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Abstract. We study the probabilistic safety verification problem for
pure jumpMarkov processes, a class of models that generalizes continuous-
time Markov chains over continuous (uncountable) state spaces. Solu-
tions of these processes are piecewise constant, right-continuous func-
tions from time to states. Their jump (or reset) times are realizations
of a Poisson process, characterized by a jump rate function that can be
both time- and state-dependent. Upon jumping in time, the new state
of the solution process is specified according to a (continuous) stochas-
tic conditional kernel. After providing a full characterization of safety
properties of these processes, we describe a formal method to abstract
the process as a finite-state discrete-time Markov chain; this approach is
formal in that it provides a-priori error bounds on the precision of the
abstraction, based on the continuity properties of the stochastic kernel
of the process and of its jump rate function. We illustrate the approach
on a case study of thermostatically controlled loads.

1 Introduction

Stochastic processes evolving in continuous time are used to model many phe-
nomena in science and engineering. In recent years, there has been a lot of work
in the algorithmic analysis and formal verification of such models with respect to
quantitative temporal specifications. For example, the verification of continuous-
time Markov chains over finite state spaces has been widely addressed in the lit-
erature against properties expressed in temporal logics such as CSL [5–7], MTL
[13], and timed-automata specifications [14], and there exist efficient software
tools [24, 27].

In this paper, we extend this line of work and study the class of continuous-
space, pure jump Markov processes (cPJMP, for short). A cPJMP evolves in
continuous time. The process starts at state Xt0 = x0 at time t = t0 and waits
until a random time t = T1, governed by a Poisson process depending on x0 and
possibly time-inhomogeneous, when it makes a jump to a new state XT1

= x1

based on a transition kernel that is conditional on the jumping time and on x0.
Then it waits until time t = T2, when it makes another jump to state XT2

= x2



with probability that depends on the current time and on x1, and so on. The
states take values over a continuous domain, hence the transition kernel induces
continuous measures.

cPJMPs generalize continuous-time, finite-state Markov chains (CTMCs) by
allowing time-inhomogeneous behaviors (the waiting times and transition prob-
abilities can depend on time) and allowing for general, continuous state spaces.
Correspondingly, non-deterministic extensions of cPJMPs (not explicitly dis-
cussed in this work, but directly obtainable from cPJMPs) extend general-space
MDPs [10] and LMPs [30] by allowing a random inter-arrival time in between
stochastic resets over their continuous state space. cPJMPs can be employed in
the definition and analysis of jump-diffusion processes [25]: of interest to this
work, the jump component can capture event-driven uncertainties, such as cor-
porate defaults, operational failures, or insured events [31]. It is likewise possible
to obtain a cPJMP by random time sampling of a general stochastic differential
equation (SDE) – indeed cPJMPs can be as well thought of as SDEs with jumps,
with drift and diffusion terms that are equal to zero. This connection with dif-
fusions driven by Wiener processes renders cPJMP relevant to areas including
financial and economic modeling [31], systems biology [4], physics and chemistry
[34].

We study the problem of approximately computing the bounded-time safety
probability of a cPJMP by generalizing the corresponding algorithms for CTMCs.
First, we show that a cPJMP can be embedded into a discrete-time, continuous-
space Markov process (DTMP). In this process, we “compile away” the time
inhomogeneity of the process by explicitly modeling the time as an additional
state variable. Second, we characterize the bounded-time safety probability of
the discrete-time Markov process as the least fixed point solution of a system
of integral equations that generalize the Bellman equations for CTMCs. Fi-
nally, under Lipschitz continuity assumptions on the jump rate function and on
the jump measure of the cPJMP, we show how the continuous-space discrete-
time Markov process can be approximated by a finite-state discrete-time Markov
chain (DTMC), up to any desired degree of precision. Our technical result shows
a guaranteed upper bound on the error incurred in computing the bounded-time
safety probability introduced by the finite-state approximation.

While we focus on bounded-time safety probability computation, our algo-
rithms can be generalized to provide approximate model checking algorithms for
more expressive temporal logics such as continuous-time stochastic logic (CSL)
[5, 9]. We demonstrate our results on a case study from energy systems, modeling
thermostatically-controlled loads as a cPJMP.

2 Pure Jump Markov Processes in Continuous Time

2.1 Model Definition - Syntax and Semantics

Let (K,K) be a measurable space, where K is the (not necessarily finite) state
space and K is a sigma-algebra on K. Let Ω be a sample space. Let R≥0 be the



set of non-negative reals. We consider stochastic processes X : Ω × R≥0 → K
in continuous time. For any t ∈ R≥0, the function X(·, t) : Ω → K is a random
variable, which we denote by Xt. For every I ⊆ R≥0 we write FI = σ(Xt, t ∈ I)
for the sigma-algebra on Ω generated by the stochastic process X restricted to
the index set I. We suppose that for every t ∈ R≥0 and x ∈ K, a probability
P
t,x is given on (Ω,F[t,∞)). The stochastic process X : Ω×R≥0 → K is a (pure)

jump Markov process if the following conditions hold:

(a) K contains all one-point sets and P
t,x(Xt = x) = 1 for every t ∈ R≥0, x ∈ K.

