A Categorical Approach to Quantum Computing

Ross Duncan

Attributions

The categorical presentation of quantum mechanics is due to Samson Abramsky and Bob Coecke (see Proc. LiCS 2004)
The associated quantum logic is joint work with Samson Abramsky (see Proc QPL 2004)

Motivation

We are interested in types for quantum mechanics

- to design nice quantum programming languages
- to prove correctness of quantum protocols and algorithms
- discover new models for quantum computation?
- perhaps learn something new about physics?

Most current work on quantum programming languages treats the quantum realm as a black box... but we know this is wrong!

- Teleportation protocol (+ many others) show information flow along quantum parts of the system.
- Josza proved that quantum speedup is due to increasing entanglement between subsystems.

Want to reveal and describe this informatic structure.

Quantum Behaviour

- Quantum states are complex (unit) vectors (upto phase)
- Often think of qubits: vectors in \mathbb{C}^{2} with standard basis $|0\rangle,|1\rangle$.
- Compounds systems formed by tensor product: can't always separate components.
- Measurement involves projection onto a basis:

Entanglement

- Entangled states cannot be separated into components, e.g. $\forall \psi, \phi$:

$$
|00\rangle+|11\rangle \neq|\psi\rangle \otimes|\phi\rangle
$$

- Measurement at one component causes collapse at the other:

More on Entanglement

For finite dimensional Hilbert spaces A, B we have an isomorphism

$$
\begin{aligned}
A \otimes B & \cong A \rightarrow B \\
\sum_{i j} z_{i j} \cdot\left(a_{i} \otimes b_{j}\right) & \cong\left(a_{i} \mapsto \sum_{j} z_{i j} b_{j}\right)
\end{aligned}
$$

We can see that under this isomorphism

$$
\begin{aligned}
|00\rangle+|11\rangle \cong \quad|0\rangle & \mapsto|0\rangle \\
|1\rangle & \mapsto|1\rangle
\end{aligned}=\quad \operatorname{id}_{Q}
$$

In general, maximally entangled states correspond to unitary maps and separable states correspond to "constants".

Example: Bell States

Let $\beta_{i}: Q \rightarrow Q$ be the the following linear maps

$$
\begin{aligned}
& \beta_{1}: \begin{aligned}
|0\rangle & \mapsto|0\rangle \\
|1\rangle & \mapsto|1\rangle
\end{aligned} \quad \beta_{2}: \begin{array}{l}
|0\rangle \\
|1\rangle
\end{array}|0\rangle-|1\rangle \\
& \beta_{3}: \begin{array}{ll}
|0\rangle & \mapsto|1\rangle \\
|1\rangle & \mapsto|0\rangle
\end{array} \quad \beta_{4}: \begin{array}{l}
|0\rangle
\end{array} \quad \begin{array}{l}
|1\rangle \\
|1\rangle
\end{array}
\end{aligned}
$$

They correspond to the Bell States:

$$
\begin{aligned}
& \left|\beta_{1}\right\rangle=|00\rangle+|11\rangle \quad\left|\beta_{2}\right\rangle=|00\rangle-|11\rangle \\
& \left|\beta_{3}\right\rangle=|01\rangle+|10\rangle \quad\left|\beta_{4}\right\rangle=|01\rangle-|10\rangle
\end{aligned}
$$

Teleportation

THM Impossible to duplicate an unknown quantum state.
But can teleport it:

More Teleportation

$$
\begin{aligned}
& \text { Let }|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \text { then } \\
& (\alpha|0\rangle+\beta|1\rangle)(|00\rangle+|11\rangle) \\
& =\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle \\
& =\frac{1}{2}((|00\rangle+|11\rangle)(\alpha|0\rangle+\beta|1\rangle)+(|00\rangle-|11\rangle)(\alpha|0\rangle-\beta|1\rangle) \\
& +(|01\rangle+|10\rangle)(\alpha|1\rangle+\beta|0\rangle)+(|01\rangle-|10\rangle)(\alpha|1\rangle-\beta|0\rangle)) \\
& =\frac{1}{2}\left(\left|\beta_{1}\right\rangle\left|\beta_{1} \psi\right\rangle+\left|\beta_{2}\right\rangle\left|\beta_{2} \psi\right\rangle+\left|\beta_{3}\right\rangle\left|\beta_{3} \psi\right\rangle+\left|\beta_{4}\right\rangle\left|\beta_{4} \psi\right\rangle\right)
\end{aligned}
$$

The Postulates of Quantum Mechanics

1. - State space $=$ finite dimensional Hilbert space;

- States are 1-dim subspaces, represented by unit vectors.

