
Master’s Thesis
Logic, Computation and Methodology

Department of Philosophy
Carnegie Mellon University

Impredicative Encodings of
Inductive Types in

Homotopy Type Theory

Sam Speight

Supervised by:

Prof. Steve Awodey
Dr. Jonas Frey

Submitted: 21st July 2017
Last updated: 29th January 2018

Abstract

In Girard’s system F, one can give impredicative encodings of various inductive
types, such as the coproduct and the type of natural numbers. These encodings
satisfy the relevant formation, introduction, elimination and β-computation rules.
However, the uniqueness principles (or η-rules) are not satisfied. In this project, we
move to a more expressive system, Martin-Löf type theory with Σ-types; (inten-
sional) identity types; “large” Π-types over an impredicative universe U and the
function extensionality axiom, to sharpen the impredicative encodings so that the
relevant η-rules are satisfied. As a result, the so-determined types have the expec-
ted universal properties. Having an impredicative universe allows us to mimic the
universal quantification of system F. We first sharpen system F-like encodings of
the coproduct and the unit type. We go on to consider a more general method of
constructing inductive types: we create initial algebras for endofunctors as limits,
using products and equalizers. Impredicativity is crucial for this. The main result
is the construction of a type of natural numbers which is the initial algebra for the
expected endofunctor X 7→ X + 1.

Acknowledgements

First of all, I would like to thank my advisors, Steve Awodey and Jonas Frey. I
would like to thank Steve not only for his expert supervision on this project, but
also for making me feel like a valued member of the HoTT group at CMU. I would
like to thank Jonas for the large part he played in my category theory education and
his unwavering willingness to answer my many questions. It was truly a pleasure
to work with both Steve and Jonas, and it was while doing so that I feel that I first
took serious strides as a logician—I am very grateful to them for this.

I would also like to thank my family—in particular, my parents, Steve and Jane
Speight. It is by no means an exaggeration to say that I would not be where I am
without the love and support of my parents. They taught me how to learn and
encouraged me to live out my ambitions.

And to my fiancée, Julia: thanks for supporting my decision to hop across the
pond and chase my dreams!

A final thanks goes to Davide De Mola for his LATEXwizardry.

Sam Speight
Pittsburgh

Summer 2017

Contents

1 Background 1
1.1 Introduction . 1
1.2 The System . 4

2 Sharpening the Encodings 9
2.1 The Guiding Lemma . 9
2.2 The Coproduct . 12
2.3 Induction . 18
2.4 The Unit Type . 20

3 Initial Algebras for Endofunctors 25
3.1 Generalizing . 25
3.2 The Limit in Type Theory . 28
3.3 The Natural Numbers . 30
3.4 Conclusion . 37

4 Future Work 39

A Semantics 41

Bibliography 49

Chapter 1

Background

1.1 Introduction

Under the Curry-Howard correspondence [How80], Girard’s system F is the type-
theoretic analog of second-order propositional logic. System F can be obtained as
an extension of the simply typed λ-calculus by adding universal quantification (or
abstraction) over types (and so is sometimes called the ‘polymorphic λ-calculus’).
It goes back to Girard [Gir72] and Reynolds [Rey74].

More explicitly, following [SU06], we start with a stock of type variables (X, Y, Z, ...).
Then system F types are generated by the following “BNF grammar” [BBG+63].

A, B ::= X | A→ B | ∀X.A

Starting with a stock of typed variables (x, y, z, ...), system F terms are generated by
the following BNF grammar.

t, u ::= x | λ(x : A).t | tu | ΛX.t | tA

The typing rules for system F are given in Figure 1.1.
On top of these rules we add certain reductions. We have the familiar β-reduction

for abstraction-application:

(λ(x : A). t)u ;β t[u/x]. (1.1.1)

But we also add a β-reduction for universal quantification:

(ΛX.t)A ;β t[A/X]. (1.1.2)

With these reductions, system F enjoys strong normalization [GTL89].
The version of system F we have introduced is the most simple: the only type-

formers we have are λ-abstraction and universal quantification. One may wonder
about adding further type-formers and, indeed, one may add, for instance, binary

2 CHAPTER 1. BACKGROUND

Γ, x : A ` x : A
ID

Γ, x:A ` t : B

Γ ` λ(x : A). t : A→ B
→-INTRO

Γ ` t : A→ B Γ ` u : A

Γ ` tu : B
→-ELIM

Γ ` t : A

Γ ` ΛX.t : ∀X.A
∀-INTRO∗

Γ ` t : ∀X.A

Γ ` tB : A[B/X]
∀-ELIM

∗ where X /∈ FV(Γ)

Figure 1.1: Typing rules for system F.

products or coproducts—just as in the λ-calculus. However, one of the remarkable
things about system F is that these type-formers can be “encoded” using univer-
sal quantification. Even data types, such as the natural numbers, can be encoded
in system F. With the power of universal abstraction comes great expressiveness.
A type encoded using universal quantification is “impredicative,” for universal
quantification ranges over all types, even the said encoded type.

Let us take coproducts as an example, for we will spend some time on this case
in §2.2. In system F, one can define the coproduct of types A and B as follows.

A + B := ∀X.(A→ X)→ (B→ X)→ X (1.1.3)

This encoding expresses that A + B holds just in case everything holds that follows
from A and that also follows from B. Alternatively, it attempts to capture the elim-
ination behavior of the coproduct: we have a map from A + B to any X for which
we have maps A→ X and B→ X. As we shall see, this encoding fails to satisfy the
relevant η-rule and so fails to fully capture the universal property of the coproduct.

The usual rules for the coproduct are given in Figure 1.2. With A + B as in
Eq. (1.1.3), we define:

inl(a : A) := ΛX.λ(f : A→ X). λ(g : B→ X). f a,

inr(b : B) := ΛX.λ(f : A→ X). λ(g : B→ X). gb,

rec+(s, t)(u) := uC(λ(x : A).s)(λ(y : B).t).

(1.1.4)

This is tantamount to the encoding of A + B satisfying the given rules. Even the
expected β-rules for the coproduct are satisfied:

rec+(s, t)inl(a) =β s[a/x],

rec+(s, t)inl(b) =β t[b/y]

1.1 INTRODUCTION 3

Γ ` a : A

Γ ` inl(a) : A + B
+-INTRO1

Γ ` b : B

Γ ` inl(b) : A + B
+-INTRO2

Γ, x : A ` s : C Γ, y : B ` t : C Γ ` u : A + B

Γ ` rec+(s, t)(u) : C
+-ELIM

Figure 1.2: Inference rules for the coproduct of A and B in system F.

Γ ` 0 : N
N-INTRO1

Γ ` n : N

Γ ` succ(n) : N
N-INTRO2

Γ, x : C ` e : C Γ ` c : C Γ ` n : N

Γ ` recN(e, c)(n) : C
N-ELIM

Figure 1.3: Inference rules for N in system F.

(where =β means equal under the two β-reductions (Eq. (1.1.1) and Eq. (1.1.2))).
As already mentioned, we may also encode data types in system F. An example

that we will return to in §3.3 is the type of natural numbers. In system F, we can
give the following encoding, which, after [Rum04], we refer to as ‘Polynat.’

N := ∀X.(X → X)→ X → X (1.1.5)

We see again that the elimination property is expressed in the encoding: to define
a map out of the natural numbers to any type X, it suffices to have an endomap on
X as well as a point of X.

As before, the expected rules for N, given in Figure 1.3, are satisfied:

0 := ΛX.λ(f : X → X).λ(x : X).x;

succ(n) := ΛX.Λ(f : X → X).λ(x : X). f (nX f x);

recN(e, c)(n) := nC(λ(x : X).e)c,

as well as the β-rules:

recN(e, c)(0) =β u

recN(e, c)(succ(n)) =β s(recN(e, c)(n))

However, there is a shortcoming with both of these encodings—as well as oth-
ers, like the product. That is, the well-known encodings do not satisfy the relevant

4 CHAPTER 1. BACKGROUND

uniqueness principles (or η-computation rules). The η-rule (though later we will
refer to this as the ‘weak’ η-rule) we would like the coproduct to satisfy is

rec+(λ(x : A).inl(a), λ(y : B).inr(b))(u) =β u. (1.1.6)

For the natural numbers, it is:

recN(succ(n), 0)(n) =β n. (1.1.7)

Neither are satisfied. Substituting in the definitions from Eq. (1.1.4) as well as that
of A + B from Eq. (1.1.3), the left-hand side of Eq. (1.1.6) becomes:

u(∀X.(A→ X)→ (B→ X)→ X)(λx.ΛX.λ f .λg. f a)(λy.ΛX.λ f .λg.gb),

which is already in normal form. Likewise for the left-hand side of Eq. (1.1.7):

n(∀X.(X → X)→ X → X)(λy.ΛX.Λ f .λx. f (nX f x))(ΛX.λ f .λx.x)

is in normal form. The types are “too big.”
The aim of this project is to build encodings of inductive types, such as the

coproduct and the type of natural numbers, that also satisfy the desired unique-
ness principles. Actually, as already eluded to, we will show that the encodings of
the coproduct and the natural numbers we give satisfy η-rules stronger than those
given in Eq. (1.1.6) and Eq. (1.1.7), respectively. As a result of satisfying the relevant
η-rules, the so-determined types satisfy the expected universal properties. In order
to achieve this, we move from system F to a more expressive system, which we
describe in the next section. To emphaize, we build inductive types that satisfy the
desired universal properties internally; this is in contrast to interpreting a system
into a model and having the universal properties hold there—as in the “parametric
polymorphism” approach, where the universal quantification of system F is “cut
down” on interpretation [Rey83].

1.2 The System

The system in which we shall work can concisely be described as: homotopy type
theory (HoTT) with one impredicative universe. That being said, we do no make
use of the full power of HoTT; we do not use univalence or any higher inductive
types (in fact, the hope is that one could give impredicative encodings of these,
too—see Chapter 4). A more precise statement is that we work in (intensional)
Martin-Löf type theory with one impredicative universe U and the function exten-
sionality axiom. More precisely still, we need only postulate Σ-types, intensional
identity types and “large” Π-types over an impredicative universe U (‘large’ here
relates to impredicativity and will be explained). The situation is somewhat sim-
ilar to that in the calculus of constructions, where one has an impredicative type of
propositions [CH88].

1.2 THE SYSTEM 5

The function extensionality axiom states that we have a quasi-inverse:

funext :

(
∏
x:A

f (x) = g(x)

)
→ f = g

to the function (definable by path induction):

happly : f = g→∏
x:A

f (x) = g(x)

(for more details, see [Uni13]).
That the universe U is impredicative gives us large Π-types. This allows us to

mimic the universal quantification or abstraction of types in system F. We allow
ourselves to form Π over “large” types A, ie. ones that are not in the universe,
∏(x:A) B(x), so long as the type family B : A→ U is universe-valued. We formulate
this in the following rule.

Γ ` A type Γ, x : A ` B : U
Γ ` ∏(x:A)B : U

Π-FORM1

Of course, we also allow ourselves to form dependent functions in the usual way:

Γ ` A type Γ, x : A ` B type

Γ ` ∏(x:A)B type
Π-FORM2

Γ ` A : U Γ, x : A ` B : U
Γ ` ∏(x:A)B : U

Π-FORM3

Although, the last of these rules is derivable, given that we also add the following
rule.