(b) For every 0 ≤ t ≤ s and A ∈ K the function x 7→ P
t,x(Xs ∈ A) is K-

measurable.
(c) [Markov property] For every 0 ≤ u ≤ t ≤ s, A ∈ K we have P

u,x(Xs ∈
A|F[u,t]) = P

t,Xt(Xs ∈ A), Pu,x-a.s.
(d) [Pure Jump property] For every ω ∈ Ω and t ≥ 0 there exists δ > 0 such

that Xs(ω) = Xt(ω) for s ∈ [t, t+ δ]; this is equivalent to requiring that all
the trajectories of X are càdlàg [11] when K is given the discrete topology
(where all subsets are open).

(e) [Non-explosive property] For every ω ∈ Ω the number of jumps of the
trajectory t 7→ Xt(ω) is finite on every bounded interval.

Condition (a) enables us to assign probabilities to any points x ∈ K. In partic-
ular, the probability measure Pt,x assigns probability 1 to x, so that the process
is initialized deterministically at x at time t. Condition (b) is essential for trans-
porting any probability measure on Xt to the events Xs ∈ A, A ∈ K, for any
t ≤ s.

Intuitively, a Markov process X : Ω×R≥0 → K in continuous time is a pure
jump process if, starting from any point x ∈ K, the process is right continuous,
admits constant trajectories except at isolated jumps, and allows only for a finite
number of isolated jumps within any bounded interval. A cPJMP is described
by means of the joint law Q of the first jump time T1 and of the corresponding
position XT1

. To proceed formally, we first fix t ≥ 0 and x ∈ K and define the
first jump time

T1(ω) = inf{s > t : Xs(ω) 6= Xt(ω)}, (1)

with the convention that T1(ω) = ∞ if the indicated set is empty. Clearly, the
value of T1 depends on t. Its associated probability measure also depends on x
through P

t,x. Allowing this jump time to be equal to infinity requires extending
the definition of the process X as follows. Take an extra dummy point ∆ /∈ K
and redefine X : Ω ×R≥0 ∪ {∞} → K ∪ {∆} such that X(ω,∞) = X∞(ω) = ∆
for all ω ∈ Ω. Then XT1

: Ω → K ∪ {∆} is well defined. Note that XT1
is

associated with a probability measure first through the random variable T1 (the
first jump time) and then through the process X conditioned on knowing this
jump time.

On the extended space S := (R≥0 ×K)∪ {(∞, ∆)} we consider the smallest
sigma-algebra, denoted by S, containing {(∞, ∆)} and all sets of B(R≥0) ⊗ K
(here and in the following B(Λ) denotes the Borel sigma-algebra of a topological
space Λ, and Y ⊗ Z is the product sigma-algebra of two sigma-algebras Y, Z,



that is the smallest sigma-algebra generated by subsets of the form A1 × A2,
A1 ∈ Y,A2 ∈ Z). Note that this sigma-algebra S is smaller than the product of
two sigma-algebras defined on R≥0 ∪ {∞} and K ∪ {∆}. The extended process
X ensures that S is sufficient to contain the associated probability measure of
(T1, XT1

). With these definitions, (T1, XT1
) is a random variable with values in

(S,S), and its law under Pt,x is denoted by Q(t, x, ·).
We first construct Q(t, x, ·) for the continuous part of S and later discuss

how to assign probabilities to the single point (∞, ∆). We will assume that Q is
constructed starting from a given transition measure from R≥0×K to K, called
rate measure and denoted by ν(t, x, A), t ∈ R≥0, x ∈ K,A ∈ K. We require that
A 7→ ν(t, x, A) is a positive measure on K for all t ∈ R≥0 and x ∈ K, and that
(t, x) 7→ ν(t, x, A) is B(R≥0) ⊗ K−measurable for all A ∈ K. We also assume
that the rate measure ν satisfies the two conditions

(f) sup{ν(t, x,K)|t ∈ R≥0, x ∈ K} < ∞ and
(g) ν(t, x, {x}) = 0 for all t ∈ R≥0, x ∈ K.

The condition (f) implies a finite number of jumps in a bounded interval, which
satisfies the non-explosive condition (e) raised above. The condition (g) enforces
no jump from a state to itself, which is in accordance with the definition of jump
time in (1). Define

λ(t, x) = ν(t, x,K), π(t, x, A) =







ν(t, x, A)

λ(t, x)
, if λ(t, x) > 0,

1A(x), if λ(t, x) = 0,

where 1A(·) is the indicator function of any set A. Therefore λ is a nonnegative
bounded measurable function and π is a transition probability on K satisfying

π(t, x, {x}) =
{

0, if λ(t, x) > 0,
δx, if λ(t, x) = 0,

where δx is the Dirac measure at x. Function λ is called the jump rate function,
and π the jump measure. Note that we have ν(t, x, A) = λ(t, x)π(t, x, A), ∀t ∈
R≥0, x ∈ K,A ∈ K. Given the rate measure ν, we require that for the Markov
process X we have, for 0 ≤ t ≤ a < b ≤ ∞, x ∈ K,A ∈ K,

