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Abstract

A new concurrent form of game semantics is introduced.
This overcomes the problems which had arisen with previ-
ous, sequential forms of game semantics in modelling Lin-
ear Logic. It also admits an elegant and robust formal-
ization. A Full Completeness Theorem for Multiplicative-
Additive Linear Logic is proved for this semantics.

1 Introduction

This paper contains two main contributions:

e the introduction of a new form of game semantics,
which we callconcurrent games

e a proof of full completenesof this semantics for
Multiplicative-Additive Linear Logic.
We explain the significance of each of these in turn.

Concurrent games Traditional forms of game semantics
which have appeared in logic and computer science hav
beensequentialn format: a play of the game is formalized
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such as (Classical) Linear Logic. In fact, sequential
games have only yielded satisfactory modeldrag-
mentsof Linear Logic: the Multiplicative fragment in
[AJ92b], the Multiplicative-Exponential fragment in
[BDER97], and thenegative fragmenin most other
work. This has been sufficient to modelcalculus-
based programming languages, but is inadequate as a
general account. We will illustrate this problem with
respect to Andreas Blass’s pioneering work on game
semantics below.

We will solve these problems by making a radical departure
from all the formal versions of “games in extensive form”
used to date in Logic and Computer Science of which we
are aware. We shall introduce a “true concurrency” version
of games in which the global polarization is abandorned.
cal decisions are still polarized, in the sense that they are for
one player or the other to make, but globally the two play-
ers act in a distributed, asynchronous fashion. At any given
time, both may be active in different parts of the “game
board”. Moreover, these concurrent games are a strict gen-
eralization of the usual sequential games.

Remarkably, this generalization and apparent compli-

as a sequence of moves. The key feature of this sequentiaf@tion can be formalized in a simple and robust way, ar-

format is the existence of global scheduldor polariza-
tion): in each (finite) position, it is (exactly) one player's
turn to mové. This sequential format turns out to have im-

portant limitative consequences when we wish to use gameJ

semantics to model programs or proofs:

guablymoreelegant and mathematically tractable than the
current formalizations of sequential games. In fact, the key
ideas of the formalization were present in Abramsky and
agadeesan’s “New Foundations for the Geometry of Inter-
action” [AJ92a]. What was missing in that work was the

game-theoretic interpretation of the mathematics, which in

* There is a modelling limitation. Sequential games can ;1 s ggests a more intuitive presentation using closure op-

be used to model sequential computation, but do not
yield models of parallel computation in a natural way.

e There is also a mathematical limitation.
the evident inherent duality in games (interchange

erators.

This basic formalization, combined with a suitable form

Despite of “Classical Linear Realizability”, which also contains a

number of important novel ingredients, leads to a model of

the roles of the two players), sequentiality is an the whole system of Classical Linear Logic—and hence to
obstacle to modelling logics in a classical format, models of Intuitionistic and Classical Logic and various

*Research supported by the EPSRC grant “Foundational Stestt
1All the games considered in this paper, and in the relevierature to
date, are two-person games.

calculi, via the by now well-established interpretations of
these systems into Linear Logic [Gir87, DJS97]. But how
good is this model?



Full CompletenessThe usual notion of completeness for 2 The concurrent games model

a logic is with respect to provability; Full Completeness is

with respect tgproofs As a convenient point of departure, we begin vilass
Let M be a model of the formulaandproofs of alogic ~ gamegBla92]. These have the form

L. Typically this means thaM is a category with structure

of an appropriate kind, such that the formulasCoflenote H A; or Z A;
objects of M, proofsII in £ of entailmentsd + B denote €l i€l
morphisms where eachy; is (co)inductively a Blass game. The idea is
thatin] [, ; Ai, Opponentstarts by playing some I, and
[j : [A] — [B], play then proceeds asity. 3, A; is defined dually, with

Player making the initial mové € I. Thus these games
are trees; at each stage, it is (exactly) one player’s turn to
move—the “global schedule”. Play proceeds as a sequence
of moves tracing a path through the tree. This commitment
to a sequential format forces an interleaving interpretation
of the multiplicatives (analogous to the Expansion Theorem
of CCS), which leads inexorably to the failure of composi-
tion of strategies to be associative, as shown in [AJ92b].
We begin our development of concurrent games with the
»idea that game trees can be viewed as partial orders, in
which z < y means that the positiop can be reached
from the positionz by playing some additional moves. This
is a natural “information ordering” as in Domain theory
[AJ94]. If we add “limit points” corresponding to the infi-
nite branches in the game tree, we obtain a complete partial

and the convertibility of proofs inC with respect to cut-
elimination is soundly modelled by the equations between
morphisms holding ilM. We say thaiM is fully complete
for £ if for all formulas A, B of £, every morphismf :

[A] — [B] in M is the denotation of some prodF of
AF Bin L: f = [I]. Thus the full completeness g#
means that it characterizes “what it is to be a prodf'iin a
very strong sense. JM is defined in a syntax-independent
way, this is a true semantic characterization of the “space
of proofs spanned by.

The notion of Full Completeness was introduced in
[AJ92b], and a Full Completeness theorem was proved for
a game semantics of Multiplicative Linear Logic (with the
MIX rule). This was followed by a series of papers which
established full completeness results for a variety of mod_orderD. . .
els with respect to various versions of Multiplicative Lin- Viewed in these terms, the construction of sums and
ear Logic (MLL) [HO92, BS96, Loa94a, Loa94b]. How- products of games as in Blasg games can be dgscrlbed as
ever, there have been no resuilts for logics beyond the (ver))'ﬂed sumsas far as the underlying domains of positions are

weak) multiplicative fragment of Linear Logic. In this pa- concerned:
per, we make a first significant extension beyond the mul- Dy 4, =D, 4 = (Z Dy,)l.
tiplicative fragment, by proving that the concurrent games ! ' icl

model is fully complete for Multiplicative-Additive Linear
Logic (MALL). MALL is already a much richer system
than MLL, as shown by the much more sophisticated and
complex notion of proof net it requires [Gir95]. Our proof
of Full Completeness is correspondingly lengthy and com-
plex. (We can only give an outline in this extended abstract;
a detailed account is given in a draft full paper [AM98].)
However, we believe that our methods and results will ex-
tend to the exponentials as well, thus yielding a complete
analysis of Linear Logic.