Γ ` A : U
Γ ` A type

TP

The full set of inference rules for Π-types is given in Figure 1.4. Furthermore,
the rules for Σ-types and identity types are in Figure 1.5 and Figure 1.6, respect-
ively. Many of these rules simply carry over from [Uni13].

Oftentimes, we will want to perform a “restricted quantification”. For instance,
here we will do lots of quantifying over the type of “small” 0-types (ie. 0-types in
U), the subtype of U which is given by:

Set :≡ ∑
X:U

isSet(X) , (1.2.1)

where
isSet(X) :≡ ∏

(x,y:X)
∏

(p,q:x=y)
p = q .

6 CHAPTER 1. BACKGROUND

Γ ` A type Γ, x : A ` B : U
Γ ` ∏(x:A)B : U

Π-FORM1

Γ ` A type Γ, x : A ` B type

Γ ` ∏(x:A)B type
Π-FORM2

Γ, x:A ` b : B

Γ ` λ(x : A). b : ∏(x:A)B
Π-INTRO

Γ ` f : ∏(x:A)B Γ ` a : A

Γ ` f (a) : B[a/x]
Π-ELIM

Γ, x:A ` b : B Γ ` a : A

Γ ` (λ(x : A). b)(a) ≡ b[a/x] : B[a/x]
Π-β

Γ ` f : ∏(x:A)B

Γ ` f ≡ (λx. f (x)) : ∏(x:A)B
Π-η

Figure 1.4: Inference rules for Π-types.

Γ ` A : U Γ, x : A ` B : U
Γ ` ∑(x:A)B : U

Σ-FORM1

Γ ` A type Γ, x : A ` B type

Γ ` ∑(x:A)B type
Σ-FORM2

Γ, x : A ` B type Γ ` a : A Γ ` b : B[a/x]

Γ ` (a, b) : ∑(x:A)B
Σ-INTRO

Γ, z : ∑(x:A)B ` C type

Γ, x : A, y : B ` g : C[(x, y)/z] Γ ` p : ∑(x:A)B

Γ ` indΣ(g, p) : C[p/z]
Σ-ELIM

Γ, z : ∑(x:A)B ` C type Γ, x : A, y : B ` g : C[(x, y)/z]
Γ ` a : A Γ ` b : B[a/x]

Γ ` indΣ(g, (a, b)) ≡ g[a, b/x, y] : C[(a, b)/z]
Σ-β

Figure 1.5: Inference rules for Σ-types.

1.2 THE SYSTEM 7

Γ ` A : U Γ ` a : A Γ ` b : A

Γ ` a =A b : U
=-FORM1

Γ ` A type Γ ` a : A Γ ` b : A

Γ ` a =A b type
=-FORM2

Γ ` A type Γ ` a : A

Γ ` refla : a =A a
=-INTRO

Γ, x : A, y : A, p : x =A y ` C type Γ, z:A ` c : C[z, z, reflz/x, y, p]
Γ ` a : A Γ ` b : A Γ ` q : a =A b

Γ ` ind=(c, a, b, q) : C[a, b, q/x, y, p]
=-ELIM

Γ, x : A, y : A, p : x =A y ` C type

Γ, z:A ` c : C[z, z, reflz/x, y, p] Γ ` a : A

Γ ` ind=(c, a, a, refla) ≡ c[a/z] : C[a, a, refla/x, y, p]
=-β

Figure 1.6: Inference rules for identity types.

We refer to 0-types as “sets” as they behave like objects in the category of sets
(and we shall often simply use ‘sets’ to mean small sets). We use the following
abbreviation.

∏
X:Set

B(X) :≡∏
X:U

isSet(X)→ B(X)

There is an obvious syntactic translation (−)T from system F to the system laid
out here. For types in context, the general shape of the translation is given by:

(X1, ..., Xn ` A)T := X1 : U , ..., Xn : U ` AT : U ,

where we have:

XT := X,

(A→ B)T := AT → BT,

(∀X.A)T := ∏
X:U

AT.

The general shape of the translation for terms is

(x1 : A1, ..., xn : An ` t : B)T := x1 : A1
T, ..., xn : An

T ` tT : AT,

8 CHAPTER 1. BACKGROUND

where we have:

xT := x,

(λ(x : A).t)T := λ(x : AT).tT,

(tu)T := tTuT,

(ΛX.t)T := λ(X : U).tT,

(tA)T := tT AT.

The translation is sound in the sense that if a judgment is derivable in system F,
then its translation is derivable also. The translation remains sound if U is every-
where replaced with Set, or the subtype of U corresponding to any homotopy-level
(h-level). This is because types of a given h-level in U are closed under Π, given
function extensionality. That this holds for a predicative universe is [Uni13, The-
orem 7.1.9]. Making the universe impredicative does no harm to the argument
there. Rather, we make vital use of the fact that U is impredicative to ensure that Π
over the relevant subtype of U lands in U .

In order to see that this system is consistent, we present a realizability semantics
based on “assemblies” and “modest sets” in Appendix A.

Chapter 2

Sharpening the Encodings

2.1 The Guiding Lemma

As we have already discussed, the usual system F encodings of inductive types
like the coproduct do not satisfy the relevant η-computation rules. Of course, the
same goes for “system F-like encodings,” ie. system F encodings translated into
our system as described at the end of §1.2. For example, we have a system F-like
encoding of the coproduct of sets A and B in:

∏
X:Set

(A→ X)× (B→ X)→ X, (2.1.1)

translating Eq. (1.1.3) and uncurrying.
To see how we might sharpen the encodings in order to fix this, we step back

and consider an arbitrary set A. We can make an impredicative, system F-like
encoding of A, namely:

A′ :≡ ∏
X:Set

(A→ X)→ X. (2.1.2)

Note that in this project, we will concentrate on giving impredicative encodings of
inductive types that are sets (in that they are of the type in Eq. (1.2.1)). This some-
what simplifies matters, as will become clear in proofs that follow. More elaborate
methods are needed to deal with types of higher h-level.

Going back to the task in hand, we have a map:

eval :≡ λ(a : A).λ(X : Set).λ(f : A→ X). f (a) : A→ A′, (2.1.3)

which can be viewed as a constructor for A′. We also have a map:

recA(g) :≡ λ(α : A′).αC(g) : A′ → C

10 CHAPTER 2. SHARPENING THE ENCODINGS

for any set C and map g : A → C. This can be viewed as an elimination map (or
recursor) from A′ to C; indeed we would hope to have an elimination map from A′

to C whenever we have a map g : A→ C.
A special case of the recursor is for the set A and the identity function on A:

recA(idA) ≡ λα.αA(idA) : A′ → A. If A′ were a good encoding of A, then we
would expect eval and recA(idA) to be quasi-inverse: For one, in the presence of
univalence, this would make A′ propositionally equal to A.

As it happens, the map eval is not an equivalence; eval and recA(idA) merely
form an embedding-retraction pair, ie. the following diagram commutes.

A′
recA(idA)

A
>>

eval
>>

A

What we have done is motivated the search for a subtype of A′, A∗, such that there
is an equivalence between A and A∗. We will prove that such an A∗ exists, and then
go on to use it as the basis for impredicative encodings of some inductive types.

Before doing this, though, let us set up some machinery. Following [Uni13], we
define Set to be the category—in the HoTT sense—whose type of objects is

Set :≡ ∑
X:U

isSet(X),

with
homSet(X, Y) :≡ X → Y.

Note that univalence is required if Set is to be a category and not just a “precat-
egory.” That being said, although we continue to use the terminology of categories,
none of our results rely on univalence.

Definition 2.1.4.

For an arbitrary but fixed A : Set, define the exponentiation functor (−)A : Set→
Set:

XA :≡ A→ X

(f : X → Y)A :≡ f ◦ −

3

The following lemma, due to Steve Awodey, will serve as a guide for building
some inductive types such as the coproduct (§2.2) and the unit type (§2.4).

Lemma 2.1.5.

2.1 THE GUIDING LEMMA 11

For any A : Set, the map eval from Eq. (2.1.3) factors as an equivalence e followed by an
embedding m:

A eval //

∼
e

A′

A∗
==

m

==

,

with
A∗ :≡ ∑

(α:A′)
∏

(X,Y:Set)
∏

f :X→Y
αY ◦ f A = f ◦ αX,

where
A′ ≡ ∏

X:Set
XA → X,

which is Eq. (2.1.2) rewritten using Definition 2.1.4.

Proof. Of course, we define m :≡ pr1. Any α : A′ is a family of maps (A→ X)→ X
for any set X. Then A∗ is the subtype of such maps such that the following square
commutes.

XA αX //

f A

��

X

f
��

YA
αY
// Y

That is, any α : A∗ is a natural transformations from the functor (−)A to the
identity functor idSet (justifying the subscript notation).

Observe that A∗ is a set: As X and Y are sets, XA → Y is a set, given that sets are
closed under Π. The type αY ◦ f A = f ◦ αX is therefore a proposition. Additionally,
A′ is a set and sets are closed under Σ, as well.

We define the map e as follows.

e(a) :≡ (eval(a), pa : λX.λY.λ f .eval(a)Y ◦ f A = f ◦ eval(a)X)

The path pa can obtained by function extensionality, given the following:

eval(a)Y(f A(g)) ≡ eval(a)Y(f ◦ g)

≡ (f ◦ g)(a)

≡ f (g(a))

≡ f (eval(a)X(g)),

for an arbitrary g : A→ X.
We now exhibit a quasi-inverse to e.

e′ : A∗ → A

e′(α, q) :≡ αA(idA)

12 CHAPTER 2. SHARPENING THE ENCODINGS

Use a0 to denote e′(α, q) :≡ αA(idA).
In one direction, we have:

e′(e(a)) ≡ e′(eval(a), pa) ≡ eval(a)A(idA) ≡ idA(a) ≡ a .

For the converse direction, we have:

e(e′(α, q)) ≡ e(a0) ≡ (eval(a0), pa0) .

We want to show that (eval(a0), pa0) = (α, q), which is an equality over a Σ-type.
So by Lemma 2.7.2 of [Uni13] it is sufficient to show that:

(i) we have a path r : eval(a0) = α,
(ii) r∗(pa0) = q.

For (i), observe that we have a path:

happly(qAXg, idA) : g(αA(idA)) = αX(gA(idA)).

So, using function extensionality we have the required path r, as

eval(a0)(g) ≡ g(a0) ≡ g(αA(idA)) = αX(gA(idA)) ≡ αX(g ◦ idA) = αX(g),

for any g : A→ X.
The equality in (ii) is over the type ∏(X,Y:Set) ∏(f :X→Y) αY ◦ f A = f ◦ αX. But as

A∗ is a set, this type is a proposition, from which (ii) follows.

Observe that the above result can be seen as a special case of the covariant
Yoneda Lemma. In category theory:

A∗ = HomSetSet(yA, idSet) ∼= idSet(A) = A .

2.2 The Coproduct

We use Lemma 2.1.5 as the basis for building the coproduct of sets. The rules for
the coproduct that we would like to be satisfied are presented in Figure 2.1.