Q(t, x, (a, b)×A) =

∫ b

a

π(s, x,A)λ(s, x) exp

[

−
∫ s

t

λ(r, x)dr

]

ds, (2)

where Q was described above as the law of (T1, XT1
) under Pt,x. Note that (2)

completely specifies the probability measure Q(t, x, ·) on (S,S): indeed simple
computations show that

P
t,x(T1 = ∞) = Q(t, x, (∞, ∆))

:= 1−Q(t, x, (t,∞)×K) = exp

[

−
∫ ∞

t

λ(r, x)dr

]

, (3)

P
t,x(T1 ∈ (s,∞]) = 1−Q(t, x, (t, s]×K) = exp

[

−
∫ s

t

λ(r, x)dr

]

, (4)



for all s ≥ t and we clearly have Pt,x(T1 ≤ t) = Q(t, x, [0, t]×K) = 0. Note that
(3) assigns probability to the single point (∞, ∆), which completes the definition
of Q(t, x, ·) on (S,S).

We may interpret (4) as the statement that T1 has exponential distribution
on [t,∞] with variable rate λ(r, x), r ≥ t. Moreover, the probability π(s, x,A)
can be interpreted as the conditional probability that XT1

is in A ∈ K, given
that the jump time T1 = s, or more precisely,

P
t,x(XT1

∈ A, T1 < ∞|T1) = π(T1, x, A)1T1<∞, P
t,x − a.s.

2.2 Examples and Related Models

Example 1. Poisson-driven differential equation [31, Section 1.7]. Let the
process {Nt | t ≥ 0} represent a standard Poisson process with homogeneous rate
λ.3 Consider a pure jump process X = {Xt, t ∈ R≥0, Xt ∈ R}, driven by the
Poisson process Nt, where its value Xt at time t satisfies the SDE

dXt = c(t,Xt−)dNt ∀t ∈ R≥0,

with the deterministic initial value X0 ∈ R. The function c : R≥0 × R → R

is called the jump coefficient. For the case of c(t, x) = c0x with the constant
c0 ∈ R≥0 and initial value X0 > 0, the process has an explicit representation4

Xt = X0(c0 + 1)Nt , for t ∈ R≥0.

From this explicit representation, we can compute properties of the process Xt,
such as the probability that the process does not exceed αh > 0 within the
time interval [0, T ]. This probability is analytically computable for the above
simple process: defining βh = (lnαh − lnX0) / ln(c0 + 1), this probability is
∑n≤βh

n=0 e−λT (λT )n/n!. ⊓⊔

Example 2. Compound Poisson processes [31, Section 1.1] represent a gen-
eralization of Poisson processes, with exponential waiting times between jumps
but where jump sizes, rather than being deterministic, follow an arbitrary distri-
bution. Let {yn}n≥1 be a sequence of independent random variables with distri-
bution µ for all n ≥ 1 and assume that the standard Poisson process {Nt | t ≥ 0}
with parameter λ > 0 is independent of {yn}n≥1. The compound Poisson process

Xt is represented in the form Xt =
∑Nt

n=1 yn. A typical application of compound
Poisson processes is to model the aggregate claim up to time t generated by a
portfolio of insurance policies, where the individual claims are distributed accord-
ing to µ. Let us assume the gamma distribution yn ∼ Γ (a, b) for the individual
claims [35] and answer the same safety question as in the previous example: what

3 Recall that a (homogeneous) Poisson process {Nt | t ≥ 0} with rate λ is a Lévy

process with N0 = 0 and P{Nt = n} = (λt)n

n!
e−λt.

4 The solution can be derived observing that the process satisfies the recursive equation
Xτn+1

−Xτn = c0Xτn , where the jumps occur at τn, n = 1, 2, 3, . . . according to Nt.



is the probability that the aggregate claim does not exceed αh > 0 in the time
interval [0, T ]? This probability is also analytically computable, and results in

e−λT + e−λT
∞
∑

n=1

γ (na, αh/b)

Γ (na)

(λT )n

n!
,

where Γ (·) is the gamma function, and γ(·, ·) is the lower incomplete gamma
function. ⊓⊔

Notice that the safety probability is expressible analytically in the above two
examples. This is first because the trajectories of the solution are always non-
decreasing, and secondly since the distribution of the solution process condi-
tioned on the value of the underlying Poisson process is computable analytically.
Unfortunately in general trajectories of cPJMPs cannot be derived explicitly,
and as such the safety probability is not analytically expressible. In Section 3
we provide a general characterization of the solution of the probabilistic safety
problem. In Section 4 we also work out a formal approximation method to nu-
merically compute the solution.