Independently, Girard has obtained a form of Full Com-
pleteness result using a game semantics [Gir98a,b]. Hi
methods, and the details of his results, appear very differ-
ent to our’s. We are not yet familiar enough with his work
to make a detailed comparison.

The structure of the rest of the paper is as follows. In
Section 2, we present the concurrent games model. In Sec
tion 3 we show how MALL proof structures are constructed
from strategies, and in Section 4 we outline the proofs of
the correctness criteria for these proof structures. Finally,
Section 5 gives the main result. (Ax B) x (C x D).

We shall represent strategies as functions on these domains
of positions: f : D — D, where f(z) is the position
obtained fromz: by extending it with whatever moves the
strategy makes in that position. It is then immediate that
f(z) 3 z. Moreover, those positions wheféas no moves
to make (e.g. because “itis not its turn”) are exactlyftke
pointsof f. In the usual way, we require computationally
reasonable strategies to be monotonic and continuous. Fi-
nally, as a useful normalizing condition, we require strate-
gies to bédempotent f2 = f. To understand this, consider
applied tof(x). The only moves made iifi(z) which
were not already made im are those made by itself:

(z) contains no more information supplied by the Oppo-
nent (i.e. the environment) thandid. Hence anything
decides to do af (z) it should have already been able to
decide to do at, and we require thaf(f(z)) = f(z). Of
course, this allows several moves to be made in a block by
a player. This possibility already exists in Blass games, e.g.
Opponent must move twice initially in



An important point is that strategies may not be well- Again, this corresponds to the idea that a strategy for Op-
defined at all positions. In general there are some posi-ponent will firstly choose somg then play according to a
tions that can never be reached by following that strategy.strategy for Opponent ird;. Note that the last case above
To mesh with the requirement that strategies are increasingcovers “unreachable states” fbii; (o). We can then define
functions, we adjoin a top element to the domain of posi- sums by De Morgan duality}",.; A; = ([T,c; A7)*-

tions D, writing this asDT. We represenf being unde- For the strategies for tensor, we define
fined atz by f(z) = T.
In summary, strategies (for either player) are represented Sagp ={0 x 7|0 € Sa,7 € Sp}

as continuous closure operatorsBr, which under mod-
est assumptions o (bounded completeness) is a com-
plete lattice. We can completely specify a game as a struc-

ture (D, S, S*), whereD is the domain of positionsS is . . i . .
( ) P 53 informational independence between Player’s actiond in

the set of legal strategies for Player, afitl is the set of . i
legal counter-strategies, i.e. strategies for Opponent. Thisand inB (cf. [AJ92b]). How Player moves il depends

strictly generalizes Blass games: for such ganfibss the only on the information available i4, and s_,imilarly forB.
domain of finite and infinite sequences under the prefix or- In order to define the counter-strategies for the Tensor

dering corresponding to the paths through the game tree,(and hence the strategies for Par and Linear implication,

and the conventions about who is to play are formalized by and eventua]ly thg morEhlsms n the categ];cory of cofncur;ent
saying that for all € D, eithero (z) = z forall o € S (it games), we introduce the most important feature of our for-

is Opponents turn to move), ex(z) = « for all ~ € S* (it malization: the elegant treatment it affords of composition

is Player’s turn). However, this is a very special case of our of strategies. Euppose firstly th;ate Sﬁandf € f* in
general setting; and we will overcome the problems with a g_ame(D,S,S ). How do we playo off againstr? We

whereo x 7(z,y) = (o(z),7(y)). (This is really smash
product with respect td’; if eithero(z) = T or 7(y) =
T, then the result iST.) This exactly captures the idea of

Blass games precisely by allowing situations in whidth efine
players can move. (o]7) = Y(oo07) =V, (00 k(L)
To do this, we shall interpret the game boards for the = View(Toa)k (L) =Y (ro0).

multiplicatives differently to Blass: by a true concurrency
rather than an interleaving representation. In our setting, The fact that these two least fixpoints coincide follows eas-

this is simply a matter of defining ily from the fact thate andr are continuous closures; in
fact, this is a special case of the construction ofjtie of
Dagp =D 29 5 =Da x Dg, two closure operators. Thys|r) € D is the position we

reach as a result of playingagainstr. The equality of the
two formulas above also shows that this is independent of
all questions about “who starts”.

Now given closure operatorson (D x E)" andr on
(Ex F)T, we want to “compose” them to get a closure
on(D x F)T. We define this as follows:

the cartesian product of domains.

How should the Linear Logic connectives be interpreted
as acting on sets of strategies? We deffhe = 5%,
S%. = Sa, which corresponds to interchanging the roles
of Player and Opponent. Clearly thet+ = A. For prod-
ucts, we define

S]‘L,EIAZ- _ {(Uzll 1) | Viel,o; € SAl} o;7(2,2) = (m1 0 0(2,y), 72 0 T(Y, 2))

h where
where y = (mo0(z,—)|m o7(—,2)).
(oili € I)(.l) = 4 Thatis, given inputirD andF, we playo andr off against
(oili € I)(ini(2)) = ini(oi()). each other irE relative to this input, and obtain their exter-

nal response taking into account their interaction with each
other.