2. Compound systems are formed by taking the tensor product of their component spaces.
3. Basic state transformations are unitary maps.
4. Applying a measurement yields:

- a probabilistic choice of projection onto a basis vector;
- knowledge about which projection was performed.

General Scheme

Plan of Attack

Compact Closed Categories

A compact closed category is a symmetric monoidal category where every object A has a chosen adjoint A^{*} and unit and counit maps

$$
\begin{aligned}
& \eta_{A}: I \rightarrow A^{*} \otimes A \\
& \epsilon_{A}: A \otimes A^{*} \rightarrow I
\end{aligned}
$$

such that

Examples: vector spaces; sets and relations.

A Concrete Example: Qubits

Let Q be a 2 -dim Hilbert space, with basis, $|0\rangle,|1\rangle$.
Then

$$
\eta_{Q}: 1 \mapsto|00\rangle+|11\rangle
$$

and

$$
\epsilon_{Q}:|\psi\rangle \mapsto\langle 00 \mid \psi\rangle+\langle 11 \mid \psi\rangle .
$$

We have:

- Creation of entangled states
- Projection onto an entangled state
- Use of such a pair as a quantum channel (i.e. teleportation)

Names and Conames

In any compact closed category we have

$$
[A, B] \cong\left[I, A^{*} \otimes B\right] \cong\left[A \otimes B^{*}, I\right]
$$

via the name $\ulcorner f\urcorner$ and coname $\llcorner f\lrcorner$ of $f: A \rightarrow B$.

Example: Bell States

Let $\beta_{i}: Q \rightarrow Q$ be the the following linear maps

$$
\begin{aligned}
& \beta_{1}: \begin{aligned}
|0\rangle & \mapsto|0\rangle \\
|1\rangle & \mapsto|1\rangle
\end{aligned} \quad \beta_{2}: \begin{aligned}
|0\rangle & \mapsto|0\rangle \\
|1\rangle & \mapsto-|1\rangle
\end{aligned} \\
& \beta_{3}: \begin{aligned}
|0\rangle & \mapsto|1\rangle \\
|1\rangle & \mapsto|0\rangle
\end{aligned} \quad \beta_{4}: \begin{aligned}
|0\rangle & \mapsto|1\rangle \\
|1\rangle & \mapsto-|0\rangle
\end{aligned}
\end{aligned}
$$

The names of these maps are the Bell states:

$$
\begin{array}{ll}
\left\ulcorner\beta_{1}\right\urcorner: 1 \mapsto|00\rangle+|11\rangle & \left\ulcorner\beta_{2}\right\urcorner: 1 \mapsto|00\rangle-|11\rangle \\
\left\ulcorner\beta_{3}\right\urcorner: 1 \mapsto|01\rangle+|10\rangle & \left\ulcorner\beta_{4}\right\urcorner: 1 \mapsto|01\rangle-|10\rangle
\end{array}
$$

Scalars

In any call the endomorphisms $I \rightarrow I$ scalars; define scalar multiplication $s \bullet f$ by

$$
A \xrightarrow{\cong} I \otimes A \xrightarrow{s \otimes f} I \otimes B \xrightarrow{\cong} B
$$

In a compact closed category we have $I \cong[I, I]$.
PROP: in any symmetric monoidal category the scalars form a commutative monoid.

Strong Compact Closure

Suppose that \mathcal{C} is equipped with a contravariant, involutive functor $(\cdot)^{\dagger}$ which is the identity on objects. Call f^{\dagger} the adjoint of f.