Definition 2.2.1.

Define the product functor (−)× (−) : Set× Set→ Set:

A× B :≡ A× B

((f : X → Y)× (g : X′ → Y′))(x : X× X′) :≡ (f (pr1(x)), g(pr2(x)))

3

2.2 THE COPRODUCT 13

Γ ` A : Set Γ ` B : Set

Γ ` A + B : Set
+-FORM

Γ ` inl : A→ A + B
+-INTRO1

Γ ` inr : B→ A + B
+-INTRO2

Γ ` C : Set Γ ` s : A→ C Γ ` t : B→ C

Γ ` rec+(s, t) : A + B→ C
+-ELIM

Γ ` C : Set Γ ` s : A→ C Γ ` t : B→ C Γ ` a : A

Γ ` rec+(s, t)(inl(a)) ≡ s(a) : C
+-β1

Γ ` C : Set Γ ` s : A→ C Γ ` t : B→ C Γ ` b : A

Γ ` rec+(s, t)(inr(b)) ≡ t(b) : C
+-β2

Γ ` C : Set Γ ` s : A→ C Γ ` t : B→ C
f : A + B→ C Γ ` p1 : f ◦ inl = s Γ ` p2 : f ◦ inr = t

Γ ` p3 : rec+(s, t) = f
+-η

Figure 2.1: Inference rules for the coproduct.

14 CHAPTER 2. SHARPENING THE ENCODINGS

We trust that context disambiguates between the functor× and the type-theoretic
product ×.

So we can now write Eq. (2.1.1) as:

(A + B)′ :≡ ∏
X:Set

XA × XB → X . (2.2.2)

Using Lemma 2.1.5, if A + B is the usual type-theoretic coproduct of sets A and
B, then we have:

A + B ' (A + B)∗ :≡ ∑
(α:(A+B)′)

∏
(X,Y:Set)

∏
f :X→Y

αY ◦ (f A × f B) = f ◦ αX,

where (A + B)′ is from Eq. (2.2.2). This leads us to make the following definition.

Definition 2.2.3.

Given A, B : Set, we define their coproduct as follows:

A + B :≡ ∑
(α:(A+B)′)

∏
(X,Y:Set)

∏
f :X→Y

αY ◦ (f A × f B) = f ◦ αX,

where
(A + B)′ :≡ ∏

X:Set
XA × XB → X

is from Eq. (2.2.2). 3

In this way, our encoding of A + B is a subtype of the system F-like encoding.
But we could not write this encoding in system F, for there we do not have identity
types. Observe that A + B here is a set, by reasons discussed in Lemma 2.1.5.

Thus, the usual formation rule for the coproduct of A and B (restricted to sets)
is satisfied. Next, we turn to the introduction and elimination rules. We show that
the usual introduction rules are satisfied, that is, we define “injections” inl and inr.
Moreover, we show that we can eliminate in to other closed sets in the expected
way; in other words, the usual simple elimination rule with respect to other sets is
satisfied.

Lemma 2.2.4.

We can define:

(i) injections inl : A→ A + B and inr : B→ A + B,

(ii) a recursor (or eliminator) rec+(s, t) : A + B → C, for any C : Set, s : A → C and
t : B→ C.

Therefore, the introduction rules and the elimination rule from Figure 2.1 are satisfied.

2.2 THE COPRODUCT 15

Proof. (i) First we define the two injections.

inl(a) :≡ (λ(X : Set).λ(g : (A→ X)× (B→ X)).pr1(g)(a),

λ(X : Set).λ(Y : Set).λ(f : X → Y).refl f ◦pr1(g))

inr(b) :≡ (λ(X : Set).λ(g : (A→ X)× (B→ X)).pr2(g)(b),

λ(X : Set).λ(Y : Set).λ(f : X → Y).refl f ◦pr2(g))

(ii) Given any C : Set, s : A→ C and t : B→ C, define:

rec+(s, t) :≡ λ(z : A + B).pr1(z)C(s, t).

The injections and recursor satisfy the expected β-computation rules definition-
ally (cf. Figure 2.1).

Lemma 2.2.5 - β-rules for A + B.

Let the injections and the recursor be as in Lemma 2.2.4, C : Set, s : A→ C and t : B→ C.
Then the following hold.

(i) rec+(s, t)(inl(a)) ≡ s(a)
(ii) rec+(s, t)(inr(b)) ≡ t(b)

Proof. We show (i); (ii) is can be shown similarly.

rec+(s, t)(inl(a)) ≡ λz.pr1(z)C(s, t)(λX.λg.pr1(g)(a), λX.λY.λ f .λg.refl f ◦pr1(g))

≡ pr1(λX.λg.pr1(g)(a), λX.λY.λ f .λg.refl f ◦pr1(g))C(s, t)

≡ (λX.λg.pr1(g)(a))C(s, t)

≡ pr1(s, t)(a)

≡ s(a)

It is to be expected that the β-rules hold definitionally, as they are already sat-
isfied by the system F encoding. Recall, the aim is to show that our impredicative
encoding of the coproduct also satisfies the η-computation rule. The following is a
key lemma towards this aim. It concerns the behavior of the eliminator acting on
the constructors; we think of it as a “weak” η-rule for the coproduct.

Lemma 2.2.6 - weak η-rule for A + B.

The following propositional equality holds for any z : A + B.

rec+(inl, inr)(z) = z

16 CHAPTER 2. SHARPENING THE ENCODINGS

Proof. Unpacking rec+(inl, inr)(z), we have to show:

pr1(z)A+B(inl, inr) = z. (2.2.7)

Here we see the importance of A + B as defined in Definition 2.2.3 being a set, for
otherwise we could not apply pr1(z) to A + B.

As Eq. (2.2.7) is an equality over a Σ-type, we use Lemma 2.7.2 of [Uni13] to
show that:

(i) we have a path p : pr1(pr1(z)A+B(inl, inr)) = pr1(z),
(ii) p∗(pr2(pr1(z)A+B(inl, inr))) = pr2(z).

Using Σ-induction, let

z ≡

α : (A + B)′ , q : ∏
(X,Y:Set)

∏
(f :X→Y)

αY ◦ (f A × f B) = f ◦ αX

 .

Then, for (i), using function extensionality, we want to show:

pr1(αA+B(inl, inr))X(f , g) = αX(f , g), (2.2.8)

for arbitrary f : A→ X and g : B→ X.
But, looking at the right-hand side of Eq. (2.2.8):

αX(f , g) ≡ αX(rec+(f , g) ◦ inl, rec+(f , g) ◦ inr)

≡ αX((rec+(f , g)A × rec+(f , g)B)(inl, inr)),

using Lemma 2.2.5 (the β-rules for the coproduct). On the left-hand side:

pr1(αA+B(inl, inr))X(f , g) ≡ λz.pr1(z)X(f , g)(αA+B(inl, inr))

≡ rec+(f , g)(αA+B(inl, inr)).

That is, Eq. (2.2.8) just expresses the following instance of naturality, evaluated at
(inl, inr).

(A + B)A × (A + B)B αA+B
//

rec+(f ,g)A×rec+(f ,g)B

��

A + B

rec+(f ,g)

��

XA × XB
αX

// X

But, of course, we can get an inhabitant of the type of Eq. (2.2.8), namely:

(happly(q(A + B)Xrec+(f , g), (inl, inr)))−1.

2.2 THE COPRODUCT 17

The equality in (ii) is over the type:

∏
(X,Y:Set)

∏
(f :X→Y)

αY ◦ (f A × f B) = f ◦ αX.

But as Y is a set, this type is a proposition, from which (ii) follows.

Now we come to the desired theorem, that the η-computation rule for the cop-
roduct is satisfied by our impredicative encoding. We call this result the η-rule for
it expresses the uniqueness clause of the universal property of the coproduct—as
categorically-minded readers will recognize. Moreover, in this way, it is a special
case of the η-rule for W-types as formulated in [AGS12].

Theorem 2.2.9 - η-rule for A + B.

Recall the +-η rule from Figure 2.1. Let C : Set, s : A→ C, t : B→ C and f : A + B→
C such that

f ◦ inl = s,

f ◦ inr = t.

Then
rec+(s, t) = f .

Proof. We show that:

rec+(s, t) = rec+(f ◦ inl, f ◦ inr) = f ◦ rec+(inl, inr) = f . (2.2.10)

The first of the equalities in Eq. (2.2.10) follows by unpacking the definition
of the recursor and using function extensionality, given the hypotheses of the the-
orem. The last equality follows from Lemma 2.2.6 and function extensionality. So
we are just left to show that the middle equality holds.

Unpacking the definition of the recursor we have:

rec+(f ◦ inl, f ◦ inr) ≡ λz.pr1(z)C(f ◦ inl, f ◦ inr).

f ◦ rec+(inl, inr) ≡ f ◦ λz.pr1(z)A+B(inl, inr).

So, using function extensionality and Σ-induction to give each of the above func-
tions an argument

z ≡

α : (A + B)′, p : ∏
(X,Y:Set)

∏
(f :X→Y)

αY ◦ (f A × f B) = f ◦ αX

 ,

it suffices to show:

αC(f ◦ inl, f ◦ inr) = f (αA+B(inl, inr)).

18 CHAPTER 2. SHARPENING THE ENCODINGS

For this, the path p holds the key;

happly(p(A + B)C f , (inl, inr))

is of the required type.

In summary, we have given an impredicative encoding of the coproduct—as a
subtype of the system F-like encoding—which has the expected universal property
(in the category Set).

2.3 Induction

As we are working in a dependent type theory, what we would really like is to have
our impredicative encodings satisfy the relevant dependent elimination rules (in-
cluding β- and η-computation rules—altogether, induction principle). In [AGS12],
Awodey; Gambino and Sojakova show that the following are equivalent for W-
types:

(R) the recursion principle: the simple elimination rule together with propositional
β- and η-rules.

(I) the induction principle: dependent elimination rule together with proposi-
tional β-rule.

A propositional η-rule for the dependent eliminator follows from the dependent
elimination rule. Of course, (I) ⇒ (R) follows by taking any constant type family.
Given the results of the previous section, this equivalence applies to our impredic-
ative encoding of the coproduct from the previous section. We give some details
towards the fact that (R)⇒ (I) in the case of the coproduct.

Theorem 2.3.1.

Suppose A + B satisfies the recursion principle for the coproduct of A and B (the simple
elimination rule and β- and η-rules from Figure 2.1). Then A + B satisfies the dependent
elimination rule for the coproduct, given by:

Γ, z : A + B ` C(z) : Set Γ ` s(a) : C(inl(a)) Γ ` t(b) : C(inr(b)) :

Γ, z : A + B ` indA+B(s, t)(z) : C(z)
+-IND

.

Proof. Assume the recursion principle for the coproduct of A and B. Assume also
the premises of the +-IND rule, ie. assume z : A+ B ` C(z) : Set and s(a) : C(inl(a))
and t(b) : C(inr(b)). We want to show the conclusion of the rule, ie. z : A + B `

2.3 INDUCTION 19

ind+(s, t)(z) : C(z). Consider the following.