In particular, if o is a closure on(D x E)T, it in-
duces an “action” taking closures @h' to closures o ",

This corresponds exactly to the idea that Player must first
wait for Opponent to choose ane I, and then plays ac-
cording to some strategy fof;.

Sf1.. a, ={ini(0) | i€ ,o € S4} a — a;0, and a “coaction” taking closures di" back to
e ' closures oD, 3 + ;8. E.g. 0;8(x) = m o o(x,y),
where wherey = (w3 0 o(z, —)| ).
in; (o) (L) — iny(o(L)) Now we can define
ini(0)(ini(z)) = 1ini(o(z)) Shep =10 : (Da x Dp)"| Va€ Sa.a;0 €Sk
ini(o)(inj(z)) = T, (i #J)- A VB e Sg.o;8€ 8%}



Again, by De Morgan duality, where E and E* are partial equivalence relationsn the
L N L (stable) closure operators @&h'. We simply adapt the def-
ARB=(A"®B")", A—~B=A"%B. initions given above for the Linear connectives from unary

In particular, predicates to binary relations, and check that they preserve
symmetry and transitivity. I is a game of this form, we
Saop={0:(DaxDp)"| Va€Ssa;0€Sp write o : A to mean thab E 0.
N VBE€Sp.0;8€ 84} We are now in a position to define the categ@tyof

concurrent games. Objects are structlBsE, E*) of a
domain and two partial equivalence relations on stable clo-
sure operators, as already explained, subject to the follow-

ries counter-strategies di to counter-strategies ag. We g condition: ifo : Fandr : E have the same maximal
round out our account by defining the units, which all have fiXPoints, thensE7, and similarly for£*. A morphism

the one-point poset as their underlying domain. For the ffom A to B is a closure operatar such thav : A — B.
tensor unitl, S; = {(L — L)}, while St = {(L Composition is defined as above. Identities are given by:

1), (L~ T)}. For the unit for Plus (i.e. the initial object)
we haveSy = @, S5 = {(L — T)}. The exponentials can

also be defined in our model (the basic ideas are along thel’hey can be understood as “symmetric, bidirectional copy-
lines of [AJ92a]), but for lack of space we will refrain from 5 strategies” as in [AJ92b]. We can then defihas the

doing so. The reader will really understand our model by «aytensional quotient oR”, in which a morphism fromd
checking that composition is associative, and seeing howy, p s a partial equivalence class By 5.

the problems with Blass games simply do not arise in our

setting. Proposition 2.1 £ is ax-autonomous category with all lim-
We are now almost ready to define our category of con- its and colimits.

current games. Two further refinements are needed.

This is a symmetric, “classical” version of the familiar log-
ical relations condition:c’s action carries Player strate-
gies onA to Player strategies of®, and its coaction car-

ida(z,y) = (zVy,zVy).

DiscussionTo motivate the passage to the extensional cat-
Stability Rather than taking all continuous closure oper- egory&, note thatR only has weak products and coprod-
ators as possible strategies, we will impose the domain-ucts. Indeed, the lifted sum which we used to model the
theoretic condition otability [AC98]. (This will turn out additives is non-associative, and we need to quotient out
to be important for our proof of Full Completeness, al- the behaviour at the partial elements in order to obtain the
though we don’t know if it is a necessary condition; it is required structure. This might lead the reader to wonder
deeply related to the “monomial condition” in [Gir95].) But why we bother with the partial elements at all: why not just
what does it mean for a closure operator to be stable? Dework with the maximal elements, which in effect means us-
fine thedomaindomo of a closure operatar on D to be the ing a relational model as in [Loa94b]? In fathe rela-
set of allz € D such thatz(xz) # T. Anoutput function  tional model in [Loa94b] is not fully complete for MALE
for ¢ is a continuous functioif : D — D such that, forall ~ we have an explicit counter-example. Even though the be-
z in the domain obr, o(z) = z V f(z). We say that is haviour of strategies on partial elements is factored oét in
stable if it has a stable output function. (The link between it still plays a crucial role in determining what the strategies
concurrent games and the NFGOI [AJ924] is here; the out-are in the first place. We use it to cut the space of strategies
put functions for the strategies interpreting proofs will be down to thestableclosure operators, and stability allows us
exactly the denotations of proofs in [AJ92a]. Moreover, to capture the causality betweé&nlinks and their contexts
composition of closure operators is “tracked” by the com- which is the key issue in MALL, and which is represented
position of the corresponding output functions, defined asfor example in the boolean weights used in MALL proof
in [AJ92a].) We shall henceforth restrict ourselves to stable nets. In particular, we will find a beautiful correspondence
closure operators. This needs some conditions on the underbetween thdrace of the stable output function for a strat-
lying domains: it suffices to assume that they are boundedegy, and the monomial weights appearing in the proof net
complete, and distributive in a suitable sense. For details,we shall “read back” from the strategy.

see [AC98].
[ ] The model of MALL The fragment of Linear Logic we

Extensionality To ensure that we get a genuine model of will consider in this paper consists of formulas built from
Linear Logic in which all the required equations hold, we propositional atomsY and their negations(+ with the
adapt classical ideas from realizability to our setting. Rather binary connectives® (Tensor),® (Par), & (With) and
than taking a game to b, S, S*), whereS, S* are sim- @ (Plus). We refer to this fragment as MALL. A se-
ply predicates picking out the sets of strategies and counterquentt Aj,..., Ax will be interpreted as the formula
strategies, we will take games of the forf®, E, E*), AR B A



Since proofs of propositional formulas should bei- Again, the only problem with this condition is proving clo-
form over all substitution instances, we will treat propo- sure under composition; and again, once Full Completeness
sitional atoms as variables, so that in effect we are view-is proved, we obtain closure under composition as a corol-

ing propositional logic as thdl' fragment of second-
order propositional logic. In a by-now standard fashion
[BFSS88], a MALL formula in the propositional atoms
X1,...,X, can be interpreted as a mixed-variance functor

F:(R®xR)" — R.

