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Abstract. This work discusses the construction of a finite-space stochas-
tic dynamical model as the aggregation of the continuous temperature
dynamics of an inhomogeneous population of thermostatically controlled
loads (TCLs). The temperature dynamics of a TCL is characterized by
a differential equation in which the TCL status (ON, OFF) is controlled
by a thresholding mechanism, and which displays inhomogeneity as its
thermal resistance changes in time according to a Poisson process. In the
aggregation procedure, each TCL model in the population is formally ab-
stracted as a Markov chain, and the cross product of these Markov chains
is lumped into its coarsest (exact) probabilistic bisimulation. Quite im-
portantly, the abstraction procedure allows for the quantification of the
induced error. Assuming that the TCLs explicitly depend on a control in-
put, the contribution investigates the problem of population-level power
reference tracking and load balancing. Furthermore, for the correspond-
ing closed-loop control scheme we show how the worst case performance
can be lower bounded statistically, thereby guaranteeing robustness ver-
sus power-tracking when the underlying assumption on the inhomogene-
ity term is relaxed.

Keywords: Thermostatically controlled load, Markov chain, Poisson
process, Formal abstraction, Probabilistic bisimulation, Stochastic op-
timal control, Noisy optimization.

1 Introduction and Background

Household appliances such as water boilers/heaters, air conditioners and electric
heaters – all referred to as thermostatically controlled loads (TCLs) – can store
energy due to their thermal mass. These appliances generally operate within
a dead-band around a temperature set-point. Control of the aggregate power
consumption of a population of TCLs can provide a variety of benefits to the
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electricity grid. First, ancillary service requests can be partially addressed lo-
cally, which reduces the need for additional transmission line capacity. Second,
controlling a large population of TCLs may improve robustness, since even if a
few TCLs fail to provide the required service the consequence on the population
as a whole would be small. Such benefits highlight the importance of precise
modeling and quantitative control of TCL populations.

Modeling efforts over populations of TCLs and applications to load control ar-
guably initiate with the work in [9]. A discrete-time stochastic model for a TCL
is studied in [25], where a simulation model is developed based on a Markov
chain approximation of the discrete-time dynamics. A diffusion approximation
framework is introduced in [21] to model the dynamics of the electric demand
of large aggregates of TCLs by a system of coupled ordinary and partial dif-
ferential equations. These equations are further studied in [8], where a linear
time-invariant dynamical model is derived for the population.

A range of recent contributions [4,19,22,24] employ a partitioning of the TCL
temperature range to obtain an aggregate state-space model for the TCL pop-
ulation. Matrices and parameters of the aggregate model are computed either
analytically or via system identification techniques. Additional recent efforts
have targeted the application of this approach towards higher-order dynamical
models [29,30] and the problem of energy arbitrage [23]. The main limitation of
these approaches is the lack of a quantitative measure on the accuracy of the
constructed aggregated model. Motivated by this drawback, [15,18] have looked
at the problem from the perspective of formal abstractions: in contrast to all
related approaches in the literature, stymied by the lack of control on the intro-
duced aggregation error, [15,18] have introduced a formal abstraction procedure
that provides an upper bound on the error, which can be precisely tuned to
match a desired level before computing the actual aggregation.

The purpose of this work is to focus on a new inhomogeneous model for the
TCL dynamics, where the inhomogeneity enters the model through a thermal
resistance capturing the effect of the opening/closing of windows, of people en-
tering/leaving the room, and so on. The inhomogeneity enters randomly via a
Poisson process with a fixed arrival rate, which changes the value of the ther-
mal resistance within a given finite set. We show that the TCL dynamics can
be equivalently represented by a discrete-time Markov process, of which we ex-
plicitly compute its stochastic kernel. Next, we employ the mentioned abstrac-
tion techniques in [1,13] to formally approximate it with a Markov chain. Thus,
the aggregated behavior of a population of Markov chains can be modeled as a
stochastic difference equation [14,15], which is then used for state estimation and
closed-loop control of the total power consumption for tracking a load profile.

A crucial assumption in our work underpinning the construction of the stochas-
tic abstraction and the synthesis of the corresponding control scheme is the ho-
mogeneity in the parameters of the population of TCLs. This assumption might
be practically violated. Additionally, some variables such as the initial state of the
population and the desired load profile to be tracked are potentially not known in
advance. Nevertheless, we would like to guarantee a desired performance of a con-
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trol scheme. For example, a desirable property could be that the control scheme is
able to follow a load profile up to a given deviation while keeping the temperature
of the individual households within a certain range. Once a property is specified,
guaranteeing such performance amounts to solving a stochastic satisfiability prob-
lem. More precisely, one has to choose initial states and load profiles pessimisti-
cally to minimize the expect value of the associated cost function. Mathematically
this problem can be formulated using stochastic satisfiability modulo theory [17].
Unfortunately, most tools for solving this kind of satisfiability problems are not
suited to handle continuous non-determinism. However, there is a tight connection
between noisy optimization and stochastic satisfiability [10], rendering the prob-
lem suitable for dedicated methods such as [20,28]. We employ these techniques
to investigate the robustness of the overall control scheme.