Example 3. Continuous-time Markov chains [8]. The class of cPJMP we
consider includes, as special cases, all the time-homogeneous, nonexplosive, jump
Markov processes: these correspond to a function ν not depending on the time
variable t. Within this time-homogeneous case we need to retain the boundedness
assumption in (f) for the rate function. Assuming further that K is a finite or
countably infinite set, we obtain the class of continuous-time Markov chains
characterized by the transition rates matrix ν(x, {y})x,y∈K , namely

P
t,x(XT1

= x′, T1 < ∞|T1) =
ν(x, {x′})

E(x)

[

1− e−E(x)t
]

1T1<∞,

where E(x) =
∑

x′∈K ν(x, {x′}). The probability that the system stays within a
set A ⊆ K in the interval [0, T ] can be expressed as the solution of a system of
integral equations [7], which is a special case of the Bellman fixed-point equation
developed in Section 3 for cPJMPs, but not expressible in closed form. ⊓⊔

Example 4. cPJMP defined by dynamical systems. Consider a process X
with piecewise-constant trajectories, which resets (or jumps) at time t over a
space K according to a vector field f : K × R

n × R≥0 → K, so that

x(t+) = f(x(t−), ζ(t), t), (5)

where ζ(·) is a continuous-time stationary process with a given, time-independent
density function. The resets for the process follow a Poisson process Nt, t ≥
0,N0 = 0, with a rate λ depending on time t and on the continuous state of
the process x(t). Notice that the dependence of the vector field f on time is in
accordance with [25]. The map f , together with the distribution of the process
ζ(·), uniquely defines a jump measure π(t, x, A), which gives the probability of



jumping from any state x at time t to any (measurable) subset of the state space
A ⊆ K [26, Proposition 7.6]:

π(t, x, A) = Tζ (ζ ∈ R
n : f(x, ζ, t) ∈ A) ,

where Tζ is the distribution of the random vector ζ(0) (in fact, of any ζ(t) since
the process is stationary and time-independent). ⊓⊔

2.3 Embedded Discrete-Time Markov Process of a cPJMP

We have defined a cPJMP on a measurable space (K,K) through the transition
measure ν. The trajectories of a cPJMP are piecewise constant, which makes
them fully representable by their jump times and corresponding values. It is
worth studying the properties of the random variables (Tn(w), XTn

(w)), n ∈
N := {0, 1, 2, . . .}, where Tn is the nth jump time and XTn

is the corresponding
value of the process. The ensuing Theorem 1 states that (Tn, XTn

)n∈N can be
considered as a discrete-time Markov process (DTMP) by slight extension of the
definition of Q. The discrete time is indexed by nonnegative natural numbers
n ∈ N, as opposed to continuous time indexed by t ∈ R≥0.

Definition 1. A discrete-time Markov process (Yn)n∈N is uniquely defined by a
triple D = (Ey, Ey, Py), where (Ey, Ey) is a measurable space and Py : Ey×Ey →
[0, 1] is a transition kernel such that for any y ∈ Ey and A ∈ Ey, Py(y,A) gives
the probability that Yn+1 ∈ A, conditioned on Yn = y. Ey is called the state
space of the DTMP D and the elements of Ey are the states of D. The process
is time-inhomogeneous if Py depends also on the time index n.

We adapt the following result from [23, Chapter III, Section 1, Theorem 2].

Theorem 1. Starting from T0 = t define inductively Tn+1 = inf{s > Tn :
Xs 6= XTn

}, with the convention that Tn+1 = ∞ if the indicated set is empty.
Under the probability P

t,x, the sequence (Tn, XTn
)n∈N is a DTMP in (S,S) with

transition kernel Q, provided we extend the definition of Q making the state
(∞, ∆) absorbing, by defining Q(∞, ∆,R≥0 ×K) = 0, Q(∞, ∆, {(∞, ∆)}) = 1.
Note that (Tn, XTn

)n∈N is time-homogeneous, although in general X is not.

Theorem 1 states that given the stochastic process X : Ω × R≥0 → K with
probability measure P

t,x as defined in Section 2, we can construct a DTMP
on (S,S) with the extended transition kernel Q, whose state includes jump
times and jump values of X . The inverse is also true, as described next, which
allows for a simple description of the process X . Suppose one starts with a
DTMP (τn, ξn)n∈N in S with transition probability kernel Q and a given starting
point (t, x) ∈ R≥0 × K. One can then define a process Z in K setting Zt =
∑Ny

n=0 ξn1[τn,τn+1)(t), where Ny := sup{n ∈ N : τn < ∞}. Then Z has the same
law as the process X under Pt,x.

Example 5. For a CTMC defined by its transition rate matrix ν(x, {x′}), we
get that π(x, {y})x,y∈K is the stochastic transition matrix of the corresponding
embedded discrete-time Markov chain (DTMC). ⊓⊔
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Fig. 1. Transition system for the safety problem.

3 Bounded-Time Safety Probability for cPJMPs

In this section, we characterize the bounded-time safety probability for a cPJMP
X , that is the quantity

pA(t0, x0, T ) = P
t0,x0 {Xu ∈ A, for all u ∈ [t0, T ]|Xt0 = x0} , (6)

for a given initial time t0 ∈ [0, T ], T < ∞, and initial state Xt0 = x0.
5 Note that

in this setup we must account for the initial time t0 alongside the initial state
x0 because the process is time-inhomogeneous.