Say that that \mathcal{C} is strongly compact closed if

$$
\epsilon_{A}=\sigma_{A^{*}, A} \circ \eta_{A}^{\dagger} .
$$

Now suppose $\psi, \phi: I \rightarrow A$, we can define abstract inner product

$$
\langle\psi \mid \phi\rangle:=\psi^{\dagger} \circ \phi
$$

Unitarity

Call an isomorphism U unitary if $U^{\dagger}=U^{-1}$. We have

$$
\langle U \circ \psi \mid U \circ \phi\rangle=\left\langle U^{\dagger} \circ U \circ \psi \mid \phi\right\rangle=\langle\psi \mid \phi\rangle
$$

Zero Objects

A zero object is an object which is both initial and terminal
The unique maps to and from $\mathbf{0}$ give maps $\mathbf{0}_{B}^{A}$ between every pair of objects in the category

Biproducts

A biproduct $-\oplus-: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ is both a product and a coproduct.
In the n-ary case we have injections and projections

$$
A_{i} \xrightarrow{q_{i}} \bigoplus_{k=1}^{n} A_{k} \xrightarrow{p_{j}} A_{j}
$$

such that

$$
p_{j} \circ q_{i}=\left\{\begin{array}{l}
\operatorname{id}_{A_{i}} \text { if } i=j \\
\mathbf{0}_{A_{j}}^{A_{i}} \text { otherwise }
\end{array}\right.
$$

We can define addition of arrows by:

Categorical Quantum Mechanics (Simplified Version)

Let \mathcal{C} be a strongly compact closed category with biproducts.

1. - State spaces are objects A of \mathcal{C};

- Sates are arrows $\psi: I \rightarrow A$.

2. Compound systems are formed by taking tensor products $A \otimes B$.
3. Basic state transforms are unitary maps.
4. The action of a measurement is given by a choice of projections

$$
\left\langle M_{i}\right\rangle_{i}: A \rightarrow \bigoplus_{i} I
$$

The Free Strongly Compact Closed Category with Biproducts on a Category

- The basic types and data transforms are given by the underlying category \mathcal{A}
- These provide the atoms and axioms of the logic
- Freely add the structure to get $F \mathcal{A}$.

Example: let \mathcal{Q} be the category with one object Q and arrows the Bell maps $\beta_{i}: Q \rightarrow Q$; then $F \mathcal{A}$ can represent many teleportation like protocols. Call this the qubit category.

Factorisation of the Free Functor

Given the free involution, the free compact closure and the free biproduct,

Cat $\xrightarrow[\longleftrightarrow]{F_{\oplus}}$ BipCat
we can factor the functor F as

$$
F=F_{\oplus} \circ F_{K L} \circ F_{\dagger}
$$

Loops

The loops L of a category \mathcal{A} are equivalence classes of endomorphisms, where each composite

$$
A \xrightarrow{f_{1}} A_{1} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{i}} A_{i} \xrightarrow{f_{i+1}} A
$$

is equivalent to all its cyclic permutations. We'll assume that every loops has a canonical representative.

Let $\langle L\rangle$ be the free commutative monoid generated by L.

The Arrows of $F_{K L} \mathcal{A}$

THM (Kelly-Laplaza) : Each arrow $A \rightarrow B$ of $F_{K L} \mathcal{A}$ is determined by the following data:

- an involution θ on the signed set $A^{*} \otimes B$;
- a functor $v: \theta \rightarrow \mathcal{A}$;
- an element μ of $\langle L\rangle$.

Note that that $F \mathcal{A}(I, I)=\langle L\rangle$.

Choosing the Scalars

By constructing a suitable adjunction, we can force the scalars (i.e. the loops $\langle L\rangle$) be isomorphic to any given monoid.

The Structure of $F_{\oplus} \mathcal{A}$

Each arrow $f: \bigoplus_{i} A_{i} \rightarrow \bigoplus_{j} B_{j}$ is a matrix

$$
\left(\begin{array}{ccc}
f_{11} & \cdots & f_{1 n} \\
\vdots & & \vdots \\
f_{m 1} & \cdots & f_{m n}
\end{array}\right)
$$

where each $f_{i j}: A_{i} \rightarrow B_{j}$ is a summation of arrows of $\mathcal{A}\left(A_{i}, B_{j}\right)$.