The article is organized as follows. Section 2 introduces the dynamics of a
TCL in continuous time, along with the inhomogeneity injected via the Poisson
process. Modeling of the TCL dynamics as a discrete-time Markov process and
computation of the associated stochastic kernel are presented in Section 3. Ab-
straction and aggregate modeling of a population of TCLs are then discussed in
Section 4. Power reference tracking through closed-loop control of the popula-
tion is described in Section 5. Finally in Section 6, robustness of the performance
of the synthesized controller is validated a-posteriori, against violations on the
assumptions on the model.

Throughout this article we use the following notation: N = {1, 2, . . .} for the
natural numbers, N0 = N ∪ {0}, and Nn = {1, 2, . . . , n} for n ∈ N.

2 Model of a Thermostatically Controlled Load

Consider the temperature θ(t) of a TCL evolving in continuous time according
to the equation

dθ(t) =
dt

R(t)C
(θa ± m(t)R(t)Prate − θ(t)) , (1)

where θa is the ambient temperature, C indicates the thermal capacitance, and
Prate is the rate of energy transfer. In equation (1) a + sign is used for a heating
TCL, whereas a − sign is used for a cooling TCL. Inhomogeneity enters via
the thermal resistance R(·) : R≥0 → {R0, R1}, which is a function of time and
switches between two different values (R0, R1), where the switching times are
distributed according to the (homogeneous) Poisson process N(·), namely

R(t) =

{
R0 if N(t) ≡ 0 (mod 2)

R1 if N(t) ≡ 1 (mod 2) .
(2)

The Poisson process accounts for the number of switches and their occurrence
time within a given time interval. N(·) is characterized by a specified rate pa-
rameter λ, so that the number of switches within the time interval (t, t + τ ]
follows a Poisson distribution with
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P{N(t+ τ)−N(t) = n} =
e−λτ (λτ)n

n!
∀n ∈ N0 .

In equation (1), the quantitym(·) represents the status of the thermostat, namely
m : R≥0 → {0, 1}, where m(t) = 1 represents the ON mode and m(t) = 0 the
OFF mode. For the sake of simplicity, we assume that the Poisson process N(·)
is initialized probabilistically according to

N(0) =

{
0 with probability q = 1− p

1 with probability p .

Moreover, we select p = q = 1/2, which means P{R(t) = R0} = P{R(t) =
R1} = 1/2, for all t ∈ R

≥0. This simplifying assumption on the initialization
of the Poisson process and on the special selection of parameter p can be easily
relaxed by including the thermal resistance within the discrete state of the TCL.
Without loss of generality, we further assume that R0 > R1.

With focus on a cooling TCL (− sign in equation (1)), the temperature of the
load is regulated by a digital controller m(t + τ) = f(m(t), θ(t)) that is based
on a binary switching mechanism, as follows:

f(m, θ) =

⎧⎪⎨
⎪⎩
0 if θ < θs − δd/2

.
= θ−

1 if θ > θs + δd/2
.
= θ+

m else ,

(3)

where θs and δd denote the temperature set-point and the dead-band width,
respectively, and together characterize the operating temperature range. Note
that the switching control signal is applied only at discrete time instants {kτ, k ∈
N0}: the mode m(t) may change only at these times, and is fixed in between any
two time instants kτ and (k+1)τ , during which the temperature evolves based on
equations (1)-(2) with a fixed m(kτ). In other words, the operational frequency
of the digital controller is 1

τ .
The power consumption of the single TCL at time t is equal to 1

ηm(t)Prate,
which is then equal to zero in the OFF mode and is positive in the ON mode, and
where the parameter η is the coefficient of performance (COF). The constant
1
ηPrate, namely the power consumed by a single TCL when it is in the ON mode,
will be shortened as PON in the sequel.

In the next section we show that the power consumption of the TCL can
be modeled as a Markov process in discrete time, of which we compute the
stochastic kernel.