The set of such functors will form the objects of a cate-
gory M([n], and collectively we will obtain an indexed
autonomous categoty! with all limits and colimits. This
will provide the right algebraic structure to model proposi-
tional MALL.

We define the morphisms iv[n] in two stages. Firstly,
adinatural familyfor a functorF' in M{n] is a family of
strategies(o z) o~ indexed byn-tuples of games such

that, for all A, U‘A'EF(A')O'A', and moreover for all tuples of
strategies’: A — B,

o1 F(idA', 7_") =03; F(F, idﬁ).
We define a peEr for each such functor by
(O'A')EF(TA') < \7//_1’ UA'EF(A’)TA"

and similarly forE}.. We then define morphisms i [n]

as partial equivalence classes of families of (stable, sym-

metric®) strategies, generalizing what we did r Defin-

lary.

Petri gamesWe would like to give a very concrete decrip-
tion of the (dinatural) strategfr] interpreting a cut-free
MALL proof 7 of the formulal’ in our games model. (This
can be related formally to our abstract domain-theoretic de-
scription using the theory developed in [NPW81].) The first
step is to see each position of a game as the state of a Petri
net. Of course, this is only possible for very special games,
which we callPetri gamesand define below.
Formally, a Petri net is a quadrupleV
(P, T, pre, post) where P is the set ofplacesand T
the set oftransitions To every transitiont is associated
two nonempty setre(t) C P of pre-conditionsand
post(t) C P of post-conditionsA statein a Petri netV is
a subset ofP. States are related by transition relations: We
write 2 —5» y whenz = z + pre(t) andy = z + post(t)
for some stater and transitiont, where+ means disjoint
union. A statey is accessible fronx, which we write
z <y 1y, when there exists a sequence of transitions

t1, . tn SUCh thaty L5 -+ Lny gy,
A Petri net is calledinfoldedwhen

1. pre(t) is a singleton for every € T,

2. post(t1) N post(ta) # 0 impliest; = to, for every
t1,to €T.

ing the various connectives and constructions for the LinearGraphically, this means that the patterns (1) and (2) are for-

types pointwise on the functors and familiesAd[n], we
obtain ax-autonomous category with all limits and colim-
its.

There is a fine point here; as is well known, dinatural-
ity is not in general preserved by composition. However,
after we have proved Full Completeness—which will not

bidden, in other words that the Petri f€tlooks like a for-
est.

(6]

OO

(@)

use the assumption that dinaturality is preserved by compo-gy restricting to unfolded Petri nets, the accessibility rela-

sition (!)— then by pulling back to syntax it will be easy

tion becomes an order. We callr@ot any placep of the

to see that (for definable functors) closure under composi-ynfolded Petri netV such thatp does not appear in any

tion does hold, and hence eadH[n] (restricted to defin-

able functors) is indeed a category. We could avoid this log-

ical detour by using a stronger property than dinaturality,
namely Reynolds-style relational parametricity [BFSS88],
for which closure under composition can be proved di-
rectly; however, this would complicate the description of
the model, and dinaturality is sufficient to prove Full Com-
pleteness.

Another hypothesis we will need to prove Full Com-
pleteness is that the closure operators syemetric in
the sense of having output functiofissatisfying f* = f.

2By symmetric we mean a closure operator having an outputiimc

f satisfyingf3 = f.

post(t), t € T. We single out the staté y C P consisting
of all root places ofV, and call a state of N accessible
when it is accessible from that special statg. Now, the
accessibility relatior< y defines a domai  on the set
of accessible states @f. We calla Petri gameany game
A whose domain of positionB 4 is of the formD y for an
unfolded Petri nelv, and callV theboardof A. Intuitively,
a Petri gamed with boardV has_L y as least position, and
every stater of N reachable by a sequence of transitions
Ly 2 ... 22 2 as a position.

Now, we show how to construct the board4f B and
A& B given the board&v4 and Ng of A andB. For the
multiplicatives,Nagrs = N 425 5 is the Petri net obtained



by juxtaposing the Petri netd¥, and Ng. In particular,
LN4gs iSthe unionofly, and Ly,.

Na Ng

Na® B

For the additivesNag 5 = Nagp IS the juxtaposition of
N4 and Ng with a new placep, and two new transitions
t1ese @ANdt,igne With pre-conditions:

pre(tiese) = pre(trigne) = {P«}
and post-conditions:
Post(tiese) = Ln, Ppost(trignt) = Lng

Graphically

N
P, A& B

For instance, given two Petri gaméds and A, with boards
Ny, andNy,:

the Petri gameB = ((4; ® A2)& (A1 ® As))B AL R Ay
has board:

(AL® Ay) & (A® Ay)) B AlL ] A2L

where the least positiah g is indicated by the three tokens.

The concrete interpretationEvery formulal’ on the atoms
X1, ..., Xn, is interpreted as a mixed-variance functor

[T]: (R® x R)™ — R.

and every proofr of I" defines a strategfr] ; of I'(4, A)

for every tupIer = A, ..., A, ofgamesink. In the partic-
ular case of Petri games;, ..., A,, the strategyr] ; plays

on the boardV,. ; ; associated td’(4, A) and defined
from the boardgV,,’s of the A;’s as in the previous para-
graph. Let us describe briefly how this strategy plays on
Nrga gy . . |
The first step is to consider that the preois translated
as a proof-netwith additive boxes, see [Gir87]. Observe that
every placep of Ny, ;7 z, is associated either to an additive
link L of T, or to the residual of a place among tg,’s.
In the first case, each of the valuations “left” and “right”
of L corresponds to a transitio,, andtf;,, with pre-
condition{p}.