Formulae and Axioms

The formulae are given by the grammar:

$$
F::=A\left|A^{*}\right| F \otimes F \mid F \oplus F
$$

where A are the objects of the generating category \mathcal{A}.
We make the following identifications:

$$
\begin{gathered}
X^{* *}=X \\
(X \otimes Y)^{*}=X^{*} \otimes Y^{*} \\
(X \oplus Y)^{*}=X^{*} \oplus Y^{*}
\end{gathered}
$$

If \mathcal{A} is discrete then we have usual propositional logic - all axioms are identities.

If \mathcal{A} has non-identity arrows in \mathcal{A} then to each arrow $f: A \rightarrow B$ we have additional axioms and cut rules.

Two sided sequents:

$$
\Gamma \vdash \Delta ;[L]
$$

Identity Group

$$
\overline{A \vdash A ;[]}(\text { axiom }) \quad \frac{\Gamma, A \vdash A, \Delta ;[L]}{\Gamma \vdash \Delta ;[L]} \text { (trace) }
$$

Structure Group

$$
\frac{\Gamma \vdash \Delta ;[L]}{\tau(\Gamma) \vdash \sigma(\Delta) ;[L]} \text { (exchange) }
$$

Multiplicative Group

$$
\begin{gathered}
\frac{\Gamma \vdash \Delta ;[L]}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime} ;\left[L, L^{\prime}\right]}(\text { mix }) \\
\frac{\Gamma, A, B \vdash \Delta ;[L]}{\Gamma, A \otimes B \vdash \Delta ;[L]}\left(\text { times-L) } \quad \frac{\Gamma \vdash A, B, \Delta ;[L]}{\Gamma \vdash A \otimes B, \Delta ;[L]}\right. \text { (times-R) }
\end{gathered}
$$

\mathcal{A}-Generalised Identity Group

$$
\begin{gathered}
\frac{f}{A \vdash B ;[]}(f \text {-axiom }) \quad \text { where } f: A \rightarrow B \text { is an arrow of } \mathcal{A} \\
\frac{\Gamma, A \vdash B, \Delta ;[L]}{\Gamma \vdash \Delta ;[L]}(g \text {-trace }) \text { where } g: B \rightarrow A \text { is an arrow of } \mathcal{A} . \\
\frac{\vdash ;[h]}{}(h \text {-unit }) \quad \text { where } h: A \rightarrow A \text { is a loop of } \mathcal{A} .
\end{gathered}
$$

Additive Group

$$
\begin{array}{cc}
\frac{\Gamma, A_{i} \vdash \Delta ;[L]}{\Gamma, A_{1} \oplus A_{2} \vdash \Delta ;[L]} \text { (plus-L) } & \frac{\Gamma \vdash \Delta, A_{i} ;[L]}{\Gamma \vdash \Delta, A_{1} \oplus A_{2} ;[L]} \text { (plus-R) } \\
& \text { for } i=1,2 \\
\frac{0_{B}^{A}}{A \vdash B ;[]} \text { (zero) } & \frac{\Gamma, A \vdash B, \Delta ;[L]}{\Gamma \vdash \Delta ;[L]} \text { (0-cut) } \\
& \frac{\Gamma \vdash \Delta ;[L]}{\Gamma \vdash \Delta ;\left[L, L^{\prime}\right]} \text { (sum) }
\end{array}
$$

Proof-Nets

A slice is an oriented graph, with edges labeled by formulae. The graph is constructed from the following nodes:

$$
\forall f \in \mathcal{A}[A, B]
$$

A proof-net is a multi-set of slices all with the same conclusions.

Example: Distributivity

Normal Forms

Suppose we have axioms $A \underset{g}{\stackrel{f}{\rightleftarrows}} B$. Then we can write proof-nets

No natural way to eliminate these cuts. But note that $f \circ g$ and $g \circ f$ belong to the same equivalence class of loops. Call the outer two to be normal loops and identify them.