X :≡ ∑
z:A+B

C(z)

i : λa.(inl(a), s(a)) : A→ X

j : λb.(inr(b), t(b)) : B→ X

Since X is a closed type, by the simple elimination rule, we obtain a map rec+(i, j) :
A + B→ X. Moreover, we have that:

rec+(i, j)(inl(a)) = i(a),

rec+(i, j)(inr(b)) = j(b),

by the β-rules.
Now consider the map pr1 : X → A + B. Observe that we have:

pr1(i(a)) = inl(a),

pr1(j(b)) = inr(b).

So:

pr1 ◦ rec+(i, j) : A + B→ A + B

and, moreover:

pr1 ◦ rec+(i, j) ◦ inl = inl,

pr1 ◦ rec+(i, j) ◦ inr = inr.

by function extensionality. But this means that we have a path

p : pr1 ◦ rec+(i, j) = rec+(inl, inr),

by the η-rule for the coproduct A + B.
This allows us to transport using p∗ : C(pr1(rec+(i, j)(z))) → C(z), so that we

may define:

ind+(s, t)(z) :≡ (happly(p, z))∗(pr2(rec+(i, j)(z))) : C(z).

The transport here is necessary, for in general it is not the case that, for example,

pr1(rec+(i, j)(inl(a))) ≡ inl(a),

and so pr2(rec+(i, j)(inl(a))) need not be of type

C(inl(a)) ≡ C(pr1(rec+(i, j)(inl(a)))),

as it is required to be.

20 CHAPTER 2. SHARPENING THE ENCODINGS

Γ ` 1 : Set
1-FORM

Γ ` ? : 1
1-INTRO

Γ ` C : Set Γ ` c : C

Γ ` rec1(c) : 1→ C
1-ELIM

Γ ` C : Set Γ ` c : C

Γ ` rec1(c)(?) ≡ c : C
1-β

Γ ` C : Set Γ ` f : 1→ C

Γ ` p : rec1(f (?)) = f
1-η

Figure 2.2: Inference rules for the unit type.

Notice that in the preceding proof, we only use a special case of the η-rule as
formulated in Theorem 2.2.9, the case given by:

rec+(s, t) = f

for any

s : A→ A + B,

t : A→ A + B

and
f : A + B→ A + B

such that

f ◦ inl = s,

f ◦ inr = t.

That is, the equivalence between the simple elimination rule and the dependent
elimination rule holds in the presence of this somewhat weaker η-rule (though not
the “weak” η-rule of Lemma 2.2.6). Looking over the details of [AGS12], we see
that this observation generalizes to the case of W-types.

2.4 The Unit Type

We shall give one more impredicative encoding based on Lemma 2.1.5, that of the
unit type. The rules that we would like to be satisfied are presented in Figure 2.2.

Definition 2.4.1.

We define the unit type as follows:

1 :≡ ∑
(α:1′)

∏
(X,Y:Set)

∏
f :X→Y

αY ◦ f = f ◦ αX,

where
1′ :≡ ∏

X:Set
X → X.

3

2.4 THE UNIT TYPE 21

The sole constructor and the recursor for the unit type are defined in the next
lemma, which mean that the usual introduction rule and simple elimination rule
with respect to other sets for 1 are satisfied.

Lemma 2.4.2.

We can define:

(i) ? : 1,
(ii) a recursor rec1(c) : 1→ C, for any C : Set and c : C.

Proof. (i) ? :≡ (λX.idX, λX.λY.λ f .refl f)

(ii) rec1(c) :≡ λz.pr1(z)C(c)

The β-rule again holds definitionally.

Lemma 2.4.3 - β-rule for 1.

Let C : Set and c : C. Then the following holds.

rec1(c)(?) ≡ c

Proof.

rec1(c)(?) ≡ λz.pr1(z)C(c)(λX.idX, λX.λY.λ f .refl f)

≡ pr1(λX.idX, λX.λY.λ f .refl f)C(c)

≡ (λX.idX)C(c)

≡ idC(c)

≡ c

Lemma 2.4.4 - weak η-rule for 1.

The following propositional equality holds for any z : 1.

rec1(?)(z) = z

Proof. Using the definition of the recursor and function extensionality, it suffices to
show:

pr1(z)1(?) = z .

By Σ-induction, we let z ≡ (α : 1′, p : ∏(X,Y:Set) ∏(f :X→Y) αY ◦ f = f ◦ αX). Then
we want to show α1(?) = (α, p). As this equality is over a Σ-type, it suffices to
show:

(i) we have a path q : pr1(α1(?)) = α,

22 CHAPTER 2. SHARPENING THE ENCODINGS

(ii) q∗(pr2(α1(?)) = p.

For (i), by function extensionality, it suffices to show:

pr1(α1(?))Xx = αX(x). (2.4.5)

But this just expresses the following naturality square evaluated at ?.

1
α1 //

rec1(x)
��

1

rec1(x)
��

X
αX
// X

,

for αX(rec1(x)(?)) ≡ αX(x) by the β-rule for 1 (Lemma 2.4.3). The term

(happly(p1Xrec1(x), ?))−1

inhabits the type in Eq. (2.4.5).
(ii) follows from the fact that Y is a set.

This brings us to the η-rule for 1.

Theorem 2.4.6 - η-rule for 1.

If C : Set and f : 1→ C, then
rec1(f (?)) = f .

Proof. By Lemma 2.4.4, f = f ◦ rec1(?), so, by function extensionality, it suffices to
show that rec1(f (?))(z) = f (rec1(?)(z)). Unpacking the definition of the recursor,
we have to show:

pr1(z)C(f (?)) = f (pr1(z)1(?)).

Using Σ-induction, we let

z ≡ (α : ∏
XSet

X → X, p : ∏
(X,Y:Set)

∏
(f :X→Y)

αY ◦ f = f ◦ αX)

and show:
αC(f (?)) = f (α1(?)).

But happly(p1C f , ?) inhabits this type.

As discussed in §2.3, we may use the results of this section to show that our
impredicative encoding of the unit type satisfies the expected induction principle
(in fact, we only need an η-rule that says any f : 1 → 1 such that f (?) = ? is
propositionally equal to rec1(?)). Using 1-induction, we can prove that any z : 1 is

2.4 THE UNIT TYPE 23

propositionally equal to ? (cf. [Uni13, §1.5]), though we can also prove it directly
from Theorem 2.4.6:

z = id(z)

= rec1(id(?))(z) (by Theorem 2.4.6 and function extensionality)

= rec1(?)(z)

= rec1((λ(y : 1).?)(?))(z)

= (λ(y : 1).?)(z) (again by Theorem 2.4.6 and function extensionality)

= ?

Again, we have given an impredicative encoding (as a subtype of the system
F-like encoding) that satisfies the desired universal property.

24 CHAPTER 2. SHARPENING THE ENCODINGS

Chapter 3

Initial Algebras for Endo-
functors

3.1 Generalizing

As with system F, we are able to encode not only additional type-formers, but data
types also. The data type that we shall concentrate on in this chapter is the type
of natural numbers. That being said, the method that we shall use to give an en-
coding of the natural numbers is very general and can be used to give impredic-
ative encodings of a wide array of inductive types. Note that we are forced to do
something different with the natural numbers, at least, for the “naturality” trick
from Chapter 2 cannot be used to sharpen the relevant system F-like encoding (the
translation of Eq. (1.1.5)):

∏
X:Set

(X → X)→ X → X

The problem here is that X occurs contravariantly as well as covariantly (which
might lead one to consider “dinatural transformations” [DS70], though we pursue
a different avenue).

We consider categories of algebras for endofunctors:

T : Set→ Set,

where, recall, Set is the category whose objects are those of type:

Set :≡ ∑
X:U

isSet(X)

and whose morphisms are given by

homSet(X, Y) :≡ X → Y.

26 CHAPTER 3. INITIAL ALGEBRAS FOR ENDOFUNCTORS

In category theory, given an arbitrary endofunctor T on a category C,the cat-
egory of algebras TAlg for T has as objects pairs (C ∈ C, α : TC → C), with a
morphism f : (C, α)→ (D, β) a morphism f : C → D in C such that f ◦ α = β ◦ T f ,
that is, such that the following square commutes.

TC
T f
//

α
��

TD

β
��

C
f
// D

For algebras for endofunctors T : Set→ Set, there is the obvious forgetful functor:

U : TAlg→ Set,

which forgets the algebra structure and returns the underlying set, ie. U(C, α) := C
(and similarly for morphisms). We will build impredicative encodings of inductive
types as initial objects in the category of algebras for endofunctors.

Let 0 be the initial T-algebra we seek and

y : TAlgop → SetTAlg

be the covariant Yoneda embedding. Inspired by the remark at the end of §2.1, by
the (covariant) Yoneda lemma, we have that

U0 ∼= HomSetTAlg(y0, U).

If 0 is initial, then y0 = TAlg(0,−) is the constant functor sending any T-algebra
to the singleton set, which is the terminal object 1 in SetTAlg. Thus:

U0 ∼= HomSetTAlg(1, U)

But 1 = ∆1 (the 1 on the right-hand side of the equation being the terminal object
in Set), where ∆ : Set→ SetTAlg is the functor defined by

∆X(φ) := X.

So

U0 ∼= HomSetTAlg(∆1, U).

But ∆ is left adjoint to the limit functor:

lim←−
φ∈TAlg

(−)φ : SetTAlg → Set

3.1 GENERALIZING 27

Therefore, we have:

U0 ∼= HomSet

1, lim←−
φ∈TAlg

Uφ


∼= lim←−

φ∈TAlg
Uφ

Using this fact, we have a proposal for a definition of the underlying set of the initial
algebra 0:

U0 := lim←−
φ∈TAlg

Uφ (3.1.1)

Given the knowledge that U is a right adjoint (the left adjoint being the free func-
tor), we might have arrived at the same proposal by representing the initial object
in TAlg as

0 = lim←−
φ∈TAlg

φ,

then utilizing the fact that right adjoints preserve limits.
Next we need to equip U0 from Eq. (3.1.1) with a T-algebra structure. As U0 is

defined to be the limit of the forgetful functor, we have a map x : U0→ Uφ for any
φ ∈ TAlg. Moreover, for any T-algebra homomorphism f : (Uφ, α) → (Uψ, β) we
have that the bottom triangle in the following diagram commutes.

TU0

ε

��

Tx //

Ty
**

TUφ

α

��

T f

##

TUψ

β

��

U0 x //

y
**

Uφ
f

##

Uψ

(3.1.2)

As T is a functor, the top triangle also commutes and the square on the right com-
mutes as f is an algebra homomorphism. Together this means that TU0 is a cone to
the diagram U; but as U0 is the terminal such cone (as the limit), we get a unique
map ε : TU0→ U0, which is the desired T-algebra structure on U0. We know that
the forgetful functor U creates limits, which guarantees that the so-constructed T-
algebra, (U0, ε), is an initial object.

28 CHAPTER 3. INITIAL ALGEBRAS FOR ENDOFUNCTORS

3.2 The Limit in Type Theory

For the purposes of giving impredicative encodings in type theory, we want an
explicit rendering of the limit U0 from Eq. (3.1.1). Given an endofunctor

T : Set→ Set,

we can write down the type of T-algebras and the type of T-algebra homomorph-
isms, which just express the usual categorical notions in type theory (cf. §3.1).