By_ _definition, every positionr € DF(X,A) induces a
transition sequence

t1 tn
INpggy — T (1)

which may not be unique, yet induces a partial valuatipn

of the &-links of I which does not depend on the sequence
(1): The valuation assigrsft or right to a&-links L when
one of the transitionsl ;, or tfight appears among thg's

in the sequence (1).

Once this partial valuation,, of the &-link of I" is com-
puted fromz, a new proof-net, with additive boxes is con-
structed by removing every additive boxmofvhose princi-
pal door is &&-formula assigned a value hy;.

At this point, the strategy = [r] ; determines its an-
swero(x) from the information it reads im,, considering
every remaining additive box i, as a “black box” with
no possibility to look inside.

Observe that the proof-net, verifies the two following
fundamental properties:

1. every®-link visible in 7, (i.e. not in a black box) is
eitherleft or right,

2. every visible literal ofr, is related to another visible
literal with an axiom link.

Now, the positiono(z) is defined as the least positign
abovez in Dr 1 4 such that:

1. the valuation of everg-link in 7, appears iny,

2. given an axiom link, the position on one side is the
same as the position on the other side (concurrent
copy-cat).

For instance, the only proaf of formula
(X1 ® X2)& (X1 ® X2))B X3 X5

is interpreted as a dinatural stratefyy] whose instance
o = [n]; on the Petri gamesl = A;, A, (see previ-
ous paragraph) is a strategy Bf = ((4; ® A3)&(4; ®
A2))® Af% Af, which plays as below:

E?Hwiw



is best seen as a formulawhere occurrences of; (resp.
> Y;+) associated to are replaced by} (resp.(Y;")").
E %ZZ 2 %g Let m be the number of literal occurrencesIin All

through this section, we consider the formIlilannotated in
3 Proof-structures from strategies {1, ...,m} in such away that each indéappears to the left
of the indexi + 1. Given this “canonical” annotation, two
functionsy : {1,....,m} — {1,...,n}ande: {1,....m} —

In this section, we construct the proof-structure asso- S O . ,
{+,—} indicate which literal the index annotates:X,

ciated to a dinatural family for I'. A technical lemma ,

(lemma 3.3) requires to restrict dinaturality to the category Whene() = +, and(yﬁi))l whene(i) = —.

of civil games, defined as follows. A strategy: A is

civil when for everyr : AL, (o|r) is notT. A game 3.1 The multiplicative and MaLL fragments

A = (Da,E4, E%) is civil when it contains a civil strat-

egy and a civil counter-strategy. A civil gametatal when Starting with the case of a multiplicative formula we

(o|7) is maximal for everys : A andr : At. Thetwo  construct the multiplicative proof-structu®, associated

classes of civil and total games are closed under the MALL to theC-dinatural familyo. This construction does not re-

constructse, 3, @, & and(—)*. Moreover, a strategy of  quire any of the game-theoretic properties yet, and we sim-

A® Bis astrategy oA® B whenA andB are total. ply follow the steps of R. Loader who carried out the con-
A C-dinatural family for a functof” in M(n] is defined  struction in the relational model, see [Loa94b.

as a family of strategie§ ;) 7. indexed by tuplest =

Ay, ..., A, of civil games such that, for all € C™, o ; : Lemma 3.2 There exists a fixpoint-free involuti

T'(4, 4), and moreover {1,...,m} — _{_1,...,m} such that for any tupIeA =
e Ay, ..., A, of civil games, the set of maximal fixpoints of

o4 T(idy, 7) = 05 1(7, id). g4is

for all tuple?_: Tly ey Th (_)f m_orph_isms:—,- :A; — Bjin {(@1, s Tm) | @5 = 3405 forall 1<i<m}

C. Such &-dinatural familys is uniformwhen the closure

operatomw ; depends only on the domai,; for1 < j < We suppose now that the formulais constructed from

n. The following lemma ensures that every dinatural family x,, ... X,, andY;*, ..., ¥;.- with the connectives), 8 and

o restricts to a uniforng-dinatural family. @®. We associate &-free proof-structure te by reducing

Lemma 3.1 (uniformity) Leto be a dinatural family and ~ that problem to the multiplicative case. _

Abe atupled, ..., A, of games. The strategy; does not By duality, a total valuatiom of the ©-links of I' is also

atotal valuationw of the&-links of I't. Thus, the valuation

depend on the pet84, andE% , only on the domainB 4, . _
’ v induces a functoF', : (C°* x C)» — C and a natural

We fix in sections 3.1, 3.2 and 3.4: transformationinj}, : I', — I defined as:
e a formulal’ built from X, ..., X,, andY:, ... Y- )
with the connectives, % , @, &, T, = ("))t inj, = (proj, )*
¢ a uniformC-dinatural familyo for the functorT in . ) o .
Min). The main result of the section (factorization) implies with
lemma 3.2 that the uniforr@-dinatural familys describes
Every valuatiorv of the &-links of I" defines a MbLL for- a MeLL proof-structure.

mulaTl',, also interpreted as a functor.w[n]. We leave to
the reader the inductive definition of the associated natural
transformation

jLemma 3.3 (factorization) Given aC-dinatural family o
for the &-freeT’, there exists a valuation of the®-link of
projl :T — T, I" such that the morphism; factors uniquely as
using the projection maps; : A&B — A andmy :
A&B — B in R. Composing th&-dinatural familyo 1
with projl defines a-dinatural family for the&:-freeT,.
It is natural then to describe tltedinatural familys in the
special case of a MLL formulaT.