For the characterization of pA(t0, x0, T ), we first construct the DTMP M =
(S,S, Q) with state sn = (τn, xn) ∈ S according to Theorem 1. In order to
formulate the safety problem over the new process M, we introduce a transition
system with a set of states Q = {S,U,W} representing Safe, Unsafe, and Wait.
The transition system is initialized at W or U depending on whether the initial
state of the process is in the safe set or not. A transition from W to S is activated
if the next jump time τ+ is outside the interval T := [0, T ] and the next state
x+ ∈ K. A transition W → U is activated if τ+ ∈ T and the next state is
outside the safe set. Finally, the self loops at all the states of Q characterize all
other dynamics of the transition system.

Based on the transition system in Figure 1, the quantity pA(t0, x0, T ) can
be characterized as the probability of reaching the state S in the transition
system under the dynamics of M, which is equal to the likelihood associated to
the set of words {W+S} = {WS,W2S,W3S, . . .} (we have denoted by W+ the
Kleene star without ǫ). This can be written as the infinite series pA(t0, x0, T ) =
∑∞

n=1 P {WnS}, which equals to

pA(t0, x0, T ) =
∞
∑

n=1

P {(s0, s1, . . . , sn) ∈ GnH|s0 = (t0, x0)} , (7)

where G := T ×A and H := (T,∞)×K∪{(∞, ∆)}. Note that the non-explosive
condition posed in (e) and reinforced by assumption (f) on ν(·) implies that
lim
n→∞

P {WnS} = 0, which is a necessary condition for the series (7) to converge.

5 A slight modification of the approach presented in this paper allows for verifying
more general quantitative questions such as P∼p(ΦU

(T1,T2)Ψ), defined over any state
labels Ψ, Φ and over any (possibly unbounded) time interval (T1, T2) – an adaptation
is required on the construction of sets G,H in (7).



We show in the rest of this section that the infinite series (7) converges and is
approximately computable via its partial sums under a mild assumption on the
jump rate function (a bound on the integral of λ(·) over the interval T ).

The reformulation of pA(t0, x0, T ) as (7) indicates its close relationship with
the infinite-horizon probabilistic reach-avoid specification over DTMPs. This
problem is studied in [32, 33], which formulate the solution as a Bellman equation
and describe convergence properties of the series based on contractivity of the
stochastic operator associated to the DTMP. The next theorem can be seen
as an extension of [33, Section 3.1] and presents a Bellman equation for the
characterization of the safety probability pA(t0, x0, T ), which is an equation for
the infinite-horizon reach-avoid problem over the DTMP M with the safe set
(G ∪ H) ∈ S and target set H ∈ S.
Theorem 2. The solution of the probabilistic safety problem defined in (6) can
be characterized as pA(t0, x0, T ) = V (t0, x0)− 1H(t0, x0), where the value func-
tion V : S → [0, 1] is the least solution of the fixed-point Bellman equation

V (s) = 1H(s) + 1G(s)

∫

S

V (s̄)Q(s, ds̄), ∀s = (t, x) ∈ S. (8)

In order to characterize the solution of the fixed-point equation (8), we con-
sider the value functions Vn : S → [0, 1], k ∈ N, for the finite-horizon reach-avoid
probability Vn(s) := P

{

S,WS,W2S, . . . ,WnS
}

. These functions satisfy the Bell-
man recursion

Vn+1(s) = 1H(s) + 1G(s)

∫

S

Vn(s̄)Q(s, ds̄), V0(s) = 1H(s). (9)

Then we have that V (s) = limn→∞ Vn(s), where the limit is point-wise non-
decreasing [33, Section 3.1]. Equation (9) indicates that the support of the value
functions Vn(·) is bounded by the set G ∪H. These value functions are equal to
one over the set H and satisfy the following recursion for any s = (t, x) ∈ G:

Vn+1(s) = g(s) +

∫

G

Vn(s̄)Q(s, ds̄), g(t, x) := exp

[

−
∫ T

t

λ(r, x)dr

]

. (10)

In the following we provide an operator perspective to (10), show that the
associated operator is contractive, and quantify an upper bound for the quantity
‖V − Vn‖ as a function of n.

Let B denote the space of all real-valued, bounded and measurable functions
on G. Then B is a Banach space with a norm given by ‖f‖ := sups∈G |f(s)| for
f ∈ B. An operator J : B → B is called linear if

J (α1f1 + α2f2) = α1J (f1) + α2J (f2), ∀f1, f2 ∈ B, ∀α1, α2 ∈ R.

The quantity ‖J ‖ = sup‖f‖≤1 ‖J (f)‖ is called the norm of the linear operator
J . We say that a linear operator J is a contraction whenever it holds that
‖J ‖ < 1. We define the linear operator IGf(s) :=

∫

G
f(s̄)Q(s, ds̄), which is

associated with equation (10). The following lemma raises assumptions on the
jump rate function λ to render the operator IG contractive.



Lemma 1. For a given set G = T ×A, with T = [0, T ] and bounded safe set A,

suppose there exists a finite constant κ ≥ sup
{

∫ T

0
λ(r, x)dr, x ∈ A

}

. Then the

invariance operator IG is contractive with the norm ‖IG‖ ≤ 1− e−κ.