3 Discrete-Time Markov Process Associated to the TCL

We consider a discrete-time Markov process (dtMP) {sk, k ∈ N0}, defined over a
general (e.g., continuous or hybrid) state space [2]. The model is denoted by the
pairS = (S, Ts) in which S is an uncountable state space. We denote by B(S) the
associated sigma algebra and refer the reader to [2,5] for details on measurability
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and topological considerations. The stochastic kernel Ts : B(S) × S → [0, 1]
assigns to each state s ∈ S a probability measure Ts(·|s), so that for any set
A ∈ B(S), k ∈ N0, P{sk+1 ∈ A|sk = s} = Ts(A|s). We assume that the stochastic
kernel Ts admits a representation by its conditional density function ts : S×S →
R

≥0, namely Ts(ds̄|s) = ts(s̄|s)ds̄, for any s, s̄ ∈ S.
The digital controller of Section 2 ensures that the power consumption of the

TCL is a piecewise-constant signal, where the jumps can happen only at the
sampling times {kτ, k ∈ N0}. We define θk = θ(kτ),mk = m(kτ) as the values
of the random processes θ(·),m(·) at the sampling time kτ . Despite the fact that
the temperature evolves stochastically in between sampling times, we show that
the dynamics of the temperature and of the mode at the sampling times (that
is, in discrete time with sampling constant τ) can be modeled as a dtMP and
we compute the corresponding conditional density function. In other words, the
goal of this section is to compute the density function of the process state at the
next discrete time step, conditioned on the state at the current time step.

Define the hybrid state of the dtMP S as sk = (mk, θk) ∈ S .
= {0, 1}×R. The

evolution of the mode is given by the deterministic equation mk+1 = f(mk, θk),
while the temperature evolves stochastically and depends on the conditional den-
sity function tθ(θk+1|θk,mk). Then for all sk = (mk, θk), sk+1 = (mk+1, θk+1) ∈
S,

ts(sk+1|sk) = δ [mk+1 − f(mk, θk)] tθ(θk+1|θk,mk) ,

where δ[·] is the discrete Kronecker delta function. The rest of this section is
dedicated to the computation of tθ, and to the study of its dependency on char-
acteristic parameters. We focus on the explicit computation of tθ for the case
where the mode of the current state is OFF, namely tθ(θk+1|θk,mk = 0). The
case of tθ(θk+1|θk,mk = 1) is similar and thus discussed at the end of this
section.

Lemma 1. Suppose the TCL is in the OFF mode, m(t) = 0, during the interval
t ∈ [t1, t2]. The value of the temperature at the end of the interval solely depends
on the relative time the temperature evolves with either of the two resistance
values {R0, R1}, and is independent of the actual order or number of occurrence
of the two values.

Lemma 1 states that the distribution of the temperature at the next time
step θk+1, conditioned on the current temperature value θk, depends exclusively
on the relative time duration that the temperature evolves with any of the two
resistances, within the interval: the number or the order of switchings between
the resistances is not important, thus the corresponding time can be simply
accumulated. Since the resistance changes value based on the jumps of a Poisson
process, we define the sum of the length of the sub-intervals of [kτ, (k + 1)τ ]
in which the temperature evolves with R0 (resp. R1) as the random variable
w0 (resp. w1). Let us now compute the density functions of these two random
variables. Despite the fact that ω0, ω1 are defined with respect to the particularly
chosen interval [kτ, (k+1)τ ], next lemma shows that their density functions are
independent of k and solely depend on the length of the interval τ .
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Lemma 2. The density function of ω0 can be expressed as

fω0(x) = e−λτδ(τ − x) + λe−λτ
[
I0

(
2λ

√
x(τ − x)

)
+
√

x
τ−xI1

(
2λ

√
x(τ − x)

)]
, (4)

which is parametrized by λ, τ , and is independent of k. I0(·), I1(·) are modified
Bessel functions of the first kind [3, Chapter 9] and δ(·) is the Dirac delta func-
tion. The density function of ω1 is fω1(x) = fω0(τ − x).

Lemma 2 indicates that the random variable ω0 (resp. ω1) is of mixed type,
including a probability density function with the interval [0, τ ] as its support,
and a probability mass at x = τ (resp. x = 0). Once we know the distributions
of ω0, ω1, we can compute tθ(θk+1|θk,mk) in the OFF mode.

Theorem 1. The conditional density function tθ(θk+1|θk,mk = 0) is of the
form

tθ(θk+1|θk,mk = 0) =
1

2
t0(θk+1|θk, R0) +

1

2
t1(θk+1|θk, R1) , (5)

where the functions t0, t1 are computed based on the density functions of ω0, ω1:

ti(θk+1|θk, Ri) =
1

|(θk+1 − θa)γ|fωi

(
1

γ

[
ln

θk+1 − θa
θk − θa

+ τ1τ

])
i ∈ {0, 1} ,

(6)
and where τ0 = 1

R0C
, τ1 = 1

R1C
, and γ = τ1 − τ0 > 0.