We need a few notations. Aannotatedormula is a pair
(T, index) consisting of a MALL formuldl and a one-to-  PROOF We take the total gamé& = A+ with domain{ L}
one functionindex associating an integérto every occur-  and playo x off against the counterstrategy — z). The
rence otX; andeL inT'. An annotated formulél’, index) maximal element we obtain as a result defines the valuation

..
Tz L (niy) g g o

[y(4,A) ——T(4,4) ()

at every instancef of civil games. Moreover, the famity
for I, defined in (2) is uniform an@-dinatural.



v. We then prove factorization (2) at every instance by es-

tablishing that(injl) ; 5 is a split mono wherd and B
are tuples otivil games. This is where the restriction from
dinaturality toC-dinaturality appears in the proof. ]

3.2 Notations

Given an instance oK (resp. Y;") in the annotated

formulal’, and tuplesd, B of games, we associate to any
elementr € D4, (resp.xz € Dp;) the corresponding ele-

. ; r
ment(X; — x)l;f’g (resp.((Y;5)" = x)g’g) of Dr 4 5 as
follows, (the definition by induction is similar fc(inL)")):

i xi [ = if(i,5) = (5
(XJ"_”:)E,E_ 1 otherwise

(Xima) s = (Xim o)y

(Xim2) s L) if XiisinTy

| (L (X)) if XiisinD
: I'1l2 i T &T2
Xy a)gs =& 55

(inl(Xiw 2)% 5)1 if XiisinT,
| Gnr(Xie o)L i XiisinTy

The definition of(X} m)gg is easily adapted to asso-
ciate a prime elemer(Z — 1eft)}§ of Dy z 5 to the
valuation(L — left) of an additive linkL of I'. The base
case of the induction is:

' LT .
(L~ left)A},B ?=(inll),

The prime element(L right)%g corresponding to
(L — right) is defined similarly.

To every partial valuation of the&-links of I', to every
m-tupled = ay,...,a,,, @andg = Sy, ..., B, Of closure op-
eratorsy; : Dgw) andg; : DEW), we associate a closure
operator

r T
I—a;ﬁ-lv : DF(K,E)
as follows: L
X; ;i)'
°|—04:m(aj = a;and[a, By’ =.,B,~, .
e Lettingv; andvs be the respective restrictionsoto I'y
andly:

o, 8159 72 = [, 8152

is equal to the smash product

[o, B151 % [, B2

[a, B151%F2 0 1+ 1,inlz s inlfa, B]L12,

inrz v inr[a, B]522.

Whenv does not assign a value to the réefink:

[, B151%12 2 (2,9) = (2,9)
Whenwv assigns the valueeft to the root&-link:

[a, 15172 0 L+ inlfe, f151 L,
inlz — inlfa, B]L1x,

inrx — T.
Whenv assigns the valueight to the root&-link:

[‘a,lg'lgl&r2 1l inrl-a’ﬁ]EZQL,
inley — T,
inrz — inr[a, 515393

'I;he mgtivation for this construction is that givertuples
AandB of total games, and total valuationw, the closure
operator[a, 8]} is a strategy of'(A, B)1 when thea;’s

’ H . 1 . 1 -
andg;’s are strategies; : AW.), Bi : BW) foralll <i<
m.

3.3 MALL proof-structures

We recall the definition of a MALL proof-structure in
[Gir95]. A proof-structured consists of:

1. aset of formula occurrences,

2. a set of links; each of these links takes its premise(s)
and conclusion(s) among the formula occurrences of
0;

3. for each formula occurrencé of ©, a weightw(A),

i.e. a non-zero element of the boolean algebra gener-
ated by the eigenweighis, ..., p, of the &-links of
()

satisfying the following conditions:

1. each formula occurrence is the premise of at most one
link and the conclusion of at least one link

2. if Ais aconclusion 08, thenw(A4) =1,

3. if w is any weight occurring i®, thenw is a mono-
mial of eigenweights and negations of eigenweights,

4. if epr.w is any weight occurring i®, thenw C w(L),

5. w(A4) = > w(L), the sum being taken over the set of
links with conclusionA. It is required here that the
sum is disjoint.

6. w(L) # 0, moreover, ifL is any non-axiom link, with
premisesA (or) B then



o if Lisany® or® , thenw(L) = w(4) = w(B),
o if Lis®y, thenw(L) = w(A),
o if Lis@®,, thenw(L) = w(B),
o if L is a&-link, thenw(A) = w(L).pr and

w(B) = w(L).~pr

Our condition 4 is equivalent to the requirement appearing

in [Gir95] that for any element of the boolean algebra gen-
erated by the weights occurring B, and any&-link L,
w.~w(L) does not depend apy, .

3.4 Main construction

We associate an event structieeNTr to the formula
I" canonically annotated. Sa; is a tree of®, ®, % , &-
links and MALL formulas, with the formuld@ at its root,
the literalsX} and (Y;-) at its leaves, and every path an
alternating sequence of formulas and links.

If we replace every subtre@(A, B) by two subtrees
®1(A) and@,(B) connected to the same ancestor, the re-
sulting treeTREEr is labelled with®, ® , @1, @3, &-links
and MALL formulas (each literal annotated). Wodein
TREEr means either a link or a formula in the tree. Nodes
are ordered by the tree-nesting ordering. atom linkin
TREEr is @ 2-element seftX ', (Y;+)™} of annotated liter-
als inTREEr. An additive boundary is &-link or a formula
A® Bin TREEr.

