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Why Abstract?

• How are things entangled? Not how much!

• Make structure more obvious

• How much quantum computation can we get from the algebra
alone?

• Non standard models ae interesting for practical as well as
philosophical reasons

Towards a type theory for quantum computation.
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Compact Closed Categories

A compact closed category is a symmetric monoidal category where
every object A has a chosen dual A∗ and unit and counit maps

ηA : I → A∗ ⊗ A

εA : A ⊗ A∗ → I

such that

A
∼=� A ⊗ I

idA ⊗ ηA� A ⊗ (A∗ ⊗ A)

A

idA

�
� ∼= I ⊗ A �

εA ⊗ idA
(A ⊗ A∗) ⊗ A

α

�

and the same diagram for the dual.
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Example : FDHilb

Let FDHilb be the category whose objects are finite dimensional
Hilbert spaces, and whose arrows are linear maps; FDHilb is
compact closed with the following structure:

1. A∗ = [A → C]

2. Let {ai}i be any orthonormal basis for A; then ηA and εA are the
linear maps defined by

ηA : 1 �→
∑

i

ai ⊗ ai

εA : ai ⊗ aj �→ δij
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Names

In any compact closed category we have

[A, B] ∼= [I, A∗ ⊗ B]

via the name �f� of f : A → B.

I
ηA� A∗ ⊗ A

A∗ ⊗ B

idA∗ ⊗ f

�

�f�
�
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Strong Compact Closure

Suppose that C is equipped with a contravariant, involutive strict
monoidal functor (·)† which is the identity on objects. Call f† the
adjoint of f .

Say that that C is strongly compact closed if

εA = σA∗,A ◦ η†
A.

Now suppose ψ, φ : I → A, we can define abstract inner product

〈ψ | φ〉 := ψ† ◦ φ
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Example : FDHilb

FDHilb is strongly compact closed.

• Let f† be the unique linear map defined by 〈f†φ | ψ〉 = 〈φ | fψ〉;
note that this coincides with the usual adjoint given by the
conjugate transpose of matrices.

NB: when working with qubits we’ll identify A∗ and A and hence also
f∗ and f†. The isomorphism is not natural, but relative to the
standard basis. Hence we take

ηQ = 1 �→ |00〉 + |11〉 .
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1. Polycategories and Abstract Entanglement
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Free Compact Closure on a Category

Given a category A of basic maps we can construct the free compact
closed category generated by it.

Objects: signed vectors of objects from A, i.e. maps
{A1, . . . , An} → {+,−}.
Arrows: f : A → B

• an involution θ on A∗ ⊗ B

• a functor p : θ → A
• some scalars

If A has a suitable endofunctor (·)†, then this can be lifted to get the
free strongly compact closed category.
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Free Compact Closure on a Category

A1 A∗
2 A3 A4 A∗

5

A6 A7 A∗
8 A9 A∗

10

f
g h k

l
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Problem!

Consider a category with one object Q and some collection of
(unitary) maps Q → Q.

Its free compact closure is an interesting category of quantum states
and maps: suffices for many simple protocols such as teleportation
and swapping.

But:
From the structure of the maps we can immediately see that there
are only bipartite entangled states!
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Polycategories

Introduced by Lambek (1969) and used to give categorical models for
classical logic (among other things).

A symmetric compact polycategory, P, consists of

• Objects ObjP ;

• Polyarrows f : Γ → ∆ between vectors of objects Γ, ∆;

• Identities idA : A → A for each 1-vector A;
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A1 An

B1 Bm

f

· · ·

· · ·

A

A

idA
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Polycategories (cont.)

If |Θ| > 0 then given

Γ
f� ∆1, Θ, ∆2 and Γ1, Θ, Γ2

g� ∆

we may form the composition

Γ1, Γ, Γ2
g i

k◦jf� ∆1, ∆, ∆2

where |∆1| = i, |Γ1| = j and |Θ| = k > 0
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Polycategories (cont.)

Easier to understand composition from a diagram:

Γ1

Γ

Γ2

∆1

∆

∆2

Θ
f g

Identities:
id ◦ f = f = f ◦ id
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Polycategories (cont.)

Composition is associative, so this diagram is unambiguous:

Γ3

Γ1

Γ

Γ2

Γ4

∆1

∆3

∆

∆4

∆2

Θ Ψ
f g h
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Example

let Q be the the polycategory whose only object is Q, and which is
generated by the following non-identity poly-arrows.

|0〉 , |1〉 : − → Q

〈0| , 〈1| : Q → −
H, X, Y, Z : Q → Q

CZ : Q, Q → Q, Q
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Why Polycategories?

Polycategories are a bit strange. Why use them?

• Suited for many-input, many-out protocols

• No trivial composites.

Disadvantages:

• No identities at compound maps means can’t have all the
equations we might want, e.g. CZ ◦ CZ = idQ,Q.
...but we can get around this.
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Circuits

A graph with boundary is a pair (G, ∂G) of an underlying directed
graph G = (V, E) and a distinguished subset of the degree one
vertices ∂G

We permit loops and parallel edges, and, in addition to the usual
graph structure we permit circles: closed edges without any vertex..