We emphasize that the conditional density function tθ is independent of k, which
results in a time-homogeneous dtMP. It has the support [θmin, θmax] with

θmin
.
= θa + (θk − θa)e

−τ0τ , θmax
.
= θa + (θk − θa)e

−τ1τ ,

and includes two Dirac delta functions at the boundaries of its support

1

2
e−λτ [δ (θk+1 − θmin) + δ (θk+1 − θmax)] .

Moreover it is discontinuous at the boundaries of its support with the following
discontinuities:

tθ(θmin|θk,mk = 0) = λe−λτ (2+λτ)
2|(θk−θa)γ|e−τ0τ , tθ(θmax|θk,mk = 0) = λe−λτ (2+λτ)

2|(θk−θa)γ|e−τ1τ . (7)

All the above derivations for the density function tθ conditioned in the OFF
mode can be likewise obtained for that in the ON mode: tθ(θk+1|θk,mk = 1) is
formulated exactly as tθ(θk+1|θk,mk = 0) where the quantity θa is replaced by
the steady-state value of the temperature in the ON mode. The only required
assumption is that the temperature trajectories are steered toward the same
steady-state value regardless of the thermal resistance. Such a steady-state value
is θ∞ = θa −m(t)R(t)Prate, which is a function of R(t) in the ON mode. This
assumption technically allows us to swap the order of the intervals in which the
temperature evolves with different resistances and leads to being able to simplify
the computations and to obtain the conditional density functions.
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4 Abstraction of a Population of Inhomogeneous TCLs

4.1 Abstraction of a TCL as a Markov Chain

The interpretation of the Poisson-driven TCL model as a dtMP allows lever-
aging an abstraction technique, proposed in [1] and extended in [12,13], aimed
at reducing an uncountable state-space dtMP into a (discrete-time) finite-state
Markov chain. This abstraction is based on a state-space partitioning proce-
dure as follows. Consider an arbitrary, finite partition of the continuous domain
R = ∪n

i=1Θi, and arbitrary representative points within the partitioning regions
denoted by {θ̄i ∈ Θi, i ∈ Nn}. Introduce a finite-state Markov chain M, charac-
terized by 2n states sim = (m, θ̄i),m ∈ {0, 1}, i ∈ Nn. The transition probability
matrix of M is made up of the entries

P(sim, si′m′) =

∫
Θi′

ts
(
m′, θ′|m, θ̄i

)
dθ′ ∀m,m′ ∈ {0, 1}, i, i′ ∈ Nn . (8)

The initial probability mass ofM is obtained as p0(sim) =
∫
Θi

π0(m, θ)dθ, where

π0 : S → R
≥0 is the density function of the initial hybrid state of the TCL.

For simplicity of notation we rename the states of M by the bijective map
�(sim) = mn + i,m ∈ {0, 1}, i ∈ Nn, and accordingly we introduce the new
notation

Pij = P(�−1(i), �−1(j)) , p0i = p0(�
−1(i)) ∀i, j ∈ N2n .

Notice that the conditional density function of the stochastic system capturing
the dynamics of a TCL is discontinuous, due to the presence of equation (3).
Further, the density function tθ(θk+1|θk,mk) is the summation of two Dirac
delta functions and of a piecewise-Lipschitz continuous part. The existence of
Dirac delta functions produces technical difficulties in the analysis of properties
of interest [16]. Despite these irregularities, we show in the next section that
we can compute an upper bound on the error of Markov chain abstraction,
based on [15,18]. The abstraction error is composed of three terms related to the
Dirac delta functions, the discontinuity at the boundaries, and the state-space
discretization.

4.2 Error Computation of the Markov Chain Abstraction

We compute the abstraction error based on [13, pp. 933-934], which gives an
upper bound for the abstraction error via the constantH satisfying the inequality∫

R

|tθ(θk+1|θk,mk)− tθ(θk+1|θ′k,mk)|dθk+1 ≤ H|θk − θ′k| ∀θk, θ′k,mk . (9)

Notice that the integration in the left-hand side is with respect to the next state
θk+1, while the changes are applied to the current state θk. In order to compute
the constant H, we first establish the Lipschitz continuity of the continuous part
of tθ in Theorem 2 which is founded on the Lipschitz continuity of the bounded
part of the functions fω0(·), fω1(·) presented in Lemma 3.
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Lemma 3. Functions gω0(x)
.
= fω0(x) − e−λτδ(τ − x) and gω1(x)

.
= fω1(x) −

e−λτδ(x), representing the bounded part of functions fω0 , fω1 , satisfy the Lips-
chitz condition

|gωi(x)− gωi(x
′)| ≤ h|x− x′| ∀x, x′ ∈ [0, τ ], i ∈ {0, 1} ,

where h = λ2e−λτM(2λτ) and M(a) = maxu∈[0,1] |ζ(u, a)|. The function ζ is
defined as

ζ(u, a) = I0

(
a
√
u(1− u)

)
+ 1−2u√

u(1−u)
I1

(
a
√
u(1− u)

)
− u

1−uI2

(
a
√
u(1− u)

)
,

where I0(·), I1(·), I2(·) are modified Bessel functions of the first kind [3].

