
Semantics of Interaction
Samson Abramsky

Abstract
The “classical” paradigm for denotational semantics models data types as domains,
i.e. structured sets of some kind, and programs as (suitable) functions between do-
mains. The semantic universe in which the denotational modelling is carried out is
thus a category with domains as objects, functions as morphisms, and composition
of morphisms given by function composition. A sharp distinction is then drawn
between denotational and operational semantics. Denotational semantics is often
referred to as “mathematical semantics” because it exhibits a high degree of math-
ematical structure; this is in part achieved by the fact that denotational semantics
abstracts away from the dynamics of computation—from time. By contrast, op-
erational semantics is formulated in terms of the syntax of the language being
modelled; it is highly intensional in character; and it is capable of expressing the
dynamical aspects of computation.
The classical denotational paradigm has been very successful, but has some

definite limitations. Firstly, fine-structural features of computation, such as se-
quentiality, computational complexity, and optimality of reduction strategies, have
either not been captured at all denotationally, or not in a fully satisfactory fashion.
Moreover, once languages with features beyond the purely functional are con-
sidered, the appropriateness of modelling programs by functions is increasingly
open to question. Neither concurrency nor “advanced” imperative features such as
local references have been captured denotationally in a fully convincing fashion.
This analysis suggests a desideratum of Intensional Semantics, interpolating

between denotational and operational semantics as traditionally conceived. This
should combine the good mathematical structural properties of denotational se-
mantics with the ability to capture dynamical aspects and to embody computational
intuitions of operational semantics. Thus we may think of Intensional semantics
as “Denotational semantics + time (dynamics)”, or as “Syntax-free operational
semantics”.
A number of recent developments (and, with hindsight, some older ones) can

be seen as contributing to this goal of Intensional Semantics. We will focus on the
recent work on Game semantics, which has led to some striking advances in the
Full Abstraction problem for PCF and other programming languages (Abramsky
et al. 1995) (Abramsky and McCusker 1995) (Hyland and Ong 1995) (McCusker
1996a) (Ong 1996). Our aim is to give a genuinely elementary first introduction;
we therefore present a simplified version of game semantics, which nonetheless

1

contains most of the essential concepts. The more complex game semantics in
(Abramsky et al. 1995) (Hyland and Ong 1995) can be seen as refinements of
what we present. Some background in category theory, type theory and linear logic
would be helpful in reading these notes; suitable references are (Crole 1994)(Gir-
ard et al. 1989)(Girard 1995) (which contain much more than we will actually
need).

Acknowledgements I would like to thank the Edinburgh interaction group (Ko-
hei Honda, Paul-André Melliès, Julo Chroboczek, Jim Laird and Nobuko Yoshida)
for their help in preparing these notes for publication.

Contents

1 Game Semantics 3

2 Winning Strategies 14

3 Polymorphism 19

4 Relational Parametricity 26

Notation

If is a set, is the set of finite sequences (words, strings) over . We use
, , , to denote sequences, and , , , , , to denote elements of these
sequences. Concatenation of sequences is indicated by juxtaposition, and we won’t
distinguish notationally between an element and the corresponding unit sequence.
Thus denotes the sequence with first element and tail .
If then is the unique monoid homomorphism

extending . We write for the length of a finite sequence, and for the th
element of , .
Given a set of sequences, we write , for the subsets of even- and

odd-length sequences respectively.
If and , we write for the sequence obtained by deleting all

elements not in from . We write if is a prefix of , i.e. for some
.
We write for the disjoint union of sets , .

is the set of prefixes of elements of . is prefix-closed if
.