Theorem 3. Under the assumption of Lemma 1 the sequence {Vn}n∈N satisfies

Vn+1(s) = g(s) + IGVn(s), ∀s ∈ G,

and converges uniformly to V (·). Moreover, ‖V −Vn‖ ≤ (1−e−κ)n for all n ∈ N.

The previous result allows us to select a sufficiently large n in order to make
the difference between V and Vn smaller than a predefined threshold. For a
given threshold, say ǫ1, one can select N ≥ ln ǫ1/ ln (1− e−κ) and compute VN .
Theorem 3 then guarantees that |V (s) − VN (s)| ≤ ǫ1 for all s ∈ S. The next
section is devoted to the precise computation of VN over the uncountable state
space S, for a preselected N .

4 Finite DTMCs as Formal Approximations of cPJMPs

In the previous sections we have shown that the bounded-time safety verification
of the given cPJMP can be approximated by a step-bounded reach-avoid verifi-
cation of a DTMP, with guaranteed error bounds. Due to lack of analytical so-
lutions, the verification of DTMPs against PCTL specifications (amongst which
reach-avoid) is studied in the literature via finite abstractions [1, 16], which result
in the PCTL verification of discrete time, finite space Markov chains (DTMCs)
[17, 18]. In other words, the goal of the DTMC abstraction is to provide a dis-
crete and automated computation of the reach-avoid probability. The approach
is formal in that it allows for the computation of explicit bounds on the error
associated with the abstraction.

The DTMC is obtained by state-space partitioning of the DTMP: equation
(10) indicates that we only need to partition the bounded set G. The abstraction
procedure, presented in Algorithm 1, generates a DTMC (Sa, Pa) with finite state
space Sa and transition probability matrix Pa. Over this DTMC we compute
pa(si, N), which is the probability of reaching target state sm+1, while avoiding
the unsafe state sm+2, during the step horizon 0, . . . , N , as a function of the
initial state si ∈ Sa. This is obtained via a discrete version of equation (10),
which boils down to via matrix manipulations [8].

We now introduce some regularity assumptions on the jump rate function
λ(·) (Assumption 1) and on the jump measure π(·) (Assumption 2), which are
needed to quantify the abstraction error resulting from the DTMC (Sa, Pa).

Assumption 1 Assume the space K is endowed with a metric ρ : K ×K → R.
Suppose the jump rate function λ(·) is bounded and Lipschitz-continuous, namely
that there are finite constants Λ and hλ such that λ(t, x) ≤ Λ and

|λ(t, x) − λ(t, x′)| ≤ hλρ(x, x
′),

for all (t, x), (t, x′) ∈ G.



Algorithm 1 Finite-state abstraction of the DTMP M

Require: DTMP M = (S,S ,Q), the sets G = [0, T ]×A,H = (T,∞)×K ∪ {(∞, ∆)}
1: Select an arbitrary finite partition of the set G = ∪m

i=1Di (Di are non-overlapping)
2: Define Dm+1 := H, Dm+2 := S\(G ∪H), to obtain a partition of S = ∪m+2

i=1 Di

3: For each Di, select one representative point si ∈ Di

4: Introduce DTMC (Sa, Pa), with state space Sa = {s1, s2, . . . , sm+2}, and transition
matrix Pa:

Pa(i, j) =











Q(si,Dj) 1 ≤ i ≤ m, 1 ≤ j ≤ m+ 2

1 i = j ∈ {m+ 1,m+ 2}

0 otherwise

5: return DTMC (Sa, Pa)

Assumption 1 implies the Lipschitz continuity of g(·).
Lemma 2. Under Assumption 1, the function g(·) in (10) is Lipschitz contin-
uous, namely for all s = (t, x), s′ = (t′, x′) ∈ G,

|g(t, x)− g(t′, x′)| ≤ Thλρ(x, x
′) + Λ|t− t′|.

The next assumption is on the regularity of the jump measure π(·) through
its associated density function.

Assumption 2 Let K be the Borel sigma-algebra on K. Assume that the jump
measure π on (K,K) given (R≥0×K,B(R≥0)⊗K) is an integral kernel, i.e. that
there exists a sigma-finite basis measure µ on (K,K) and a jointly measurable
function p : R≥0 × K × K → R≥0 such that π(t, x, dy) = p(t, x, y)µ(dy), i.e.
π(t, x, A) =

∫

A p(t, x, y)µ(dy) for any (t, x) ∈ R≥0 ×K,A ∈ K. Suppose further
that the density function p(τ, x, y) is Lipschitz-continuous, namely that there
exists a finite constant hp, such that

|p(τ, x, y)− p(τ, x′, y)| ≤ hpρ(x, x
′), ∀x, x′, y ∈ A, τ ∈ T .