Theorem 2. The density function tθ(θk+1|θk,mk) satisfies the Lipschitz condi-
tion

|tθ(θk+1|θk,mk)−tθ(θk+1|θ′k,mk)| ≤ κ|θk−θ′k| ∀θk, θ′k ∈ [θ−, θ+], mk ∈ {0, 1} ,

for all θk+1 in the intersection of the supports of tθ(·|θk,mk), tθ(·|θ′k,mk), with

κ =
h

�γ2
, and the constant � = min

{
(θ − θ∞)2, θ ∈ [θ−, θ+]

}
.

Recall that the density function tθ is discontinuous at the boundaries of its
support, with jumps quantified in (7). The value of these jumps appear directly
in the left-hand side of inequality (9). Then we have to establish the Lipschitz
continuity of the jumps of tθ with respect to the current state, which is done in
the next Lemma.

Lemma 4. The jumps of the density functions tθ(θmin|θk,mk), tθ(θmax|θk,mk),
as in (7), are Lipschitz continuous with respect to the current temperature θk,
with the following constants:

κ0 =
λ

2�|γ|(2 + λτ)e−λτ eτ0τ , κ1 =
λ

2�|γ|(2 + λτ)e−λτ eτ1τ .

Finally, the transition probabilities of the Markov chain are computed by
eliminating the Dirac delta functions and integrating over the partition sets.
The total abstraction error is formulated in Theorem 3 using the constants of
Theorem 2 and Lemma 4, and leveraging results of [13].

Theorem 3. If we partition the temperature range with the diameter δp, the
one-step abstraction error is ε = 2(e−λτ + κ0 + κ1 + κL)δp, where L is the
Lebesgue measure of the temperature range.

The error computed in Theorem 3 is useful towards two different purposes.
First, it provides a measure on the distance between the power consumption of
the model in (1)-(3) and that of the abstracted model [15], namely

|E [m(kτ) −mabs(kτ)| θ(0),m(0)]| ≤ kε .
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Second, it can be used to check Bounded Linear Temporal Logic (BLTL) specifi-
cations over the abstracted Markov chain, providing a guarantee on the specifi-
cation for the original population model. The error caused by the abstraction for
checking any BLTL specification is Nε, where N is the horizon of the specifica-
tion [26]. Notice that the error can be tuned by proper selection of the partition
diameter, time-step, and arrival rate. For instance the error is ε = 1.3 × 107δp
for the physical parameters of Table 1 (left) that are widely used in the liter-
ature, and for the values of Table 1 (right) specifically selected for the model
in this study. The large constant in the expression of ε is mainly due to the
Lipschitz constant of the density function, which can be reduced by selection of
the discretization time step τ .

Table 1. Physical parameters of a residential air conditioner as a TCL [8] (left) and
selected parameters for the model in (1)-(3) (right)

Parameter Interpretation Value

θs set-point 20 [◦C]
δd dead-band width 0.5 [◦C]
θa ambient temperature 32 [◦C]
C thermal capacitance 10 [kWh/◦C]
Prate power 14 [kW ]
η COF 2.5

Parameter Interpretation Value

R0 thermal resistance 1.5 [◦C/kW ]
R1 thermal resistance 2.5 [◦C/kW ]
τ time step 10 [sec]
λ arrival rate 1 [sec−1]

4.3 Aggregate Model of a Population of TCLs

In the previous section we described how a TCL model is formally abstracted as a
Markov chain. In this section we develop a stochastic difference equation (SDE) as
the aggregate model of the TCL population, which is to be later employed in the
state estimation and closed-loop control. Our modeling approach generalizes the
results of [7,6] for our setting in which convergence to a deterministic difference
equation for large populations of Markov chains is investigated in the context of
mean field limits. To construct the SDE model, we first take the cross product of
all the abstracted Markov chains, to obtain a (admittedly large) Markov chain Z
with finitely many states characterizing the behavior of the population. As a sec-
ond stage we assign labels X ∈ R