1 Game Semantics
We give a first introduction to game semantics. We will be concerned with 2-
person games. Why the number 2? The key feature of games, by comparison with
the many extant models of computation (labelled transition systems, event struc-
tures, etc. etc.) is that they provide an explicit representation of the environment,
and hence model interaction in an intrinsic fashion. (By contrast, interaction is
modelled in, say, labelled transition systems using some additional structure, typ-
ically a “synchronization algebra” on the labels.) One-person games would degen-
erate to transition systems; it seems that multi-party interaction can be adequately
modeled by two-person games, in much the same way that functions with multiple
arguments can be reduced to one-place functions and tupling. We will use such
games to model interactions between a System and its Environment. One of the
players in the game is taken to represent the System, and is referred to as Player or
Proponent; the other represents the Environment and is referred to as Opponent.
Note that the distinction between System and Environment and the corresponding
designation as Player or Opponent depend on point of view:

If Tom, Tim and Tony converse in a room, then from Tom’s point
of view, he is the System, and Tim and Tony form the Environment;
while from Tim’s point of view, he is the System, and Tom and Tony
form the Environment.

A single ‘computation’ or ‘run’ involving interaction between Player and Oppon-
ent will be represented by a sequence of moves, made alternately by Player and
Opponent. We shall adopt the convention that Opponent always makes the first
move. This avoids a number of technical problems which would otherwise arise,
but limits what we can successfully model with games to the negative fragment of
Intuitionistic Linear Logic (This is the , , , , fragment).
A game specifies the set of possible runs (or ‘plays’). It can be thought of as a

tree

where hollow nodes represent positions where Opponent is to move; solid nodes
positions where Player is to move; and the arcs issuing from a node are labelled
with the moves which can be made in the position represented by that node.
Formally, we define a game to be a structure , where

is the set of moves of the game;

is a labelling function designating each move as by
Player or Opponent;

, i.e. is a non-empty, prefix-closed subset of , the
set of alternating sequences of moves in .

More formally, is the set of all such that

i.e.

Thus represents the game tree.
For example,

represents the tree

We are using games to represents types (objects in the semantic category). A
game can be seen as specifying the possible interactions between a System and its
Environment. In the traditional interpretation of types as structured sets of some
kind, types are used to classify values. By contrast, games classify behaviours.
Programs will be modelled by strategies, i.e. rules specifying how the System
should actually play.
Formally, we define a (deterministic) strategy on a game to be a non-empty

prefix-closed subset (i.e. a sub-tree) , satisfying:

(1.1)

To understand this definition, think of

as a record of repreated interactions with the Environment following . It can be
read as follows:

If the Environment initially does ,
then respond with ;

If the Environment then does ,
then respond with ;

...
If the Environment finally does ,

then respond with .

This can be seen as generalizing the notion of graph of a relation, i.e. of a set of
ordered pairs, which can similarly be read as a set of stimulus-response instruc-
tions. The generalization is that ordinary relations describe a single stimulus-
response event only (giving rules for what the response to any given stimulus
should be), whereas strategies describe repreated interactions between the Sys-
tem and the Environment. We can regard as saying: ‘when given the
stimulus in the context , respond with ’. Note that, with this reading, the con-
dition (1.1) generalizes the usual single-valuedness condition for (the graphs of)
partial functions. Thus a useful slogan is:

“Strategies are (partial) functions extended in time.”

(cf. interaction categories (Abramsky, Gay and Nagarajan 1996b)).

Notation 1.1 Firstly, means:

Also, we write , and then by (1.1) we have a
well-defined partial function, which we shall also write as ():

Example 1.1 Let be the game

This game can be seen as representing the data type of booleans. The opening
move is a request by Opponent for the data, which can be answered by either
or by Player. The strategies on are as follows:

The first of these is the undefined strategy (‘ ’), the second and third corres-
pond to the boolean values and . Taken with the inclusion ordering, this ‘space
of strategies’ corresponds to the usual flat domain of booleans:

Constructions on games

We will now describe some fundamental constructions on games.

Tensor Product

Given games , , we describe the tensor product .

We can think of as allowing play to proceed in both the subgames and
in an interleaved fashion. It is a form of ‘disjoint (i.e. non-communicating or

interacting) parallel composition’.
A first hint of the additional subtleties introduced by the explicit representation

of both System and Environment is given by the following result.

Proposition 1.1 (Switching condition)
In any play , if successive moves , are in different subgames (i.e.
one is in and the other in), then , .
In other words, only Opponent can switch from one subgame to another; Player

must always respond in the same subgame that Opponent just moved in.