Definition 3.2.1.

Given an endofunctor T : Set→ Set, define the type of T-algebras:

TAlg :≡ ∑
X:Set

T(X)→ X,

and the type of T-algebra homomorphisms between T-algebras φ and ψ:

THom(φ, ψ) :≡ ∑
f :pr1(φ)→pr1(ψ)

pr2(ψ) ◦ T(f) = f ◦ pr2(φ).

3

Together these form a category T Alg. We can also define the forgetful functor.

Definition 3.2.2.

Define the forgetful functor U : T Alg→ Set:

U(φ) :≡ pr1(φ)

U(µ : THom(φ, ψ)) :≡ pr1(µ)

3

We build the limit of the diagram U using products and equalizers in the usual
way (cf. Proposition 5.21 in [Awo10]). The “product” (in type theory, dependent
function)

∏
φ:TAlg

U(φ) (3.2.3)

has the right kind of “projections” ∏(φ:TAlg) U(φ) → U(ψ) to be the limit of U, but
these projections will not, in general, commute with arrows U(µ) : U(φ) → U(ψ)

of the diagram. Thus we also consider the product over all T-algebra homomorph-
isms:

∏
(φ,ψ:TAlg)

∏
(µ:THom(φ,ψ))

U(ψ) (3.2.4)

3.2 THE LIMIT IN TYPE THEORY 29

and two canonical maps from the the product in Eq. (3.2.3) to that in Eq. (3.2.4):

P1 :≡ λ

(
Φ : ∏

φ:TAlg
U(φ)

)
.λ(φ : TAlg).λ(ψ : TAlg).λ(µ : THom(φ, ψ)).Φ(ψ)

P2 :≡ λ

(
Φ : ∏

φ:TAlg
U(φ)

)
.λ(φ : TAlg).λ(ψ : TAlg).λ(µ : THom(φ, ψ)).pr1(µ)(Φ(φ)) .

(3.2.5)

P1 acts like a family of projections, whereas P2 acts like a family of projections fol-
lowed by (underlying functions of) T-algebra homomorphisms.

Taking the equalizer of P1 and P2 yields the subtype of the product in Eq. (3.2.3)
such that the projections commute with arrows in the diagram.

E // e // ∏(φ:TAlg) U(φ)
P1 //

P2

// ∏(φ,ψ:TAlg) ∏(µ:THom(φ,ψ)) U(ψ)

E :≡ ∑
Φ:∏(φ:TAlg) U(φ)

P1(Φ) = P2(Φ) (3.2.6)

Of course, the equalizing map e is just the first projection. Note that we could not
do this in system F for there are no identity types there.

Observe that the identity type P1(Φ) = P2(Φ) is a proposition and the equalizer
E is a set.

The preceding construction indicates that any endofunctor on Set—whose type
of objects, recall, is a subtype of U—has an initial algebra. The initial algebra is
given by (E, ε), where E is the equalizer from Eq. (3.2.6) and ε is the algebra struc-
ture as determined in Eq. (3.1.2). Essential to this is the impredicativity of U . Spe-
cifically, this guarantees that the product over TAlg lands in U , given that TAlg is
a subtype of Set and thus of U . One should therefore be able to show that any
endofunctor on Set has an initial algebra internal to the type theory. It is interest-
ing to compare this to [Hyl88, §3.1], where is it shown that for any small complete
category C, there is an initial T-algebra for any endofunctor T : C → C. Further-
more, we deduce that in this setting, we cannot define a powerset functor on Set,
for otherwise Girard’s paradox arises (cf. [SU06]).

Finally, observe that in this setting, Lemma 2.1.5 arises as the special case for
the endofunctor T(X) :≡ A. Notably, the product in Eq. (3.2.3) can be written:

∏
φ:TAlg

U(φ) ≡ ∏
φ:∑(X:Set) T(X)→X

U(φ)

≡ ∏
(X:Set)

∏
(α:T(X)→X)

X

≡ ∏
X:Set

(T(X)→ X)→ X

≡ ∏
X:Set

(A→ X)→ X.

30 CHAPTER 3. INITIAL ALGEBRAS FOR ENDOFUNCTORS

3.3 The Natural Numbers

As we are interested in obtaining an impredicative encoding of the natural num-
bers, the following endofunctor on Set is the relevant one.

Definition 3.3.1.

Define the endofunctor N : Set→ Set:

N(X) :≡ X + 1

N(f : X → Y) :≡ rec+(inl ◦ f , inr) : X + 1→ Y + 1

3

With this, we have a type of N-algebras and a type of N-algebra homomorph-
isms, following Definition 3.2.1, which form a category NAlg; as well as the for-
getful functor NAlg→ Set, following Definition 3.2.2.

A nice feature of this development is that we may treat any coproduct (of sets)
and 1 to be the impredicative encodings from Chapter 2. This means that, when
we are done, we will have built the type of natural numbers impredicatively just
from Σ-types, identity types and, of course, large Π-types over an impredicative
universe U .

Definition 3.3.2.

Following Eq. (3.2.6), we define the type of natural numbers as follows:

N :≡ ∑
Φ:∏(φ:NAlg) U(φ)

P1(Φ) = P2(Φ) ,

where P1 and P2, from Eq. (3.2.5), are adapted to the case of the endofunctor N. 3

Again, this encoding is (equivalent to) a subtype of the system F-like encoding.
That is:

∏
φ:NAlg

U(φ) ' ∏
X:Set

(X → X)→ X → X,

which is seen by a similar argument to that at the end of §3.2. As discussed at the
end of §3.2, N is a set; this is crucial for what follows.

Next we endow N with a N-algebra structure. We define the constructors for
N: a zero element 0 : N and a successor function succ : N→N. This is tantamount
to showing that the impredicative encoding of N in Definition 3.3.2 satisfies the
expected introduction rules. The full set of rules for N are in Figure 3.1. The algebra
structure is then given by rec+(succ, rec1(0)) : N + 1→N.

Moreover, we show that

(N : Set, rec+(succ, rec1(0)) : N + 1→N)

3.3 THE NATURAL NUMBERS 31

Γ `N : Set
N-FORM

Γ ` 0 : N
N-INTRO1

Γ ` succ : N→N
N-INTRO2

Γ ` C : Set Γ ` e : C → C Γ ` c : C

Γ ` recN(e, c) : N→ C
N-ELIM

Γ ` C : Set Γ ` e : C → C Γ ` c : C

Γ ` recN(e, c)(0) ≡ c : C
N-β1

Γ ` C : Set Γ ` e : C → C Γ ` c : C Γ ` n : N

Γ ` recN(e, c)(succ(n)) ≡ e(recN(e, c)(n)) : C
N-β2

Γ ` C : Set Γ ` e : C → C Γ ` c : C Γ ` f : N→ C
Γ ` p1 : f (0) = c Γ, x : N ` p2 : f (succ(x)) = e(f (x))

Γ ` p3 : recN(e, c) = f
N-η

Figure 3.1: Inference rules for N.

is a weakly initial algebra in NAlg. That is, given set C, an endomap, e : C → C
and a point c : C, we define the recursor recN(e, c) : N → C, which is tantamount
to showing that N satisfies the expected simple elimination rule with respect to other
sets. Later (Corollary 3.3.11) we will see that (N, rec+(succ, rec1(0))) is indeed an
initial algebra (in the sense that any N-algebra homomorphism N→ C is proposi-
tionally equal to recN(e, c)). This follows from the fact that the β and η-computation
rules are satisfied (Lemma 3.3.6 and Theorem 3.3.9, respectively).

Lemma 3.3.3.

We can define:

(i) a zero element 0 : N,
(ii) a successor function succ : N→N,

(iii) a recursor recN(e, c) : N→ C, for any C : Set, e : C → C and c : C.

Proof. (i)

0 :≡ (λ(φ : NAlg).pr2(φ)inr(?),

λ(φ : NAlg).λ(ψ : NAlg).λ(µ : NHom(φ, ψ)).reflpr2(ψ)inr(?)
) : N

(ii)
succ(n) :≡ (λ(φ : NAlg).pr2(φ)inl(pr1(n)(φ)), psucc) : N ,

32 CHAPTER 3. INITIAL ALGEBRAS FOR ENDOFUNCTORS

where the path

psucc : P1(λφ.pr2(φ)inl(pr1(n)(φ))) = P2(λφ.pr2(φ)inl(pr1(n)(φ)))

is obtained by the following argument.

Unpacking the definitions of P1 and P2, the desired path psucc is of type

λφ.λψ.λµ.pr2(ψ)inl(pr1(n)(ψ)) = λφ.λψ.λµ.pr1(µ)(pr2(φ)inl(pr1(n)(φ))).

But we have a path:

pr2(n) : λφ.λψ.λµ.pr1(n)(ψ) = λφ.λψ.λµ.pr1(µ)(pr1(n)(φ))

and thus a path:

q :≡ happly(happly(happly(pr2(n), φ), ψ), µ) : pr1(n)(ψ) = pr1(µ)(pr1(n)(φ)).

We can therefore obtain a path:

appr2(ψ)◦inl(q) : pr2(ψ)inl(pr1(n)(ψ)) = pr2(ψ)(inl(pr1(µ)(pr1(n)(φ)))).
(3.3.4)

Looking at the right-hand side of the above equality, we know that:

pr2(ψ)(inl(pr1(µ)(pr1(n)(φ))))

≡ pr2(ψ)(rec+(inl ◦ pr1(µ), inr)(inl(pr1(n)(φ))))

≡ pr2(ψ)(N(pr1(µ))(inl(pr1(n)(φ)))).

As µ is an N-algebra homomorphism, pr2(µ) gives us a path of type pr2(ψ) ◦
N(pr1(µ)) = pr1(µ) ◦ pr2(φ). From this we can get a path:

r :≡happly(pr2(µ), inl(pr1(n)(φ)))

: pr2(ψ)(N(pr1(µ))(inl(pr1(n)(φ)))) = pr1(µ)(pr2(φ)(inl(pr1(n)(φ)))).
(3.3.5)

Composing the paths from Eq. (3.3.4) and Eq. (3.3.5) gives:

appr2(ψ)◦inl(q)
� r : pr2(ψ)inl(pr1(n)(ψ)) = pr1(µ)(pr2(φ)(inl(pr1(n)(φ)))).

So, indeed:

λφ.λψ.λµ.appr2(ψ)◦inl(q)
� r : ∏

(φ,ψ:NAlg)
∏

(µ:NHom(φ,ψ))
P1Φφψµ = P2Φφψµ

and thus we define:

psucc :≡ funext(λφ.λψ.λµ.appr2(ψ)◦inl(q)
� r).

3.3 THE NATURAL NUMBERS 33

(iii) Given any C : Set, endomap e : C → C and point c : C, define:

recN(e, c) :≡ λ(n : N).pr1(n)(C, rec+(e, rec1(c))) : N→ C.

The constructors and the eliminator satisfy the expected β-rules for N.

Lemma 3.3.6 - β-rules for N.

Let 0 : N, succ : N → N and the recursor be as in Lemma 3.3.3, C : Set, e : C → C,
c : C and n : N. Then the following hold definitionally.