% The event structureveENTr is defined as follows:

1. the events are the nodes and axiom linksre Er,

2. e < e’ whene ande’ are nodes andnestse’, or when
e is a node and’ is an axiom link containing a literal
nested by, ore ande’ are the same axiom link.

. e##e’ whene ande’ are nodes andA ¢’ is an additive
boundary, whem is a node and’ is an axiom link con-
taining a literalX } such thae# X, whene ande’ are
axiom links whose intersectionn e’ is singleton, or
whene ande’ are axiom links containing incompatible
literals.

Observe that every maximal state BWENTr describes a
multiplicative proof-structure.
The equivalence relatioa: relates two nodes afREEr

when there is a path between them that does not cross an

additive boundary. More formally, it is the least equivalence
relation on the events &fvENTr such that:

e [ = AwhenA isaformulapremise af not a&-link,
e A = L whenA is the conclusion of &, % or &-link
L.

In particular, every axiom link is the only element of its-
class.

% Let Z be the total game associated based on the flat do-
main of integers with strategies lL. — n), n € Z. Let

75 beZB 7. This instanceZ, will play a particular role

in the construction of the proof-structure corresponding to
o. Every prime element of the form

. . T
(X8 (i, 1))

7, or ((Y]L)n

. r
= (J_, 22))22’22

is called an input ofD
the form

I'(Zs,75) and every prime element of

i . r ; . r
(X' = (%12))22,22 or (V)" = (i2, 1))z, 7,
an ogtput OfDF(Zz_,Zg)' _ .
Given a valuatiorv of the &-links in T, the closure op-

T
eratorry, on DF(Z 72) is defined as

Yo = |-047 ﬂ‘lg

(herel" is considered canonically annotated) with the strate-
giesa; : Zoandp; : Zi forall1 <i < m:

ai:(z,y) = (@Vi,y) Bi:(zy) —~ (z,yVi)
Note thatv, is a counter-strategy dT(Zz,Zg) when the
valuationw is total. Moreover,

Lemma 3.4 (stability) The map +— (JZ2|%) from valu-
ationstoDy. 3, 7, is stable.

PROOF The proof relies heavily on the connection between
our model and NFGOI, the definition of stable closure oper-
ators, the fact that the category of domains and stable maps
is cartesian-closed, and finally the choice of thés and

Bi's u

% We introduce twdlinear functionsevj" and vy that
associate a state &VENTr to any element oD

. . T(Za,Z2)"
These functions are defined as follows:

e | is sentto the union of the:-class of the conclusion,

o for L &, the prime (L — left) .7, 1S sent
to the ——class of L's first premise, and the prime
(L»—)rlght)z%% to the =-class of L's second
premise,

for L = @, the prime(L — 1eft) .7, IS sentto the

=-class of the correspondlrwl—hnk ‘and the prime
(L~ rlg;ht)Zz 7, Is sent to the=-class of the corre-
sponding®,-link,

r
(L,d2))5 for an indexis
of some literal(Y;")* is sent b)Ev;r 0 the axiom link

(X, (Yjh)i},

the output prime{X]’.1



¢ the output primeé(YjL)"1 — (ia, J_));%22 for anindex
i» of some literalX ;* is sent byEvy. to the axiom link
{07, X7,

e any other prime is sent to the empty state.

The following (stable) functioRF} associates to any
partial valuatiorv of the&-links inI" a state inEVENT:

PRFS :v EV'{(JZJ%)

% The proof-structur®, is constructed as follows:

1. its formula occurrences (resp. links) are the elements

of tr(PRF}), thetrace® of the stable functiorrF}, of

the form(e, v) wheree is a formula occurrence (resp.

a link) of EVENT. Every nodde, v) is labelled ag,

2. the weightw(e, v) is computed from the valuatianas
follows:

w(e,v) = [[ P * [] Pz,

where the first productis taken over teinks (L, v1)
such that extends, + (L — left), and the second
product over the&-links (L, v2) such thatw extends
ve + (L +— right).

3. aformula occurrencgA4, vy ) is the premise of a link
(L,v2) whenA is a premise of. in " andwv; extends
V2,

4. aformulaoccurrended, v1) is the conclusion of a link
(L,vy) when A is a conclusion of in " andwv, ex-
tendsv; .

For lack of space, we omit the lengthy verification that
Lemma 3.5 O, defines a MALL proof-structure.

We also omit the proof that the alternative definition3pf
as the trace of

PRF,

o

:v > EVp (UZ2|%)

leads to the same proof-structure when the strategyis
symmetric.

4 Correctness criteria
4.1 MALL proof-nets

Let ¢ be a valuation of thé:-links of a proof-structure
0. ¢ induces a function (still denotegd) from the weights
of © to {0, 1}. Theslice p(0O) is obtained by restrictin®
to the formulasA verifying ¢ (w(A)) = 1, with the obvious
modification for the remaining-links: only one premise is
present.

A switchingof a proof-structur® consists in

S|t is here that stability is used in our proof.

1. the choice of a valuatiops for ©,

2. the selection of a choie®(L) € {I,r} for all % -links
of ps(O)

3. the selection for eacks-link L of ps(©) of an occur-
renceS(L), thejumpof L, depending omy, in ps(O).
There is always aormalchoice of jump forl., namely
the premiseA of L such thatps(w(A4)) = 1. Any
other choice is callegroper.

A normal switchings a switching with no proper jump.