To prove this, consider for each the ‘state’

We will write for even parity, and for odd parity, since e.g. after a play of
even parity, it is Opponent’s turn to move. Initially, the state is .

Note that O can move in either sub-game in this state. If O moves in , then the
state changes to . P can now only move in the first component. After he
does so, the state is back to . Thus we obtain the following ‘state transition
diagram’:

We see immediately from this that the switching condition holds; and also that
the state can never be reached (i.e. for no is).

Linear Implication

Given games , , we define the game as follows:

when
when

This definition is almost the same as that of . The crucial difference is the
inversion of the labelling function on the moves of , corresponding to the idea
that on the left of the arrow the rôles of Player and Opponent are interchanged.
If we think of ‘function boxes’, this is clear enough:

Input Output

On the output side, the System is the producer and the Environment is the con-
sumer; these rôles are reversed on the input side.
Note that , and hence , are in general quite different to ,

respectively. In particular, the first move in must always be in ,
since the first move must be by Opponent, and all opening moves in are labelled
by .
We obtain the following switching condition for :

If two consecutive moves are in different components, the first was
by Opponent and the second by Player; so only Player can switch
components.

This is supported by the following state-transition diagram:

Example 1.2 The copy-cat strategy.
For any game , we define a strategy on . This will provide the identity

morphisms in our category, and the interpretation of logical axioms .
To illustrate this strategy, we undertake by the power of pure logic to beat either

Kasparov or Short in chess. To do this, we play two games, one against, say,
Kasparov, as White, and one against Short as Black. The situation is as follows:

Kasparov Short

B

W

W

B

We begin with the game against Short. He plays his opening move, and we play
his move in our game against Kasparov. After Kasparov responds, we play his
move as our response to Short. In this way, we play the same game twice, but once
as White and once as Black. Thus, whoever wins, we win one game. Otherwise
put, we act as a buffer process, indirectly playing Kasparov off against Short.
This copy-cat process can be seen as a ‘dynamic tautology’, by contrast with

classical propositional tautologies, which are vacuous static descriptions of states
of affairs. The logical aspect of this process is a certain ‘conservation of flow of
information’ (which ensures that we win one game).

In general, a copy-cat strategy on proceeds as follows:

...

even-length prefix of

(Here, we write , to index the two occurrences of in for ease of
reference. Note also that we write rather than . We will continue
with both these notational ‘abuses’).

We indicate such a strategy briefly by , alluding to axiom links in the
proof nets of Linear Logic.

Example 1.3 Application (Modus Ponens).

This is the conjunction of two copy-cat strategies

Note that and each occur once positively and once negatively in this for-
mula; we simply connect up the positive and negative occurrences by ‘copy-cats’.

even-length prefix of

To understand this strategy as a protocol for function application, consider the
following play:

ro — request for output
ri — request for input
id — input data
od — output data

The request for output to the application function is copied to the output side of
the function argument; the function argument’s request for input is copied to the
other argument; the input data provided at the second argument is copied back to
the function argument; the output from the function argument is copied back to
answer the original request. It is a protocol for linear function application since
the state of both the function and the argument will change as we interact with
them; we have no way of returning to the original state. Thus we “consume” our
“resources” as we produce the output. In this way there is a natural match between
game semantics and linear logic.

The Category of Games

Objects: Games

Morphisms: are strategies on .

Composition: interaction between strategies.

This interaction can be described as “parallel composition plus hiding”.

.

This definition looks very symmetric, but the actual possibilities are highly con-
strained by the switching condition.

... ...

Initially, Opponent must move in (say with). We consider ’s response. If
this is in , then this is the response of to . If responds in , say with
, then a move by Player in in is a move by Opponent in .

So it makes sense to consider ’s response to . If it is in , this is the overall

response of to . If responds with in , then is a move by Opponent
in , and we consider ’s response. Continuing in this way, we obtain a
uniquely determined sequence.