(i) recN(e, c)(0) ≡ c
(ii) recN(e, c)(succ(n)) ≡ e(recN(e, c)(n))

Proof. (i)

recN(c, f)(0)

≡ λn.pr1(n)(C, rec+(e, rec1(c)))(λφ.pr2(φ)(inr(?)), λφ.λψ.λµ.reflpr2(ψ)inr(?)
)

≡ pr1(λφ.pr2(φ)(inr(?)), λφ.λψ.λµ.reflpr2(ψ)inr(?)
)(C, rec+(e, rec1(c)))

≡ λφ.pr2(φ)(inr(?))(C, rec+(e, rec1(c)))

≡ pr2(C, rec+(e, rec1(c)))(inr(?))

≡ rec+(e, rec1(c))(inr(?))

≡ rec1(c)(?) (by Lemma 2.2.5, the β-rule for the coproduct)

≡ c (by Lemma 2.4.3, the β-rule for 1)

(ii)

recN(e, c)(succ(n))

≡ λn.pr1(n)(C, rec+(e, rec1(c)))(λφ.pr2(φ)(inl(pr1(n)(φ)), psucc))

≡ pr1(λφ.pr2(φ)(inl(pr1(n)(φ))), psucc)(C, rec+(e, rec1(c)))

≡ λφ.pr2(φ)(inl(pr1(n)(φ)))(C, rec+(e, rec1(c)))

≡ rec+(e, rec1(c))(inl(pr1(n)(C, rec+(e, rec1(c)))))

≡ e(pr1(n)(C, rec+(e, rec1(c))))
(by Lemma 2.2.5, the β-rule for the coproduct)

≡ e(recN(e, c)(n))

We now prove a key lemma towards showing that (N, rec+(succ, rec1(0))) is an
initial N-algebra. The lemma is for N what Lemma 2.2.6 is for the coproduct and
Lemma 2.4.4 is for 1, a weak η-rule.

34 CHAPTER 3. INITIAL ALGEBRAS FOR ENDOFUNCTORS

Lemma 3.3.7 - weak η-rule for N.

The following propositional equality holds for any n : N.

recN(0, succ)(n) = n

Proof. Unpacking recN(0, succ)(n), we have to show

pr1(n)(N, rec+(succ, rec1(0))) = n.

By Lemma 2.7.2 of [Uni13], it suffices to show that:

(i) we have a path p : pr1(pr1(n)(N, rec+(succ, rec1(0)))) = pr1(n),
(ii) p∗(pr2(pr1(n)(N, rec+(succ, rec1(0))))) = pr2(n).

We use Σ-induction to let n ≡ (Φ : ∏(φ:NAlg) Uφ, q : P1(Φ) = P2(Φ)). Then, for
(i), using function extensionality, we want to show:

(pr1(Φ(N, rec+(succ, rec1(0)))))(φ) = Φ(φ)

for an arbitrary φ : NAlg.
Notice that P1(Φ) ≡ λφ.λψ.λµ.Φ(ψ) and P2(Φ) ≡ λφ.λψ.λµ.pr1(µ)(Φ(φ)). We

define a function:

fφ : U(N, rec+(succ, rec1(0))) ≡N→ U(φ)

fφ(n) :≡ pr1(n)(φ)

If fφ is an N-algebra homomorphism, with r as the path witnessing this, then

(happly(happly(happly(q, (N, rec+(succ, rec1(0)))), φ), (fφ, r)))−1

is of type
fφ(Φ(N, rec+(succ, rec1(0)))) = Φ(φ),

ie. of type

pr1(Φ(N, rec+(succ, rec1(0))))(φ) = Φ(φ),

which is what we want to show.
So we now verify that fφ is indeed an N-algebra homomorphism, ie. that

pr2(φ) ◦ N(fφ) = fφ ◦ pr2(N, rec+(succ, rec1(0))).

Using the definition of N and function extensionality, it suffices to show:

pr2(φ)(rec+(inl ◦ fφ, inr)(x)) = fφ(rec+(succ, rec1(0))(x)) (3.3.8)

for an arbitrary x : N + 1.

3.3 THE NATURAL NUMBERS 35

By +-induction (Theorem 2.3.1), we can do a case analysis on x. First, let x ≡
inl(m : N). Then Eq. (3.3.8) becomes pr2(φ)(inl(fφ(m))) = fφ(succ(m)). Looking at
the right-hand side of this equation and using the definition of succ(m), we have:

fφ(λφ.pr2(φ)(inl(pr1(m)(φ))), psucc) ≡ (λφ.pr2(φ)(inl(pr1(m)(φ))))(φ)

≡ pr2(φ)(inl(pr1(m)(φ)))

≡ pr2(φ)(inl(fφ(m))),

as desired.
For the second case, also using 1-induction, let x ≡ inr(?). Then Eq. (3.3.8)

becomes pr2(φ)(inr(?)) = fφ(rec1(0)(?)). But

fφ(rec1(0)(?)) ≡ fφ(0) ≡ pr1(0)(φ) ≡ pr2(φ)(inr(?)),

where the last step uses the definition of 0 from Lemma 3.3.3. Therefore, fφ is an
N-algebra homomorphism and we are done with (i).

(ii) simply follows from the fact that, being an equality over a set, P1(Φ) =

P2(Φ) is a proposition.

We now come to the main theorem—and corollary—of this section and, indeed,
of this project: that our impredicative encoding of N satisfies the η-computation
rule for N—and so has the desired universal property. We call the theorem the
η-rule as it expresses the uniqueness clause of the universal property of N and it
arises as a special case of the η-rule for W-types as formulated in [AGS12] (reasons
analogous to those in the case of the coproduct in §2.2).

Theorem 3.3.9 - η-rule for N.

Let C : Set, e : C → C and c : C. Moreover, let f : N→ C such that

f (0) = c,

f (succ(x)) = e(f (x)),

for any x : N. Then
recN(e, c) = f .

Proof. First note that f = f ◦ recN(succ, 0) by Lemma 3.3.7. So we show:

recN(e, c) = f ◦ recN(succ, 0).

Using the definition of the recursor, this amounts to showing:

λn.pr1(n)(C, rec+(e, rec1(c))) = f ◦ (λn.pr1(n)(N, rec+(succ, rec1(0)))).

36 CHAPTER 3. INITIAL ALGEBRAS FOR ENDOFUNCTORS

Next we use function extensionality and Σ-induction to give each side of the above
equation an argument n ≡ (Φ : ∏(φ:NAlg) Uφ, s : P1(Φ) = P2(Φ)). So now we have
to show:

Φ(C, rec+(e, rec1(c))) = f (Φ(N, rec+(succ, rec1(0)))). (3.3.10)

Observe that the conditions on f mean that is it an N-algebra homomorphism—
let p be the path witnessing this. Then the left-hand side of Eq. (3.3.10) is just

P1Φ(N, rec+(succ, rec1(0)))(C, rec+(e, rec1(c)))(f , p),

and the right-hand side is

P2Φ(N, rec+(succ, rec1(0)))(C, rec+(e, rec1(c)))(f , p).

So

happly(happly(happly(s, (N, rec+(succ, rec1(0)))), (C, rec+(e, rec1(c)))), (f , p))

inhabits the type of Eq. (3.3.10).

The β-rules for N tell us that recN(e, c) is an N-algebra homomorphism, for any
C : Set, e : C → C and c : C. Therefore, we may concisely sum up the results of this
section in the following, which expresses that our impredicative encoding N has
the universal property of the natural numbers.

Corollary 3.3.11 - universal property for N.

Let C : Set, e : C → C and c : C. Moreover, let µ be an N-algebra homomorphism, ie. let

µ : NHom((N, rec+(succ, rec1(0))), (C, rec+(e, rec1(c)))).

Then
(recN(e, c), p) = µ,

where p exhibits rec+(e, rec1(c)) as an N-algebra homomorphism. In other words, any
N-algebra homomorphism is (propositionally) equal to the appropriate recursor (as an N-
algebra homomorphism).

The paths p and pr2(µ) are equal as rec+(e, rec1(c)) ◦N(f) = f ◦ rec+(succ, rec1(0))
is a proposition.

The preceding results tell us that our impredicative encoding of N also satisfies
the usual induction principle. This follows from the results in [AGS12], given that
N can be formulated as a W-type, or can be proved directly as in §2.3.

3.4 CONCLUSION 37

3.4 Conclusion

Let us conclude this chapter by reflecting on the progress made. System F’s Poly-
nat:

∀X.(X → X)→ X → X

satisfies the unusual formation, introduction, elimination and β-computation rules
for N, but does not always determine a natural numbers object. In [Rum04], Rum-
melhoff gives a PER model of system F in which it is not the case that the interpret-
ation of Polynat,N , contains only interpretations of ‘church numerals’, ie. terms of
the form

ΛX.λ(f : X → X).λ(x : X). f (f (...(f (x))))

(For more on PER models of system F, see [Cro94].) This means that, in general, a
function defined by recursion on N , if it exists, need not be unique. This makes it
clear that Polynat violates the η-rule for N.

On the other hand, what we have done here is constructed an impredicative
encoding of the type of natural numbers satisfying the expected formation rule, in-
troduction rule, simple elimination rule, β-computation rules (definitionally) and
η-rule up to propositional equality—equivalently, the expected formation and in-
troduction rules, the dependent elimination rule and the corresponding propos-
itional β and η-rules. Semantically, this means that our impredicative encoding
does always determine a natural numbers object.

38 CHAPTER 3. INITIAL ALGEBRAS FOR ENDOFUNCTORS

Chapter 4

Future Work

To conclude, we briefly describe some avenues for further investigation in relation
to this project:

• Of course, one could continue building up a “library” of impredicative en-
codings. An impredicative encoding of W-types is a natural next step, where
it should be possible to use the methods of Chapter 3 with the following en-
dofunctor on Set.

T(X) :≡∑
a:A

B(a)→ X

Dually, one might look in to building coinductive types, eg. M-types, as final
coalgebras.

There is also the possibility of building more exotic inductive types that may
have a higher h-level. For example, one might want to build an impredicative
encoding of the coproduct of 1-types A and B. In this case, a more elaborate
naturality condition would be needed.

One could consider higher inductive types, such as the circle S1, set-quotients
and truncations.

Finally, one might consider inductive families, eg. vectors of length n and
even identity types.

Note that for the types considered in this project, we have only used some of
the power afforded by the impredicativity of the universe U , that is, we only
ever quantified over U itself. It is expected that building more exotic types
will involve quantifying over arbitrary types, thereby utilizing the full power
of the impredicative universe.

• As mentioned at the end of §3.2, it would be nice to formalize the argument
that every endofunctor on Set has an initial algebra in the type theory.

40 CHAPTER 4. FUTURE WORK

• A final point which we believe warrants further investigation is in relation
to the remark at the end of §2.3. In the terminology of Chapter 3: the equi-
valence between the simple and dependent elimination rules for an initial
algebra φ of some endofunctor on Set apparently holds in the presence of a
weaker η-rule which only posits uniqueness of endo-homomorphisms from
φ to φ.