In a normal slice every connected component is cut-free or a normal loop. A normal proof-net has only normal slices.

Cut-Elimination

Theorem Every proof-net can be transformed to a normal one.

Theorem: The cut elimination procedure is strongly normalising.

Semantics

A proof-net π with conclusions Γ denotes an arrow $\llbracket \pi \rrbracket: I \rightarrow \otimes \Gamma$ in $F \mathcal{A}$.

$$
I \xrightarrow{\ulcorner f\urcorner} A^{*} \otimes B
$$

$$
I \xrightarrow{\mathbb{\llbracket} \mathbb{d}} \Gamma \otimes A \otimes B \xrightarrow{\mathrm{id}_{\Gamma} \otimes\llcorner f\lrcorner} \Gamma \otimes I \cong \Gamma
$$

$$
I \xrightarrow{\llbracket \pi \rrbracket} \Gamma \otimes A \otimes B \xrightarrow{\text { id } \Gamma_{\Gamma} \otimes \epsilon x} \Gamma \otimes I \cong \Gamma
$$

$$
\overbrace{\Gamma_{1} \cdots \Gamma_{i}}^{\pi_{1}} \overbrace{\Gamma_{i+1} \cdots \Gamma_{n}}^{\pi_{2}} \quad I \cong I \otimes I \xrightarrow{\llbracket \pi_{1} \rrbracket \otimes \llbracket \pi_{2} \rrbracket} \Gamma_{1} \otimes \cdots \otimes \Gamma_{n}
$$

If proof-net π consists of the slices π_{1}, \ldots, π_{n} then

$$
\llbracket \pi \rrbracket=\sum_{i} \llbracket \pi_{i} \rrbracket
$$

Soundness and Faithfulness

Theorem: Two proof-nets have the same denotation if and only if the have the same normal form.

Full Completeness

Theorem: For every arrow $f: A \rightarrow B$ in $F \mathcal{A}$ there is a proof-net π such that $\llbracket \pi \rrbracket=\ulcorner f\urcorner$.

Loops

The normal loop

has denotation $I \xrightarrow{\eta_{A}} A^{*} \otimes A \xrightarrow{\epsilon_{A^{*}}} I$
All closed loops denote scalars $I \rightarrow I$; hence normal slice denotes a state preparation and a scalar weight.

Any proof-net denotes formal linear combination of preparations; injection maps give a weighted choice.

Since we can choose the scalars, abstract "probabilities" can be calculated.

Example: Quantum Telephone Exchange

[Bose, Knight, Vedral]

- Alice and Bob wish to share an entangled pair.
- Initially they both share a pair with the telephone exchange (say that both of these are in the state $|00\rangle+|11\rangle$)
- The operator "connects" the two parties by applying a Bell state measurement.
- Alice and Bob now share an entangled pair.

We will model this in the logic generated by the qubit category \mathcal{Q}.

Quantum Telephone Exchange as a slice

Syntax:

Semantics:

$$
I \xrightarrow{\eta_{Q} \otimes \eta_{Q}} Q^{*} \otimes Q \otimes Q^{*} \otimes Q
$$

Quantum Telephone Exchange as a slice

Syntax:

Semantics:

$$
I \xrightarrow{\eta_{Q} \otimes \eta_{Q}} Q^{*} \otimes Q \otimes Q^{*} \otimes Q \xrightarrow{\mathrm{id} \otimes \epsilon_{Q} \otimes \mathrm{id}} Q^{*} \otimes Q
$$

Quantum Telephone Exchange as a CCB

Syntax:

Semantics:

$$
I \xrightarrow{\eta_{Q}} Q^{*} \otimes Q
$$

Take 2: Quantum Telephone Exchange as a proof-net

Since we have 4 outcomes, we have distinct slices for $i=1,2,3,4$.

Work in Progress

- Multipartite Entanglement - the free construction on a symmetric monoidal category.
- Local classical state - additive boxes
- Implementation work

Further Work

- A categorical presentation of the 1-Way model
- More precise models; spectra and orthogonality
- How much physics can we get from a free construction?