If the sequence ends in a visible action in or , this is the response by the
strategy to the initial move , with the internal dialogue between and
in being hidden from the Environment. Note that and may continue their
internal dialogue in forever. This is “infinite chattering” in CSP terminology,
and “divergence by an infinite -computation” in CCS terminology.
As this discussion clearly shows composition in is interaction between strategies.

The following fact is basic to the analysis of composition.
The map induces a surjective map

Covering Lemma. is injective (and hence bijective) so for each there
is a unique such that .

If ,
then has the form

where , .

Exercise 1.1 Prove the Covering lemma by formalizing the preceding discussion.

Proposition 1.2 is a category.

In particular, is the copy-cat strategy described previously.

Exercise 1.2 Verify this Proposition.

Exercise 1.3 Define a strategy not: on the boolean game defined
previously to represent Boolean complement. Calculate explicitly the strategies

not not not

and hence show that this strategy does indeed represent the intended function. (For
this purpose, treat strategies on as strategies where

is the empty game, so that the above compositions make sense).

Exercise 1.4 Embed the category of sets and partial functions faithfully into .
Is your embedding full? What about the category of flat domains and monotone
maps?

Tensor structure of
We will now see (in outline) that is an “autonomous” symmetric monoidal
closed category, and hence a model for IMLL, Intuitionistic Multiplicative Linear
Logic.
We have already defined the tensor product on objects. Now we extend

it to morphisms:

even .

This can be seen as disjoint (i.e. non-communicating) parallel composition of
and .

Exercise 1.5 Check functoriality, i.e. the equations

.

.

The tensor unit is defined by:

The canonical isomorphisms are conjunctions of copy-cat strategies.

The application (or evaluation) morphisms

have already been defined. For currying, given

define

by

where is the canonical isomorphism
in Set.

Exercise 1.6 Verify that the above definitions work! E.g. verify the equations
:

and for .

Exercise 1.7 Prove that is terminal in , i.e. for each there is a uniquemorph-
ism .

This shows that is really a model of Affine Logic, in which (unlike in Linear
Logic proper) the Weakening rule is valid. Indeed, tensor has “projections”:

Exercise 1.8 Given define by

Prove that is the product of and in , i.e. define projections

and pairing

and verify the equations

Exercise 1.9 Try to define coproducts in . What is the problem?

Exercise 1.10 A strategy on is history-free if it satisfies

.

.

Prove that , , , , , , , are
all history-free; and that if and are history free so are , , and .
Conclude that the sub-category hf, of history-free strategies is also a model of
IMLL. What about the pairing operation ? Does hf have binary products?

2 Winning Strategies
As we have seen, deterministic strategies can be viewed as partial functions exten-
ded in time. This partiality is appropriate when we aim to model programming lan-
guages with general recursion, in which the possibility of non termination arises.
However we would also like to use game semantics to model logical systems satis-
fying Cut Elimination or Strong Normalization. We would therefore like to find a
condition on strategies generalizing totality of functions. The obvious candidate is
to require that at each stage of play, a strategy on A has some response to every
possible move by opponent.

P

Call a strategy total if it satisfies this condition. However, totality as so defined
does not suffice ; in particular, it is not closed under composition.

Exercise 2.1 Find games and strategies and ,
such that

and are total

is not total.

(Hint: use infinite chattering in .)

The best analogy for understanding this fact is with the untyped -calculus: the
class of strongly normalizing terms is not closed under application. Thus in the
Tait/Girard method for proving strong normalization in various systems of typed
-calculus, one introduces a stronger property which does ensure closure under
application. The approach we will pursue with strategies can be seen as a semantic
analogue of this idea.
Before introducing this approach, we make a brief digression to allow the ideas

to be presented at an appropriate level of generality. For further references on
specification structures see (Abramsky et al. 1996a).

Specification Structures

Our aim is to “refine” a category with a more subtle notion of type. A specifica-
tion structure on is given by:

a set of “properties over ” for each object of .

a relation for all .