Appendix A

Semantics

In this appendix, we outline a realizability semantics for the system set out in §1.2
based on assemblies and modest sets. Our presentation very closely follows lecture
notes of Streicher [Str08] (especially §6), which in turn are based on prior work of
Hyland [Hyl88] and Carboni, Freyd and Scedrov [CFS88]. Specifically, we give
semantics in the category of assemblies over an arbitrary partial combinatory al-
gebra (pca). The category of assemblies over a pca is a categorical generalization
of Kleene’s original number realizability [Kle45], where the pca provides an abstract
notion of computation. The same basic machinery can be used to give a model of
system F, as one might expect.

In what follows, given a set A and a partial, binary operation · : A× A → A,
a polynomial over A is a formal term built up from variables ranging over A and
constants—one for every element of A—using the operation ·. We abuse notation
and use a, say, to stand for both the element of A and the constant denoting this
element. For polynomials t and s over A, t ↓means that t[a/x] is defined (in terms
of the operation ·) for every a ∈ A, and t ' s means that either both t and s are
undefined or else they are both defined and equal to each other.

Definition A.0.1.

Let A := (|A|, ·), where |A| is a non-empty set and · : |A| × |A| ⇀ |A| is a
partial, binary operation. Then A is a partial combinatory algebra (pca) iff for
every polynomial t over |A| and every variable x ranging over |A|, there exists a
polynomial λ∗x.t over |A|, with FV(λ∗x.t) ⊆ FV(t) \ {x}, such that λ∗x.t ↓ and
(λ∗x.t) · a ' t[a/x] for all a ∈ |A|. 3

By convention, the operation · associates to the left and we often write ab for
a · b. One can also consult [vO08] for more details.

The canonical example of a pca is the first Kleene algebra, where the underlying
set is the set of natural numbers and the partial operation is Kleene application.

We will make use of the fact that in any pca we can form the pair of any a, b ∈

42 CHAPTER A. SEMANTICS

|A|. That is, for any pca A, there exist p, p1, p2 ∈ |A| such that:

paa′ ↓,
p1(paa′) = a,

p2(paa′) = a′,

for all a, a′ ∈ |A|. The elements are given by:

p := λ∗x.λ∗y.λ∗z.zxy,

p1 := λ∗z.z(λ∗x.λ∗y.x),

p2 := λ∗z.z(λ∗x.λ∗y.y).

Note also that we have the “identity polynomial”: id := λ∗x.x.

Definition A.0.2.

Let A be any pca.

(i) We define the category of assemblies Asm(A) over A as follows:

• As objects we take pairs X = (|X|, ‖ · ‖X), where |X| is a set and ‖ · ‖ :
|X| → P≥1(|A|) (where P≥1 denotes the powerset without the empty
set). We write a
X x for a ∈ ‖x‖X, saying: “a realizes x,” and often
omit subscripts when the context makes it clear.

• A morphism f : X → Y is a set-theoretic function f : |X| → |Y| such that
there exists e ∈ |A| such that for every x ∈ |X| and every a
 x we have
e · a ↓ and e · a
Y f (x)—in which case we write e
 f . Composition and
identity morphisms are inherited from Set. Realizer-wise, identities are
realized by λ∗x.x, and if a
 f : X → Y and a′
 g : Y → Z, then g ◦ f is
realized by λ∗x.a′(ax).

(ii) We also define the full and faithful functor

∇ : Set→ Asm(A) , (A.0.3)

where∇(S) is the assembly with |∇(S)| := S and ‖s‖∇(S) := |A| for all s ∈ S,
and ∇(f) := f , which is realized by id.

(iii) An assembly X is a modest set iff x = x′ whenever ‖x‖X ∩ ‖x′‖X is non-
empty. We write Mod(A) for the full subcategory of Asm(A) with objects
the modest sets.

3

For the rest of this section, we fix an arbitrary pca A. The categories Asm(A)
and Mod(A) have many nice properties. In particular, Asm(A) has all finite limits

43

and is cartesian closed. Moreover, Mod(A) is closed under finite limits taken in
Asm(A) and the exponential object [X → Y] of X and Y is modest whenever Y is.

We give some constructions (see [Fru16], also). The terminal object 1 is given
by:

|1| := {?},
‖ ? ‖ := |A|.

The unique map !X : X → 1 for any X ∈ Asm(A) is inherited from Set, with
realizer id.

The product of assemblies X and Y, X×Y, is given by:

|X×Y| := |X| × |Y|,
a
X×Y (x, y)⇐⇒ p1a
X x and p2a
Y y.

The usual set-theoretic projections, π1 : |X × Y| → |X| and π2 : |X × Y| → |Y|, are
realized by p0 and p1.

The equalizer e : E→ X of arrows f , g : X → Y is given by

|E| := {x ∈ X | f (x) = g(x)},

where e is the canonical inclusion, realized by id.
Pullbacks can be built using products and equalizers.

X×Z Y
π2 //

π1
��

Y
g
��

X
f
// Z

That is, |X ×Y Z| := {(x, y) ∈ |X × Y| | f (a) = g(c)}. The realizer agrees with that
for products.

Finally, we construct exponentials in Asm(A). Let X, Y ∈ Asm(A). The expo-
nential object [X → Y] is given by:

|[X → Y]| := HomAsm(A)(X, Y),

‖ f : X → Y‖[X→Y] := {e ∈ |A| | e
 f }.

The evaluation map ε : [X → Y]× X → Y, which sends (f , x) 7→ f (x), is realized
by λ∗x.p1x(p2x). If Y is modest, then if e
 f and e
 g, then f = g—thus, [X → Y]
is modest.

Asm(A) and Mod(A) give rise to models of first-order logic. Specifically, for
any morphism f : Y → X in Asm(A), we have left and right adjoints to the mono-
tone map f ∗ : Sub(X) → Sub(Y), given by pullback, which each satisfy the relev-
ant Beck-Chevalley condition. This restricts to Mod(A). However, in both cases,
the result can be strengthened, as follows.

44 CHAPTER A. SEMANTICS

Theorem A.0.4.

For every morphism f : X → Y in Asm(A), the pullback functor

f ∗ : Asm(A)/Y → Asm(A)/X

has left and right adjoints:
Σ f a f ∗ a Π f .

Moreover, Σ f and Π f each satisfy the relevant Beck-Chevalley condition. That is, for any
pullback square

U
g
//

p
��

X
f
��

V q
// Y

and m ∈ Asm(A)/X, we have:

Σpg∗m ∼= q∗Σ f m,

q∗Π f m ∼= Πpg∗m.

All of the above restricts to Mod(A) also.

Proof. We give the constructions of Σ f and Π f , starting with the former. Given an
object g : U → X of Asm(A)/X, set:

Σ f g := f ◦ g.

For a morphism k : g′ → g in Asm(A)/X, set:

Σ f (k : g′ → g) := k : f ◦ g′ → f ◦ g

in Asm(A)/Y.
Now for the right adjoint. Let g : U → X be an object in Asm(A)/X; we

construct
Π f g : P→ Y

as follows. Let P0 be the set of all pairs (y, s) such that y ∈ |Y| and s : f−1(y)→ |U|
with g(s(x)) = x for all x ∈ f−1(y). Set: e
 (y, s) iff p1e
Y y, p2e ↓ and p2ea
U

s(x) whenever a
X x ∈ f−1(y). Define P as the assembly with:

|P| := {(y, s) ∈ P0 | ∃e ∈ |A|. e
 (y, s)},
‖(y, s)‖P := {e ∈ |A| | e
 (y, s)}.

Finally, we define:
(Π f g)(y, s) := y,

45

with realizer p1.
If g′ : U′ → X is an object in Asm(A) and g is as above, the action of Π f on a

morphism h : g→ g′ is given by the following:

(Π f h)(y, s) := (y, h ◦ s),

p(p1e)(λ∗x.e′(p2ex))
 (Π f h)(y, s),

where e
 (y, s) and e′
 h.

A corollary of this is that Asm(A) is locally cartesian closed, which means that
all its slices are cartesian closed. As a result, (up to the usual coherence issues)
we can interpret Martin-Löf type theory with Σ-types; (extensional) identity types
and (ordinary) Π-types in Asm(A), following Seely [See84]. What distinguishes
the model in assemblies is that it admits an interpretation of the impredicative uni-
verse U using a special class of maps called “families of modest sets” (or “modest
families”).

Definition A.0.5.

A family of modest sets in Asm(A), indexed by an assembly X, is a morphism
b̃ : B → X in Asm(A) such that for all x : 1 → X the object Bx in the following
pullback square is a modest set.

Bx //

x∗ b̃
��

B

b̃
��

1 x
// X

(A.0.6)

We write Mod(A)(X) for the full subcategory of the slice category Asm(A)/X
whose objects are families of modest sets indexed by X. 3

The following is a useful characterization of families of modest sets.

Lemma A.0.7.

A morphism b̃ : B → X in Asm(A) is a family of modest sets iff for any b1, b2 ∈ B,
b1 = b2 whenever b̃(b1) = b̃(b2) and ||b1||B ∩ ‖b2‖B 6= ∅.

Proof. Recall the construction of pullbacks above: elements of |Bx| (as in the dia-
gram in Eq. (A.0.6)) are pairs (?, b) ∈ 1× B such that x(?) = b̃(b).

First, let b̃ be a modest family. Now assume b̃(b1) = b̃(b2) and e
 b1, b2. We
know a
 ? for any a ∈ |A|. So pae
 (?, b1), (?, b2) for all a ∈ |A|. As Bx is modest,
we have (?, b1) = (?, b2), which implies b1 = b2.

Conversely, assume b1 = b2 whenever b̃(b1) = b̃(b2) and ||b1||B ∩ ||b2||B 6= ∅.
We want to show that Bx is modest. On the one hand, assume e
 (?, b1), (?, b2).
Then p2e
 b1, b2. Also, as (?, b1), (?, b2) ∈ Bx, we have b̃(b1) = x(?) = b̃2. So,

46 CHAPTER A. SEMANTICS

by our assumption, b1 = b2 as required. On the other hand, let (?, b1) = (?, b2).
Then b1 = b2. So there is some e
 b1, b2 and we have b̃(b1) = b̃(b2). So pae

(?, b1), (?, b2) for any a ∈ |A|.

Now for a crucial theorem.

Theorem A.0.8.

For every morphism f : X → Y in Asm(A), the functor Π f preserves families of modest
sets, that is, if b̃ : B→ X is a modest family, then so is Π f b̃.

Proof. Assume b̃ : B → X is a family of modest sets and recall the construction of
Π f from Theorem A.0.4: elements in the domain of Π f b̃ are of the form (y ∈ |Y|, s :
f−1(y) → |B|) and (Π f b̃)(y, s) = y. By the right-to-left direction of Lemma A.0.7,
we assume that we have e
 (y, s1), (y, s2) and show s1 = s2 (we can assume that
the first component of these pairs are the same due to the first hypothesis in Lemma
A.0.7).

So take any x ∈ f−1(y) and let a
X x. Notice that p2e
 s1, s2, so p2ea

s1(x), s2(x). Also we have b̃(s1(x)) = y = b̃(s2(x)) from the definition of Π f . Thus,
as b̃ is a family of modest sets, again by Lemma A.0.7 we have that s1(x) = s2(x)—
and so s1 = s2.