Definition 4.1 LetS be a switching of a proof-structur@.
We define the grapBs as follows:

1. the vertices oBs are the occurrences and links of
s(0),

2. for all links of p5(©), we draw an edge between the
link and each of its conclusions,

3. for all ®;-links of ps(©), we draw an edge between
the link and its premise,

4. for all ®-links ofps(©), we draw an edge between the
link and its left premise, and between the link and its
right premise,

5. for all B -links L of ¢s(0), we draw an edge be-
tween the link and the premise (left or right) selected
byS(L),

6. for all &-links L of p5(0©), we draw an edge between
the link and the jumis (L) selected bys.

A proof-netis a proof-structur® such that for all switch-
ingsS, the induced graph is acyclic and connected.

4.2 Acyclicity

We prove in this section and the next that the proof-
structure®, defined in section 3 satisfies the two condi-
tions to be a proof-net: acyclicity by exhibiting a deadlock
on the assumption of a cycle, connectedness by propagating
the “error” valueT around the net on the assumption that
there is more than one connected component.

We fix in subsections 4.2 and 4.3:

e a formulal built from X7, ..., X,, andY*, ...
with the connectives), B , @, &,

e a symmetric dinatural family- for the functorT in

YJ_

’Tn

Given two total gamesl and B, and two strategies : A+
andr : B1 such thaw is stable as a functioP4 — D],
we construct the stratedy > 7) : (A ® B)* as follows:

T fox=Torre=T
(z,y) =« (oz,7y) if ox # T isnot maximal
(cz,y) otherwise



Let T' be any set of disjoin®-links in the formulal’, v a
total valuation of thekz-nodes ofl", strategiesy; : A; and
fi : B;- stable as function®4, — D, andDp, — DJ,
for all 1 <4 < m. The inductive definition of the strategy

|—CM, ﬁ-l E,T : F(Aa B)J_

is similar to the definition of , 8]} : T'(4, B)*, except
for the case of @-link in T":
o letting v; andw, (resp.T; andT3) be the respective re-

strictions ofv (resp. ofS) toI'; andl's:

if@isinT
otherwise

o F®A _ [, B, 7 B [, 81,2 1,
[ Bl {rﬂmﬂxmmwT

For instance[a, A1y, = [a, 81, r whenT is empty.

Lemma 4.2 Every switching 08, is acyclic.

PROOF (sketch) For lack of space, we omit the nice graph-
theoretic reasoning which shows that, given a switckfing
of ©,, every potential cycle in the “switching” grag®,, ) s
may be transformed into an “oriented” cydeof the fol-
lowing form (oriented means that all jumps are headed in .
the same direction):

ax

. : ;x ax . ’ ;1><
& \ /—\ & \
®/ ® ®/ ®

Let us label®; each®-link appearing as a “rebouncing”
tensor in the figure®o, ..., ®nv_1. We have to consider

two possible cases for atye {0,..., N — 1}:
ax /;ax
/—\ &/L \ (3)
&, ® /

k+1 ® 11
In the first case, each of the I|teraJSJ1 and YL)’2 form-
ing the axiom link is nested by one &f;, or ®x1. We
definepoy, (resp. par+1) as the input prime (resp. out-
put prime) of the literal nested by, (resp. ®g+1).
the second case, nests the&-link L, ®+1 nests one of
the literals forming the axiom link, and the jump frafnto
the axiom link connects the cycle. We defing. 1 as the
output prime of the literal nested by,1, andpsy, as the
prime (L I:|)Z ,» WhereQl is the valuation off. (1eft
orright) compauble with the valuation associated te.
We prove that the cyclé does not exist by constructing a
strategyr : I'(Z», Z»)* whose interaction against;_ does

not reach a maximal element (i.e. deadlocks), contradicting
the totality ofF(Zz, 722). CallingT the sef{®o, ..., ®n—_1}

the strategy is defined asa, 31, - where they;'s andg;’s

are defined as in section 3.4. Suppose thitan element

of DF(ZQ,ZZ) verifying
2N -1}, pp £z < (fyv|022).

Observe that evenye+1 is an output and evemppy, an input
or the prime associated to the valuation ofzdink of T'.
This implies that forald < k£ < N — 1, pag+1 £ 72 and
par L 07, We then deduce from the construction@f
and the definition of- that:

_1y, {

We conclude thagr|o; ) is not maximal.

Vk € {0, ...,

Dk ﬁ 0221’. S <VU|022>7

VEk € {0,...,2N
{ pr £ 78 < (Woloz,)-

4.3 Connectedness

Lemma 4.3 Every normal switching ad,, is connected.

PROOF (sketch) By projection, the lemma reduces to prov-
ing that every MpLL proof-structure defined from the se-
mantics has connected switchings. We restrict ourself to
the multiplicative case here, for lack of space. Although the
adaptation of the proof to ILL is not entirely straightfor-
ward, the essence of the proof appears below.

Let (0 4) zex~ b€ @ dinatural family for a multiplicative
formulaT interpreted inM[n], © = O, the correspond-
ing proof-structure, and a switching such thads is non-
connected.

Composingos with the natural transformationd ®
(BB C) — BB (ARC)andA®(BB C) — CB (A®
B) transforme into a dinatural familyv for a functorY
corresponding to the switching. Here,Y is a L-fold % -
product of®-products of literals, and the proof-structure as-
sociated ta by lemma 3.2 is homeomorphic to the “switch-
ing” graph®s.

Define the gamel = A+ with D4 the flat domain of
integers, and strategies the closure operdtorsy z V i),
for ¢ any integer, withE4 the equality on them. Observe
that A is not total, not even civil. We use the notatidff*
or A%+ to mean respectively the-fold ® or % -product
of a gameA.

For every pair of integers > 1 andlV, there is a strategy

pk; of A + whose set of maximal fixpoints is exactly:

DIRERY

Now, suppose tha®s is disconnected, and that(A, A)
is the % -product of A®+1 % ... 3 A®*.  We may assume

{ T1y---y X
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