We write this as , rather than - the “Hoare triple relation”.
This data is required to satisfy the following axioms:

(ss1)

(ss2) .

We can then form a new category as follows:

objects are pairs

morphisms; are -morphisms such that
.

There is now an evident faithful functor

Exercise 2.2 For each of the following categories and specification structures
S, identify as a known category.

(i) Set def .

(ii) Set is a partial order
def .

(iii) Rel is symmetric and irreflexive
def .

(iv) Set is surjective
def

where is an acceptable numbering of the partial recursive
functions.

Exercise 2.3 Show that a specification structure on is equivalently defined as a
lax functor

Rel

In particular, the axioms (ss1), (ss2) correspond exactly to lax functoriality:

Exercise 2.4 (i) Show that every faithful functor

gives rise to a specification structure on .
(ii) Show that there is a precise correspondence between faithful functors into
and lax functors from to Rel.
(iii) (Pavloviç) Extend (ii) to a correspondence between arbitrary functors into
and lax functors from into the bicategory Span.

If already has some structure, e.g. is autonomous, we can lift this structure to
by endowing the structure on with suitable “actions” on .

Thus to lift a tensor product we require actions

1

satisfying:

For the closed structure, we must add:

satisfying:

Given a specification structure with these actions on an autonomous category ,
we can define an autonomous structure on by:

The axioms guarantee that the morphisms used to witness the autonomous struc-
ture of lift to . Moreover, the faithful functor preserves the
autonomous structure.

Exercise 2.5 What actions are needed to lift products from to ? Cartesian
closure?

Exercise 2.6 Define suitable actions for the examples of specification structures
given in Exercise 2.2.

Winning Strategies

We now return to the problem of strengthening the properties to be required of
total strategies to ensure closure under composition. The idea is to take winning
strategies. We will formalize this via a suitable specification structure.
Given a game A, define P , the infinite plays over A, by

P P

(By we mean the set of finite prefixes.)
Thus the infinite plays correspond exactly to the infinite branches of the game tree.
Now define a specification structure on thus:

P

So properties are sets of infinite plays over A: such a set can be interpreted as
designating those infinite plays which are “wins” for Player. Now we say that is
a winning strategy with respect to W (notation:), if:

is total

s P .

Thus is winning if at each finite stage when it is Player’s turn to move it has a
well defined response, and moreover every infinite play following is a win for
Player.
Now we define actions on the properties by:

P P P

P P

Finally we define, for V , , W :

Proposition 2.1 The above definitions satisfy the axioms for a specification struc-
ture on an autonomous category. Thus is an autonomous category.

To spell things out, objects of are pairs where is a game as
before, and P is the designated set of winning infinite plays for Player.
Morphisms are strategies such that is total,
and for all P ,

P

We will verify the key point that axiom (ss1) is satisfied by , so that we indeed
have a category of total strategies closed under composition, leaving the rest of the
proof of the proposition as an
Suppose then that and . We

want to prove that is total, i.e. that there can be no infinite chattering in B.
Suppose for a contradiction that there is an infinite play

with all moves after the finite prefix in . Then is an infinite play in
following , while is an infinite play in following .

Since is winning and is finite, we must have . But then since
is winning we must have , which is impossible since is finite.

Exercise 2.7 (i) Verify that the total strategies

correspond exactly to the total functions on the booleans.
(ii) Embed the category of non-empty sets and functions faithfully into . Is
your embedding full? What about the empty set?

Exercise 2.8 Consider a game of binary streams Str

with plays , alternating between requests for data by Opponent and
bits supplied by Player. Let be all infinite plays of this game.
Verify that the winning strategies on (,) correspond exactly to the infinite
binary sequences. Verify that the winning strategies

induce functions which map infinite streams to infinite streams. Can you charac-
terize exactly which functions on the domain

with the prefix ordering are induced by winning strategies?

3 Polymorphism

Our aim now is to use game semantics to give a model for polymorphism. We
extend our notation for types with type variables and with second order
quantifiers

As a test case, we want our model to have the property that the interpretation it
yields of the polymorphic (affine) booleans

has only two elements, corresponding to the denotations of the terms
def

def

Firstly, we need some control over the size of the universe of types. To achieve
this, we assume a non empty set satisfying

(for example take).