Example 6. The density function p(t, x, y) is computable for the dynamical sys-
tem representation (5) in Example 4 under suitable assumptions on vector field
f given the density function of ζ(·) [19, 21]. ⊓⊔

Remark 1. Assumption 2 enables us to specify the conditional density function
of the DTMP (Tn, XTn

)n∈N as

ts(τ, y|t, x) = p(τ, x, y)λ(τ, x) exp

[

−
∫ τ

t

λ(r, x)dr

]

1[t,∞)(τ),

which gives the integral representation of the stochastic kernel of the process as

Q(t, x, (a, b), A) =
∫ b

a

∫

A ts(τ, y|t, x)µ(dy)dτ . ⊓⊔

Using Assumptions 1,2, and its consequences Theorem 3 and Lemmas 1, 2, we
finally establish the following result for the error computation of the abstraction.



Theorem 4. Under Assumptions 1 and 2, the following inequality holds:

|pA(t0, x0, T )− pa(sr, N)| ≤ (1 − e−κ)N +N(hxδx + htδt), ∀(t0, x0) ∈ G,

where hx = hpµ(A) + 3Thλ, ht = 3Λ, whereas κ is defined in Lemma 1. The
constants δx, δt denote the partition diameters of state-space and time, namely

δx = sup{ρ(x, x′), ∀(τ, x), (τ, x′) ∈ Di, i = 1, 2, . . . ,m},
δt = sup{|τ − τ ′|, ∀(τ, x), (τ ′, x) ∈ Di, i = 1, 2, . . . ,m}.

In the inequality above, sr is the representative point of the partition set to which
the state (t0, x0) belongs, and pa(sr, N) is the reach-avoid probability computed
over the DTMC (Sa, Pa) with finite step-horizon N .

Notice that there are two terms contributing to the error in Theorem 4.
The first term is caused by replacing the discrete infinite-step reach-avoid prob-
lem with an N -step one. The second term results from the DTMC abstraction.
Augmenting the number of steps N decreases the first term exponentially and
increases the second term linearly: as such, this upper bound on the error can
be tuned by selecting a sufficiently large step-horizon N , and accordingly small
partition diameters δt, δx.

5 Case Study: Thermostatically Controlled Loads

Thermostatically Controlled Loads (TCLs) have shown potential to be engaged
in power system services such as load shifting, peak shaving, and demand re-
sponse programs. Recent studies have focused on the development of models
for aggregated populations of TCLs [12, 20, 28]. Formal abstraction techniques
have also been employed to verify properties of TCL models [2, 20]. We employ
the model of a TCL as the case study in this paper. The model describes the
continuous-time evolution of the temperature in a TCL by a linear SDE. The
value of the temperature is available to a thermostat for regulation via a network
of independent asynchronous sensors [3, 29]. We recast this model as a cPJMP
and quantitatively verify user comfort as a probabilistic safety problem.

Dynamical Model for the Case Study The continuous-time evolution of
the temperature θ = {θt, t ∈ R≥0} in a cooling TCL can be specified by the
following linear SDE:

dθt =
dt

RC
(θa − qtRPrate − θt) + σdWt, (11)

where {Wt, t ∈ R≥0} is the standard Brownian motion, θa is the ambient tem-
perature, C and R indicate the thermal capacitance and resistance, Prate is the
rate of energy transfer, and σ is standard deviation of the noise term. The pro-
cess {qt, t ∈ R≥0} represents the state of the thermostat at time t, qt ∈ {0, 1} for



OFF and ON modes (the latter meaning that the cooler is functioning), respec-
tively. For a given temperature θt at time t and a fixed mode qt, the temperature
at time s ≥ t is characterized by the solution of (11), namely

θs = aθt + (1− a)(θa − qtRPrate) + ws,

where a = exp[−(s− t)/RC] and ws ∼ N
(

0, 12σ
2RC(1− a2)

)

.
We assume the value of temperature is available to the thermostat via a

network of sensors at possibly non-uniform time samples {τn, n ∈ N}. For a
network of independent and asynchronous sensors, the time between two con-
secutive available values of temperature (τn+1−τn), when the number of sensors
is large, can be approximated by an exponential distribution [3, 29]. We assume
that the associated rate depends on temperature, λ(θτn), where θτn is the latest
available temperature (at time τn).

The temperature of the cooling TCL is regulated by updating the thermostat
mode via the equation qτn+1

= f(qτn , θτn+1
), which is based on discrete switching

f(q, θ) =







0, θ < θs − δd/2 := θ−
1, θ > θs + δd/2 := θ+
q, else,

(12)

where θs denotes a given temperature set-point and δd a dead-band, and together
characterize the temperature operating range. Then the mode qt is a piecewise-
constant and right-continuous function of time, which can change value from qτn
to qτn+1

at time τn+1 according to the logic in (12).

cPJMP for the Case Study The values of temperature and the mode of the
thermostat evolve over the hybrid state space K = {0, 1} × R, namely a space
made up of discrete and continuous components [2]. The temperature space R

is endowed with the Euclidean metric and with the Borel sigma-algebra. The
jump measure of the process is an integral kernel (Assumption 2 is valid), with
µ being the Lebesgue measure and with the density function

p(τ − t, q, θ, q̄, θ̄) = δd

[

q̄ − f(q, θ̄)
]

φ
(

θ̄;my(τ − t, q, θ), σ2
y(τ − t)

)

,

where δd[·] is the Kronecker delta function, φ(·; m̄, σ̄2) is the Gaussian density
function with mean m̄ and variance σ̄2, and

my(u, q, θ) = a(u)θ + (1− a(u))(θa − qRPrate),

σ2
y(u) = 2σ2RC(1 − a(u)2), a(u) = exp[−u/RC].