2n to the states of Z in which the ith entry of
X(X(i), i ∈ N2n) indicates the proportion of individual Markov chains within the
ith state. Given such a labeling, we define an equivalence relation over the labeled
Markov chain Z, which relates all states with the same label. This equivalence
relation is in fact an exact probabilistic bisimulation [15] and makes it possible to
consider equivalence classes as lumped states and thus reduce the state space ofZ.
In order for this to be an exact probabilistic bisimulation, however, all transition
matrices have to be the same,which reduces to TCL characterizedby equal param-
eters, unlike a different ambient temperature (see Section 6). Let us remark that
in practice the lumped chain can be obtained directly, with no need to go through
the construction of Z. The dynamics over the labels in the reduced Markov chain
can be modeled by the following SDE
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Xk+1 = PTXk +Wk , (10)

where Xk ∈ R
2n is the value of the label of the reduced Markov chain at sample

time kτ , and its ith entry represents the portion of TCLs with mode and tem-
perature inside the partition set associated to the representative point �−1(i) (cf.
Section 4.1). Matrix P = [Pij ]i,j∈N2n is the transition probability matrix of the
Markov chain M, and Wk is a state-dependent process noise with E[Wk] = 0
and Cov(Wk) = [Σij(Xk)]i,j∈N2n ∈ R

2n×2n, where

Σii(Xk) =
1

np

2n∑
r=1

Xk(r)Pri(1− Pri) , Σij(Xk) = − 1

np

2n∑
r=1

Xk(r)PriPrj ,

for all i, j ∈ N2n, i 	= j. The process noise Wk converges in distribution to a
multivariate normal random vector for large population sizes np [15]. Moreover,
the transition probability matrix P in (10) depends on the set-point θs, which
is utilized in the next section for power tracking.

The total power consumption obtained from the aggregation of the original
models in (1)-(3), with variables (mj , θj)(t), j ∈ Nnp , is

y(t) =

np∑
j=1

mj(t)PON ,

which is piecewise-constant in time due to the presence of the digital controller
updating the modes of the TCLs. Then the total power consumption can be
represented as

y(t) =

∞∑
k=0

ykI[kτ,(k+1)τ)(t) , yk =

np∑
j=1

mj
kPON , (11)

where IA(·) is the indicator function of a given set A, i.e. IA(x) = 1 for x ∈ A and
zero otherwise. With focus on the abstract model (10), the power consumption
of the model is also piecewise-constant in time with the representation

yabs(t) =

∞∑
k=0

yabsk I[kτ,(k+1)τ)(t) , yabsk = HXk , H = npPON [0n, 1n] , (12)

where 0n and 1n are n-dimensional row vectors with all the entries equal to zero
and one, respectively.

The performance and precision of the aggregated model in (10) is displayed
in Figure 1 by comparing its normalized output with the normalized power con-
sumption of the TCL population (namely, by comparing yabs(t), y(t) divided
by npPON ). In these simulations, the initial temperatures of the TCLs are dis-
tributed uniformly over the dead-band and the modes are obtained as samples
of Bernoulli trials with a success probability of 0.5. Two different population
sizes np = 100 (top panel) and np = 1000 (bottom panel) are considered. The
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oscillations ranges are [0.35, 0.58] and [0.40, 0.52], respectively, which indicates
that the oscillations amplitude depends on the population size: it decreases as
the population size increases. The number of introduced abstract states in both
cases is 2n = 860. The transition probability matrix P is computed within 8.3
seconds and is sparse with 0.3% non-zero entries.
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Fig. 1. Comparison of the total power consumption of the population with that of the
aggregated model, with population sizes 100 (top) and 1000 (bottom) respectively. The
initial conditions have been distributed uniformly.

5 Closed-Loop Control of the TCL Population

As recently investigated in related work [15,18], we consider the set-point θs
as the control input and regulate the value of this control uniformly over all
TCLs. The application of this control scheme practically leads to a change in
the position of the non-zero entries of the transition matrix P derived from the
dynamics of the single TCL. We discretize the domain of allowable set-point
control input by the same partition diameter δp used for the temperature range:
this allows retaining the definition of the states in Xk.

We employ the stochastic Model Predictive Control (MPC) framework used
in [15] over the controlled model in order to track a reference signal for the total
power consumption. More precisely, we optimize the following cost function at
each time step to track the reference power signal yref (·):

min
θs(kτ)∈[θ−,θ+]

|E[yabs(kτ + τ)|Xk, θs(kτ)]− yref (kτ + τ)| . (13)

A Kalman filter with state-dependent process noise is employed for state esti-
mation when the information of states Xk is not available and only the total
power consumption of the population y(kτ) is measured. Figure 2 presents the
closed-loop control scheme for the power reference tracking problem.