Now we define a game by:
M

P M

We can define a partial order on games by:

def M M M P P

Now define

We define a variable type (in variables) to be a function (monotone with
respect to)

In particular note that

(that was the point of having)

Exercise 3.1 (if you care about details) The above is not quite true. Amend the
definition of , slightly to make it true.

Thus variable types will be closed under and . Given , we
can define

A uniform strategy on a variable type is defined to be a strategy on
such that, for all , is a well-defined strategy on , where is
defined inductively by

P

(NB: in this notation,)

Exercise 3.2 Show that the following properties hold for a uniform strategy on
:
(i) (component-wise)
(ii) if I is a -directed family in , then

I I where

I is the directed join of the (defined by component-wise union),
and I is the directed union of the strategies .

Our aim now is to show that, for each , we obtain a category with:
objects : variable types
morphisms : are uniform strategies on

Moreover is an autonomous category.

The idea is that all the structure is transferred pointwise from to . E.g if
, , then is given by .

Exercise 3.3 Check that is a well-defined uniform strategy on .

Similarly, we define

etc.
Now we define a “base category” with the objects , , and -

monotone functions as morphisms. For each object of , we have the autonom-
ous category . For each monotone

we can define a functor

by

Proposition 3.1 The above definition defines a (strict) indexed autonomous cat-
egory.

At this point, we have enough structure to interpret types and terms with type
variables. It remains to interpret the quantifiers. For notational simplicity, we
shall focus on the case where is the only type variable free in .
Semantically A will be interpreted by a function

Corresponding to the polymorphic type inference rules

intro if

elim

we must define:

a game as the interpretation of

corresponding to -elim , a uniform strategy

(Here is the constant function valued at . Note that
where 1 is the map to the terminal object in)

corresponding to -intro , the following universal property:

for every and uniform strategy there exists
a unique strategy such that

This says that there is an adjunction

The Beck-Chevalley condition must hold (see (Crole 1994)).

Remark 3.1 More generally, we should show the existence of adjunctions

where

is the projection function.

Now, how are we to construct the game ? Logically, is a second-order
quantifier. Player must undertake to defend at any instance , where is
specified by Opponent. If Opponent were to specify the entire instance at the
start of the game, this would in general require an infinite amount of information to
be specified in a finite time, violating a basic continuity principle of computation
(“Scott’s axiom”). Instead we propose the metaphor of the “veil of ignorance” (cf.
John Rawls, A Theory of Justice). That is, initially nothing is known about which
instance we are playing in. Opponent progressively reveals the “game board” ; at
each stage, Player is constrained to play within the instance thus far revealed by
Opponent.

Time
O 1
P 2
O 3
P 4
O 5
P 6
... ...

This intuition is captured by the following definition.

M M

P is defined inductively as follows:
P

P P
P P P

The first clause in the definition of is the basis of the induction. The
second clause refers to positions in which it is Opponent’s turn to move. It says
that Opponent may play in any way which is valid in some instance (extending
the current one). The final clause refers to positions in which it is Player’s turn
to move. It says that Player can only move in a fashion which is valid in every
possible instance.
For the polymorphic projection

plays copy-cat between and . This is uniform, witnessed by the
“global copy-cat” .
Why does this definition work? Consider the situation

At this stage, it is Opponent’s turn to move, and of course there are many moves in
which would not be valid in . However, Opponent in in contrav-

ariant (i.e negative) position must play as Player in , and hence is constrained
to respond to only in a fashion which is valid in every instance in which can be
played, and which in particular is valid in . Hence Opponent’s response can
safely be copied back into .