We are interested in quantifying a proxy for user comfort: we quantify whether
the likelihood of having the temperature inside a dead-band [θ−, θ+] during
the time interval [0, T ] is greater than a given threshold. This problem can be
mathematically formulated as computing the safety probability of the model
over the safe set A = {0, 1} × [θ−, θ+].

Note that the density function π(·) is slightly different from the general for-
mulation of cPJMPs in Section 2 in that it depends on (τ − t) (through a(·)),
instead of just the jump time τ . This difference requires a slight modification of
the abstraction error, which is presented next.



Computation of Probabilistic Safety We consider a jump rate function
λ(t, θ) = λ0e

−αt cosh[2β(θ− θs)] with positive constants λ0, α, and β. The term
e−αt models the reduction of the sampling rate of the sensors in time. The
cosine hyperbolic function cosh[2β(θ−θs)] shows that more frequent temperature
measurements are provided by the sensors for larger deviation of the temperature
from the set-point. The assumption raised on the jump rate function in Lemma
1 holds with constant κ = λ0 cosh(βδd)/α, whereas Assumption 1 holds with
hλ = 2λ0β sinh(βδd) and Λ = λ0 cosh(βδd). The application of the abstraction
technique presented in this paper to the case study leads to the error

E = (1− e−κ)N +N(h1δθ + h2δt + h3

√

δt), (13)

with constants h1, h2, h3 defined as

h1 := 3Thλ +
Λ

2σ

√
πRC, h2 := 3Λ+

Λθ+
√
π

2σ
√
RC

+
4Λ√
2π

, h3 :=
8Λ

√
RC√
π

.

The additional terms contributing to the error, in comparison with the results of
Theorem 4, are due to the dependence of the mean and variance of the Gaussian
density function φ from the current time t. We use the values in Figure 2 (left)
for the parameters in the numerical simulation. The standard deviation of the
process noise is σ = 0.1 [◦Cs−1/2]. The time bound for the safety specification is
T = 1[h]. The parameters of the jump rate functions are α = 1, β = 1, λ0 = 1,
which means if the TCL is initialized at the set-point, the rate of temperature
observations is 20 times higher than the decay rate of the TCL (1/RC).

We have implemented Algorithm 1 for the abstraction and computation of
safety probability over the model using the software tool FAUST2 [22]. Figure 2
(right) shows the error bound from (13), as a function of numbers of partition
bins for the temperature nθ and the time nt, with a fixed step-horizon N = 8.
One can see that for instance the abstraction algorithm guarantees an error
bound of 0.23 by selecting nθ = nt = 4×103 (δθ = 1.25×10−4, δt = 2.5×10−4),
which generates a DTMC with 3.2× 107 states. This indicates that meaningful
error bounds (less than one) may lead to large DTMCs.

The derived error bounds can be in general conservative. To demonstrate the
conservativeness of bounds, we perform the analysis with partition diameters
δθ = δt = 0.0125 (nθ = 40, nt = 80), which result in a DTMC with 6400 states
for which the error bounds are not meaningful. Figure 3 (top row) shows the
computed safety probabilities as a function of initial temperature θ0 at initial
time t0, the left plot for ON mode and the right plot for OFF mode. Figure 3,
bottom row, shows the safety likelihood estimated via Monte Carlo simulations
with 1000 runs initialized at the representative points used in Algorithm 1. The
computation and the estimation are very close to each other with a maximum
relative difference of 12%. The results suggest that the error bounds can be
reduced by employing advanced gridding techniques [18, 21].



Parameter Interpretation Value

θs temperature set-point 20 [◦C]
δd dead-band width 0.5 [◦C]
θa ambient temperature 32 [◦C]
R thermal resistance 2 [◦C/kW ]
C thermal capacitance 10 [kWh/◦C]
Prate power 14 [kW ]
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Fig. 2. Values of parameters for the TCL case study [20] (left). Error as a function of
numbers of partition sets for temperature nθ and time nt (right).
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Fig. 3. Safety probabilities as a function of initial temperature θ0 and initial time t0.
Left and right columns for ON q0 = 1 and OFF q0 = 0 modes, respectively. First and
second rows are computed via abstraction approach in this paper and via Monte Carlo
simulations, respectively.

6 Conclusions

We have presented an abstraction-based safety verification procedure for pure
jump Markov processes with continuous states. While the focus of the work
has been on the study of probabilistic safety, the technique can be extended
to verify richer temporal properties. The errors can be sharpened via adaptive,
non-uniform schemes [18, 19]. cPJMP are a generalization of CTMC with an
assumption of constant values in between jumps: we plan to investigate the
challenging problem of non-constant dynamics between jumps [15].
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