The performance of the closed-loop control of Figure 2 is illustrated in Figure 3
(left). A population size np = 100 is selected and the number of states 2n = 1000
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Fig. 2. State estimation and one-step regulation architecture for the closed-loop control
of the total power consumption
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Fig. 3. Illustration of the controller based on a Kalman filter (ref. Figure 2), applied to
a population of 100 TCLs, modeled with equations (1)-(3), for either a homogeneous
(left) or heterogeneous (right) population. Each TCL has its own initial condition.
The upper panels show the evolution of the temperatures across the population in
black. The blue region indicates the applied set-point ± the δd dead-band. The lower
panels plot in red the desired load profile. The blue lines show the actual load, as
achieved when applying the control scheme. For the heterogeneous case the ambient
temperature of each TCL is allowed to vary randomly with ±2 C◦ around the average
ambient temperature of the homogeneous case.

is considered. The lower panel presents the reference signal and the normalized
power consumption of the population, while the upper panel shows the synthe-
sized temperature dead-band [θs(k)−δd/2, θs(k)+δd/2]. The simulations indicate
that the population can accurately track the desired power reference signal. In or-
der to examine the robustness of the control scheme against heterogeneity in the
parameters of the population, we run simulations for the case where the ambient
temperature of each TCL is allowed to vary randomly with ±2 C◦ around the av-
erage ambient temperature of the population. The result is presented in Figure 3
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(right), which shows that the control scheme is qualitatively robust against viola-
tion of this homogeneity assumption. In the next sectionwe quantifymore formally
the robustness of the closed-loop control scheme.

6 Validation of the Robustness of the Synthesized
Controller

As claimed theoretically and further suggested by Figure 3, the control scheme
devised on the aggregated population in the previous section can accurately
perform tracking of a given load profile for the total power consumption. This
requires an assumption on the parameter homogeneity of the TCL population.
The simulation shown in Figure 3, however, further suggests that the presented
control scheme is robust against heterogeneity, which is to be investigated in
this section. Although the following approach could be optimally applied in a
closed-loop setting in order to automatically validate the actions taken by the
control scheme, we restrict ourselves to an a-posteriori validation due to the
computational complexity that is discussed below. We have investigated how well
the control scheme based on the Kalman-filter is able to track power consumption
in a system that switches modes instantaneously once the temperature hits given
thresholds. To apply this control in practice we would like to know how safely
the control scheme performs in the worst case, that is across possible unknown
variables such as the initial conditions and the desired load profiles. With safe
here we mean that the achieved load is within a given range of the desired
load profile. As the underlying system is stochastic our goal is to bound the
probability of violating such a safety target. Mathematically, we can state such
a problem as a noisy optimization problem, representing the probability as an
expectation over a binary function:

max
x∈X

Ey(t),T0<t<T [φrob(y)|x] , (14)

where φrob is an indicator function characterizing whether a trajectory y(t) is in
close proximity of the desired load profile. Specifically, we use

φrob(y) = I|y−yref |≤Δl
(y) =

{
1 if ∀t ∈ [T0, T ] : |y(t)− yref (t)| ≤ Δl

0 else ,

whereΔl is a parameter controlling the desired degree of load tracking. The vector
x represents all variables (in a given space, to be discussed shortly) over which we
would like to optimize safety, including the desired load profile (yref ), the initial
conditions (θ1(0),m1(0), . . . , θnp(0),mnp(0)) of TCLs, and the ambient tempera-
tures θ1a, . . . θ

np
a . Parameters T0 and T are used to select the relevant time period

over which robustness is validated. Formally, equation (14) falls into the same class
of problems as equation (13) and therefore could be solved similarly. As we are
interested in robustness properties against heterogeneity, the corresponding opti-
mization space (X ) comprises as many dimensions as individual TCLs (x contains
all initial conditions of individual TCLs, see above). Formulating the problem as
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a maximization over an expectation can be interpreted as assigning a probabil-
ity value to a SSMT formula, comprised of an existentially quantified variable fol-
lowed by a randomized quantified variable,φrob being an atomic SMT formula (see
[17,10] for more details). As formal approaches to solve such problems depend crit-
ically on the dimension of the state space, we follow a statistical approach instead,
thereby relying only on simulations of the TCL population. To solve such a noisy
optimization problem, we are adopting statistical methods, presented in [20,28] to
obtain probably approximate near optimizers.

Suppose that g : Y → R, that PY is a given probability measure on Y , and that
α, ε > 0 are given numbers. A number g0 ∈ R is said to be a Type 3 near minimum
of g to level α, or a probably approximate near minimum of g to accuracy ε and
level α, if g0 ≥ miny∈Y g(y)− ε, and in addition: PY {y ∈ Y : g(y) < g0 − ε} ≤ α.