A circuit is triple Γ = (Γ, domΓ, codΓ) where (Γ, ∂Γ) is a finite
directed graph with boundary with ∂Γ partitioned into two totally
ordered subsets domΓ and codΓ. In addition, every node x carries a
total ordering on its incoming and outgoing edges; the resulting
sequences are written in(x) and out(x) respectively.
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Anatomy of a Circuit

dom Γ cod Γ

◦
◦

◦
◦

◦ ◦

◦ ◦

◦
◦

◦

•

•

•

•
•

∂Γ

IΓ
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Circuits form a Compact Closed Category

We construct a category of abstract circuits Circ.

• Objects are signed ordinals: maps {1, . . . , n} → {+,−};
• Arrow X → Y are circuits whose domain and codomain are X∗

and Y ;

• Composition is by “plugging together”;

• Tensor defined by “laying beside”;
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A-Labelling

If we have a given polycategory A, embed it into Circ using a
labelling on the edges and vertices of circuits.

A pair of maps θ = (θO, θA) is an A-labelling for a circuit gamma
when θO maps each edge of Γ to an object in Obj(A) and θA maps
each internal node of Γ to ArrA such that for each node f ,
in(f) = 〈a1, . . . , an〉 and out(f) = 〈b1, . . . , bm〉 imply

dom(θf) = θa1, . . . , θan

cod(θf) = θb1, . . . , θbm.
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Circ(A)

If θ is a labelling for Γ then (Γ, θ) is an A-labelled circuit.

The A-labelled circuits form a category called Circ(A).

• Objects : signed vectors of objects from A.

• Arrows : A-labelled circuits.

There is a forgetful functor

Circ(A)
U� Circ

Circ(A) inherits compact closure from Circ.
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Circ(A) is the Free Compact closed Category on A

A Ψ� Circ(A)

C

G�

�

G

�

Theorem. Given any compact closed category C, every compact
closed functor G : A → C factors uniquely through Ψ.
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An Aside : Proofnets

Given a compact polycategory A we can construct a category of
two-sided proof-nets PN(A).

PN(A) has a strongly normalising cut-elimination procedure.

PN(A) ∼= Circ(A)

The normal forms of PN(A) are the circuits of Circ(A) with some
type formers attached to their domain and codomain.
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⊗
—

⊗
⊗—
—

· · · · · ·

· · · · · · · · ·

· · · · · · · · ·

— ⊗
⊗

⊗

—
—

· · · · · ·

premise type Γ
Fixed by the

conclusion type ∆
Fixed by the

Defines a unique
A-labelled circuit f

There is an equivalence of categories between Circ(A) and PN(A).
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Some Questions

• We can define a maximally entangled state to be the name of a
unitary (this is a theorem in FDHilb) — but can we give an
abstract measure of entanglement in other states?

• If A is simply a category, the double gluing on Circ(A) gives a
∗-autonomous category where the linear logic connectives
characterise the separable and entangled states. Will something
similar work here?

• What about non-symmetric cases?

• Can the topology tell us anything interesting? Complexity?
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2. The Measurement Calculus in Abstract Form
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Measurement Calculus

Introduced by Danos, Kashefi and Pananagden for the 1-way model

1. A set S of qubits, numbered 1, . . . n;

2. Subsets I ⊆ S, O ⊆ S of inputs and outputs;

3. All q /∈ I initialised to |+〉;
4. All q /∈ O must eventually be measured and not reused.

Compute using patterns comprised of

Eij = Control-Z

Xi, Zj = Pauli X,Z corrections

Mα
i = 1 qubit measurement in basis |0〉 ± eiα |1〉

where i, j index over qubits.
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Measurement Calculus (cont.)

Theorem. Measurement patterns are universal with respect to
unitaries.

A slight variation with only X-Y measurements is approximately
universal.

Theorem. Every measurement pattern is equivalent to a pattern
where all Eij precede all Mα

i which precede all Xi, Yj.

Further there is an effective rewriting procedure to put any pattern
into this (EMC)-normal form.
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Polycategorising the Measurement Calculus

We define a polycategory M suitable for measurement patterns,

ObjM = {Q}
ArrM = {|+〉 , 〈+| , Tα, H, X, Z, E}

Give M an involution (·)† by

E† = E H† = H X† = X Z† = Z

T †
α = T−α |+〉† = 〈+|

Now we interpret the measurement calculus in Circ(M) by mapping
each pattern to a circuit.

Eij �→ E Zi �→ Z

Xj �→ X Mα �→ 〈+|Tα
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Graphical Notation for M
We use the following graphical notation for the M-labelled circuits.
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Equations in M

There are more: for example commutation relations.
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Symmetry

E is invariant under transpose and partial transpose.
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E |++〉 = �H�
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Example : Teleportation

From DKP, ignoring corrections the teleportation protocol is
computed by

M0
2 M0

1 E23E12

with input 1 and output 3.
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Example : General Rotation

From DKP, a one qubit rotation, given by its Euler decomposition
Rx(γ)Rz(β)Rx(α) is computed by the pattern

M0
4 Mα

3 Mβ
2 Mγ

1 E12345

with input 1 and output 5.
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Example : CNOT

CNOT is computed by the pattern

M0
3 M0

2 E13E23E34

with inputs 1,2 and outputs 1,4.
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Commuting Relations
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The Swap Gate
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Questions

• Is this set of equations complete?

• Is there a normalisation theorem?

• Is there a connection with the converse to the Flow theorem?
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