’
= “abaaabaabaaababbxxxxxx 012323104567 6754”.

In this example, the prologue describes the permutation [2,3,1,0], and there are
two phases: [0,1,2,3] — [2,3,1,0] and [4,5,6,7] — [6,7,5,4].

Pippenger shows that machine can be implemented on line in real time in impure
Lisp, that is to say he shows how to construct a program which outputs the first
m elements of machine s in O(m) steps for all m, independently of n. However
he also shows that there is no real-time on-line symbolic pure Lisp program which
does this: indeed no on-line pure Lisp program can produce the first m elements of

4 Bird, Jones and de Moor

the corresponding output in less than 2(mlogm) steps. We will now construct a
lazy functional program that can implement machine on line in real time.

3 A real-time on-line lazy implementation

Crucial to the fast lazy program is the observation that instead of repeatedly apply-
ing a permutation to groups of n symbols, the same result can be obtained by one
application of the permutation to a group of n sequences of symbols. The sequence
of lists which are to be permuted is transposed, the transposed list of sequences is
permuted once, and the permuted list of sequence is transposed back again. For-
mally, this is follows from the observation that if f is a polymorphic shape-injective
function then

trans - f = map f - trans.

The term echo (perm ps) - take n applied to lists of length 2n has just this property
so the definition of doperms above can be replaced by

dopermsnps = concat - trans - echo (perm ps) - take n - trans - group (2 X n).

With care, the function ¢rans can be written to make this implementation work on
line in real time on infinite arguments.

The first occurrence of trans in the definition of doperms has to turn a 2n-tuple
of potentially infinite lists into a infinite list of 2n-tuples, producing the whole of
each 2n-tuple before inspecting the tail of any component. The second occurrence
of trans has to have the complementary property when turning an infinite list of
2n-tuples into a 2n-tuple of infinite lists. Both of these requirements are met by
defining

trans : [[a]] = [[a]]
trans = foldr (zipwith' (:)) (repeat [])
where the function zipwith' is defined by
zipwith' 2 (a—=b—c)—[a] = [b] =[]
zpwith' f— [] ys =[]
zipwith' f (x : zs)ys = fx (head ys) : zipwith' f xs (tail ys)

to agree with zipwith where they are both defined, but also to be non-strict in the
second list argument.

zipwith' fxs = zipwith f xs - unstrictlist
where unstrictlist = wunfold (const True) head tail

Were this not the case, the transposition of an infinite list would be undefined.
This revised implementation of doperms can compute outputs of length 2nk in
O(t(n) + 2nk) steps for all k > 1, where t(n) is the cost of one application of perm ps
with a permutation ps of length n. The effect of the double transposition is that
perm is applied only once, and the application of the permutation is evaluated fully
during the first phase, when the first 2n elements of the output are computed.
Although this might at first sight seem to fall short of real-time behaviour, since

More haste, less speed 5

there may be more than O(n) steps involved in computing the first 2n post-prologue
outputs of machine, this does not matter: provided that ¢(n) is no greater than
O(n?) the extra time needed can be attributed to the O(n?) symbols read and
written during the prologue. Thus with this doperms component the lazy imple-
mentation of machine produces outputs of length m in time O(m), independent of
the size n of the permutation.

4 Lazy versus normal-order

It is well known that normal-order reduction can be simulated in an eager language
by systematic translation. After currying each function in the given program, each
application can be rewritten in the form

MN — (applyto N) M.

Eager evaluation of the resulting program corresponds to normal-order reduction of
the original program. The translation might be applied to the program for machine
to yield an on-line eager program which consumes and generates streams.

This does not contradict Pippenger’s result since the translation does not preserve
time complexity. More specifically: if the original program is not syntactically linear,
the normal-order translation executed by an eager evaluator may execute the same
sub-computation more than once. For example, the second list argument appears
twice in

zipwith' f (z : zs)ys = fx (head ys) : zipwith' f zs (tail ys)

which is essentially not linear. Hence trans is not linear and a normal-order evalu-
ation of our solution would re-evaluate the permutation (and everything involved
in building the structure to be permuted) for each of the 2n-tuples of the output.

It might appear that the non-linearity in the definition of ¢trans could be elim-
inated by defining zipwith' in terms of zipwith and unstrictlist, but the standard
definition of iterate

iterate fx = x :iterate f (f x)

is clearly not linear. This non-linearity can be eliminated by transforming the defi-
nition into

iterate fx = fix ((x:) - map f) where fix f =y wherey = fy

but this is not linear unless the equation y = f y is implemented by the construction
of a circular data-object y.

The inefficiency of normal-order evaluation of non-linear programs is exactly what
is eliminated in a lazy evaluator: whenever an identified — and possibly shared —
expression is evaluated, the closure for that expression is replaced by its value.
Pippenger’s result shows that in order to eliminate this inefficiency there must be
some mechanism added to an eager evaluator which he excludes from his model of
a pure Lisp evaluator. Such mechanisms are the definition of circular data-objects

6 Bird, Jones and de Moor

in letrec-like constructs; assignment; memoization of the results of function appli-
cation; or of course the overwriting of a closure by its value. This last is essentially
a restricted memoization, and has the advantage over general memoization of being
implementable at a negligible additional cost by a sequential normal-order evalua-
tor.

5 Epilogue

We have shown that in applying the function machine, the assignments necessary
to implement a lazy evaluator are sufficient to reduce the lower-bound complexity
of the program. Note that we do not, and cannot, claim that a lazy implementation
can solve all problems with the same efficiency as an impure Lisp solution. We
do, however, appear to have shown that — without exploiting assignment or the
definitions of recursive data-objects — there is no complexity-preserving translation
into an eager language of arbitrary programs written in a lazy one.

Reference

Pippenger, Nicholas. (1996). Pure versus Impure Lisp. In 28rd ACM Sigplan-Sigact
conference on the Principles of Programming Languages (POPL’96), pp. 104-109. ACM
Press.