If the probability measure PY is chosen to be the uniform distribution, the
probably approximate near minimum is equivalent to the notion of approximate
domain optimizer with value imprecision ε and residual domain α [20]. These
notions of approximate near optimizers can further be extended to hold only
with a given confidence ρ, if the approximate near optimizers g0 have an addi-
tional dependence on further random variables [20]. We present a corresponding
algorithm to obtain such an optimizer based on uniform sampling.

As mentioned, we aim at a statistical solution to the noisy optimization prob-
lem of equation (14). To this end, we use the following simple algorithm [20,28].
The algorithm first samples the parameters over which we would like to optimize
the probability of satisfying the robustness property. For each such parameter
(in particular containing the initial conditions), the behavior of each TCL is
sampled under the closed-loop control from the previous section. Using these
samples the probability of satisfying the robustness property can be estimated.
The necessary number of samples to achieve the desired accuracy can be calcu-
lated in advance (N and M in the above algorithm). For this algorithm it can
be shown that the output is a probably approximate near minimum to accuracy
ε and level α with probability at least ρ, see [27,20,28].

Algorithm 1. Randomized Black-Box optimization algorithm

function RandOpt(satProperty, α, ε, ρ)

N ← log 2
1−ρ

log 1
1−α

; M ← 1
2ε2

log 4N
1−ρ

x1, . . . , xN ← SampleOptimizationParams(X ) 
 sample conditions/profiles
for n = 1, . . . , N do

y1
n, . . . , y

M
n ←SampleTrajectories(xn) 
 Sample power for condition xn

for m = 1 . . . ,M do
gn,m ← CheckRobustnessOnSample(φrob(y

m
n ))

end for
end for
ĝn ← Average(gn,m across m) 
 Estimate robustness for initial conditions
return minn ĝn

end function
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Table 2. Parameters for a posteriori verification of the closed-loop control scheme

Δl 0.15 Population size np 100
Range within ambient temp. ± 2◦ Level α 0.8
Accuracy ε 0.1 Confidence 1− δ 0.8
Duration between load switches 15 min Time horizon T0, T 25 min, 60 min

Weare interested in estimating theworst case performance of the control scheme
of Section 5. In such a setting, controllers are typically designed for performance,
say to follow a predefined load profile as closely as possible (see equation (13)).
Safety is usually not considered during the design phase. Having a system speci-
fication for which one can simulate an already designed controller also allows for
verifying safety with a statistical procedure such as the one presented in the previ-
ous section. If we define safety for a given controller by amaximal alloweddeviation
Δl of the actual load from the desired load profile, we can quantify the number of
simulations needed (in terms of precision, level and confidence) in order to guaran-
tee the safety of a given controller for a worst case scenario. To simulate, we have
to additionally assume a finite time horizon: we have chosen 4 times the period
needed for updating the desired load profile, in order to cover the relevant changes
between desired values (see Table 2). Using Algorithm 1 we can now verify that
such a controller achieves a desired load profile robustly across a heterogeneous
parameter within the ambient temperature. More precisely, using the parameters
in Table 2, we could verify that the worst-case probability of resulting in a non-
safe system using the closed-loop control scheme is guaranteed to be bounded by
ε (accuracy=0.1) up to residual α level and confidence, as given in Table 2. The
number of simulations for such parameters isN = 738 and the objective is to have
the total power consumption within±0.15 of the desired reference load. The worst
case were determined over all possible initial conditions (temperatures and modes
of TCLs) as well as over a set of desired load profiles. For the set of load profiles
we considered step-functions, which change the desired load every 15 minutes and
have a height ∈ [0.4, 0.6]. Due to the independence between different simulations,
Algorithm 1 can be parallelized efficiently. Nevertheless, the necessary number of
samples quickly increaseswith the different parameters for accuracy using this pro-
cedure, therefore, it still needs considerable computational effort. Although such
a procedure could in principle also be used to verify safety or solve the control
problem in a closed-loop setting, we did not investigate such scheme due to the
computational effort. To illustrate the feasibility of the approach and due to the
high computational load, we set α, or residual domain to 0.8 thereby allowing 80
percent of the optimization domain to have a potentially worse robustness level.

7 Conclusions

In this work the problem of aggregate modeling and control of a population of
TCLs has been addressed. The temperature evolution is modeled in continuous
time and combined with a digital ON/OFF switching controller. The TCLs are
allowed to have different thermal resistances which change values in time based
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on a Poisson arrival process, and thus induce inhomogeneity in the dynamics. The
power consumption of each TCL is modeled as a Markov process and formally
abstracted to a Markov chain, which is then used to develop an aggregate model
for the total power consumption of the population. Finally, a control scheme is
proposed to track a power reference signal and its robustness is examined against
violation of the homogeneity assumption by use of statistical techniques.
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