Clearly, families of modest sets are stable under pullback along arbitrary morph-
isms in Asm(A). Furthermore, for any X ∈ Asm(A), Mod(A)(X) has finite limits,
which means that, by Theorem A.0.8, Mod(A)(X) is cartesian closed. (Mod(A)(X)

also has finite colimits.)
We now seek a “generic family of modest sets”, ie. a family of modest sets

such that all families are isomorphic to a pullback of the generic family along
some morphism in Asm(A). Towards this, observe that every modest set X is
isomorphic to a “canonically modest set” Xc given by:

|Xc| := {‖x‖X | x ∈ |X|},
‖A‖Xc := A.

That is, we replace every element x by its set of realizers. Then there is a one-
to-one correspondence between canonically modest sets and partial equivalence
relations (PERs), ie. symmetric and transitive binary relations, on |A|. The PER
corresponding to the canonically modest set X is given by

aRXa′ ⇐⇒ ∃x ∈ |X|. a, a′
 x .

On the other hand, given a PER on |A|, we get the canonically modest set AR with:

|AR| := |A|/R = {[a]R | aRa},
‖A‖AR := A.

That is, AR is the modest set of R-equivalence classes of |A|, realized by their mem-
bers.

47

Theorem A.0.9.

There exists a generic family of modest sets, that is, a family of modest sets γ such that for
any family of modest sets b̃ there is a morphism of assemblies χb̃, the “characteristic map of
b̃”, such that b̃ ∼= χb̃

∗γ.

Proof. Let PER(A) be the set of all partial equivalence relations on |A|. Let G be
the assembly defined by:

|G| := {(R, A) | R ∈ PER(A) ∧ A ∈ |A|/R},
‖(R, A)‖G := A.

The generic family of modest set is given by:

γ : G → ∇(PER(A)),
γ(R, A) := R.

where ∇ is the functor from Eq. (A.0.3). γ is realized by id (remember, we can
consider R as a modest set by the foregoing).

If b̃ : B→ X is a family of modest sets, then we have b̃ ∼= χb̃
∗γ for the map:

χb̃ : X → ∇(PER(A)),
χb̃(x) := {(a, a′) | ∃y ∈ b̃−1(x). a, a′
A y}.

We pause to sum up our position. We have a class of categories in the Mod(A)(X)

that are cartesian closed and closed under Π f for any morphism f ∈ Asm(A).
Since modest families are stable under pullback, the categories Mod(A)(X) to-
gether constitute an indexed category, ie. a Cat-valued, contravariant pseudofunctor,
(cf. [Cro94]):

Mod(A)(−) : Asm(A)op → Cat

Moreover, we have a generic family of modest sets, which may be expressed as a
condition on the indexed category Mod(A)(−). With this we can give an inter-
pretation of the system set out in §1.2. As already mentioned, a significant portion
of the interpretation follows [See84], and so is only sound up to the usual coher-
ence issues. Of course, there are many ways to treat these issues: see, for example:
[Cur93], [Hof94], [Dyb96], [LW15] or [Awo16].

The outline of the interpretation is as follows.

• Contexts Γ are interpreted as objects JΓK of Asm(A), where the empty context
is interpreted as the terminal object.

• Substitutions σ : Γ → Γ′ are interpreted as morphisms JσK : JΓK → JΓ′K in
Asm(A).

48 CHAPTER A. SEMANTICS

• A type Γ ` A type is interpreted as the object of Asm(A)/JΓK corresponding
to the interpretation of the “projection substitution” pA : Γ, x : A→ Γ:

JΓ ` A typeK := JpAK : JΓ, x : AK→ JΓK

We often identify the interpretation of a closed type (an object of Asm(A)/1)
with its domain.

• The universe U type is interpreted as the assembly ∇(PER(A)).
• The interpretation JΓ ` a : AK of a term Γ ` a : A is a point of JΓ ` A typeK in

Asm(A)/JΓK, which is precisely a section of JpAK in Asm(A). A small type
Γ ` B : U is treated as a term of type U .

• The action of substitution is given by pullback.

The interpretation of Σ-types and identity types is as usual—where the former
uses the left adjoint to pullback from Theorem A.0.4. The validity of the Π-FORM2

rule is shown as usual, too. We discuss the interpretation of impredicative Π-types,
as in the Π-FORM1 rule (cf. §1.2).

Given JΓ ` A typeK and JΓ, x : A ` B(x) : UK, we interpret the dependent
function Γ ` ∏(x:A) B(x) : U by:

JΓ ` ∏(x:A)B(x) : UK := 〈JΓK, χΠJpAKJΓ,x:A`B(x) typeK〉 : JΓK→ JΓ, X : UK,

where χΠJpAKJΓ,x:A`B(x) typeK is the characteristic map of ΠJpAKJΓ, x : A ` B(x) typeK
(cf. Theorem A.0.9), and we are viewing B(x) “as a type”, that is:

JΓ, x : A ` B(x) typeK := (π2 ◦ JΓ, x : A ` B(x) : UK)∗γ,

where γ is the generic family of modest sets from Theorem A.0.9 and π2 is as in the
following pullback diagram.

JΓ, x : A, X : UK
π2 //

JΓ,x:A`U typeK

��

JUK

J`U typeK

��

JΓ, x : AK
!JΓK

//

JΓ,x:A`B(x):UK

GG

1

As families of modest sets are stable under pullback, so JΓ, x : A ` B(x) typeK is a
modest family. This means that ΠJpAKJΓ, x : A ` B(x) typeK is a modest family, as
modest families are preserved by ΠJpAK (Theorem A.0.8).

Finally, observe that implicit in the above is the reason that the TP rule is val-
idated. Given JΓ ` A : UK as a section, we obtain JΓ ` A typeK as a pullback of
the generic modest family (along π2 ◦ JΓ ` A : UK), which will itself be a modest
family and in particular an object of Asm(A)/JΓK.

Bibliography

[AGS12] Steve Awodey, Nicola Gambino, and Kristina Sojakova. Inductive types in ho-
motopy type theory. In Proceedings of the 2012 27th Annual IEEE/ACM Symposium
on Logic in Computer Science, pages 95–104. IEEE Computer Society, 2012. (Cited
on pages 17, 18, 20, 35, and 36.)

[Awo10] Steve Awodey. Category Theory. Number 52 in Oxford Logic Guides. Oxford
University Press, Second Edition, 2010. (Cited on page 28.)

[Awo16] Steve Awodey. Natural models of homotopy type theory. Mathematical Struc-
tures in Computer Science, pages 1–46, 2016. (Cited on page 47.)

[BBG+63] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Ru-
tishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and
M. Woodger. Revised report on the algorithm language algol 60. Commun.
ACM, 6(1):1–17, January 1963. (Cited on page 1.)

[CFS88] Aurelio Carboni, Peter Freyd, and Andre Scedrov. A categorical approach to
realizability and polymorphic types. Mathematical Foundations of Programming
Language Semantics, pages 23–42, 1988. (Cited on page 41.)

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Computation, 76:95–120, 1988. (Cited on page 4.)

[Cro94] Roy L. Crole. Categories for Types. Cambridge University Press, 1994. (Cited on
pages 37 and 47.)

[Cur93] P-L Curien. Substitution up to isomorphism. Fundamenta Informaticae, 19(1-
2):51–85, 1993. (Cited on page 47.)

[DS70] E. J. Dubuc and R. Street. Dinatural transformations. In S. MacLane, editor,
Reports of the Midwest Category Seminar IV, volume 137 of Lecture Notes in Math-
ematics, pages 126–137. Springer-Verlag Berlin Heidelberg, 1970. (Cited on page
25.)

[Dyb96] Peter Dybjer. Internal type theory. Types for Proofs and Programs, pages 120–134,
1996. (Cited on page 47.)

[Fru16] Daniil Frumin. Logic and homotopy in the category of assemblies. http://
covariant.me/pdf/realiz.pdf, 2016. (Cited on page 43.)

[Gir72] Jean-Yves Girard. Interprétation Fonctionnelle et Elimination des Coupures de
l’Arithmétique d’Ordre Supérieur. PhD thesis, Paris 7, France, 1972. (Cited on
page 1.)

http://covariant.me/pdf/realiz.pdf
http://covariant.me/pdf/realiz.pdf

50

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
University Press, 1989. (Cited on page 1.)

[Hof94] Martin Hofmann. On the interpretation of type theory in locally cartesian closed
categories. In Proceedings of Computer Science Logic, Lecture Notes in Computer
Science, pages 427–441. Springer, 1994. (Cited on page 47.)

[How80] William A. Howard. The formulae-as-types notion of construction. In J. Roger
Seldin, Jonathan P.; Hindley, editor, To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980. original
paper manuscript from 1969. (Cited on page 1.)

[Hyl88] J.M.E. Hyland. A small complete category. Annals of Pure and Applied Logic,
40(2):135 – 165, 1988. (Cited on pages 29 and 41.)

[Kle45] S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal
of Symbolic Logic, 10(4):109–124, 1945. (Cited on page 41.)

[LW15] Peter LeFanu Lumsdaine and Michael A Warren. The local universes model: an
overlooked coherence construction for dependent type theories. ACM Transac-
tions on Computational Logic (TOCL), 16(3):23, 2015. (Cited on page 47.)

[Rey74] John C. Reynolds. Towards a theory of type structure. In Programming Sym-
posium, Proceedings Colloque sur la Programmation, pages 408–423. Springer-
Verlag, 1974. (Cited on page 1.)

[Rey83] John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In IFIP
Congress, pages 513–523, 1983. (Cited on page 4.)

[Rum04] Ivar Rummelhoff. Polynat in PER models. Theoretical Computer Science, 316:215–
224, 2004. (Cited on pages 3 and 37.)

[See84] Robert AG Seely. Locally cartesian closed categories and type theory. In Math-
ematical proceedings of the Cambridge philosophical society, volume 95, pages 33–48.
Cambridge University Press, 1984. (Cited on pages 45 and 47.)

[Str08] Thomas Streicher. Realizability. http://www.mathematik.
tu-darmstadt.de/˜streicher/REAL/REAL.pdf, 2008. (Cited on
page 41.)

[SU06] Morten Heine Sørensen and Paweł Urzyczyn. Lectures on the Curry-Howard Iso-
morphism. Number 149 in Studies in Logic and the Foundations of Mathematics.
Elsevier, 2006. (Cited on pages 1 and 29.)

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Found-
ations of Mathematics. https://homotopytypetheory.org/book, Institute
for Advanced Study, 2013. (Cited on pages 5, 8, 10, 12, 16, 23, and 34.)

[vO08] J. van Oosten. Realizability: An Introduction to Its Categorical Side. Studies in logic
and the foundations of mathematics. Elsevier, 2008. (Cited on page 41.)

http://www.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf
https://homotopytypetheory.org/book

	Abstract
	Table of Contents
	1 Background
	1.1 Introduction
	1.2 The System

	2 Sharpening the Encodings
	2.1 The Guiding Lemma
	2.2 The Coproduct
	2.3 Induction
	2.4 The Unit Type

	3 Initial Algebras for Endofunctors
	3.1 Generalizing
	3.2 The Limit in Type Theory
	3.3 The Natural Numbers
	3.4 Conclusion

	4 Future Work
	A Semantics
	Bibliography