Now for the universal property. Given uniform , we define

That this is valid follows from the uniformity of so that at each stage its response
must be valid in any instance that we might be in. It is then clear that

and hence that this definition fulfills the required properties.
Since we are interested in modeling IMLL2 (second order IMLL) we will refine

our model with the notion of winning strategy, as explained in the previous section.
Firstly, we briefly indicate the additional structure required of a specification

structure in order to get a model for IMLL2 in the refined category.
We assume that variable types are modeled by monotone functions
equipped with actions

for each .
Also there is an action:

1

satisfying:
elim
intro

Now in the case of the specification structure for winning strategies, we
define:

P P P

Exercise 3.4 Verify that this satisfies -intro and -elim .

Thus we have a game semantics for IMLL2 in which terms denote winning strategies.
How good is this semantics? As a basic test, let us look at the type

What are the winning strategies for this type? Note that the first move must be in
. Because of the definition of , Player can only respond by playing the same

move in a negative occurrence of , i.e or . Suppose Player responds in :

At this point, by the switching condition Opponent must respond in , say
with a move ; what can Player do next? If he were playing as the term

, then he should copy back to . However there is another possiblity (poin-
ted out by Sebastian Hunt): namely, Player can play in , and continue there-
after by playing copy-cat between and . This certainly yields a winning
strategy, but does not correspond to the denotation of any term.
To eliminate such undesirable possibilities, we introduce a constraint on strategies.

Recall from Exercise 1.10 that a strategy is history-free if its response at any point
depends only on the last move by Opponent: that is, if it satisfes:

The history-free strategies suffice to model the multiplicatives and polymorphism,
so we get a model hf of IMLL2.
Now consider again the situation

Player can only respond to by copying into if he is following a history-free
strategy: the option of playing in is not open to him, because is not “visible”
to him. Thus he can only proceed by

Moreover, Player must continue to play copy-cat between and ever there-
after, since the information available to him at each stage is only the move just
played by Opponent.
Note also that Player must play in the same way, regardless of which move is

initially made by Opponent. For example, suppose for a contradiction that Player
responded to , by copying it to , and to by copying it to . Now consider
the situation:

Since Player is following a history-free strategy, he must always respond to
by copying it to ; but the above position is clearly not valid, since there is an
instance with P in which cannot be played as an initial
move.
Thus we conclude that for our test case the model hf does indeed have the

required property that the only strategies for the game

are the denotations of the terms:

copycat between and copycat between and

Exercise 3.5 Show that the only two strategies in hf for the game

are those corresponding to the identity and the twist map.

Open problem For which class of (closed) types of IMLL2 do we get a “Full
Completeness” result, i.e. that all strategies at that type in hf are definable in
IMLL2?

4 Relational Parametricity

In this section, we investigate how the notion of relational parametricity can be
adapted to the setting of games.
Firstly, we go back to the general level of Specification Structures. We use some

notions due to Andy Pitts (1996).
Given , we define:

This is always a preorder by (ss1) and (ss2). Say that is posetal if it is a partial
order (i.e. antisymmetric). Now the notion of meet of properties can be
defined on .
Say that is meet-closed if it is posetal and each has all meets.
Now we define a notion of relations on games. We shall focus on binary re-

lations. Say that is a relation from to (notation:) if is a
non-empty subset satisfying:

.

.

(So is a length-preserving non-empty prefixed closed subset).
We shall define a specification structure on the product category by

taking to be the set of relations . Given a relation
, we lift it to a relation between strategies on and strategies on , by

the following definition:

This definition is “logical relations extended in time”; it relativizes the usual clause:

to the context (previous history) . It can also be seen as a form of bisimulation:

“If and reach related states at ’s turn to move, then one has a
response iff the other does, and the states after the response are still
related.”

Also, if and , then we define:

where is given by:

Similarly we define:

Now we define:

Proposition 4.1 This is a specification structure in . In particular,

Exercise 4.1 Prove this! (The above diagram gives the idea of the proof.)

We shall in fact be more interested in “pulling back” this specification structure
along the diagonal functor . That is, we are interested in the
category with objects where and morphisms

which are strategies such that . We are also
interested in the category hf where we combine the winning strategy and rela-
tional structures, so that objects are , where is a set of designated
winning plays, and is a relation and is a strategy

such that .
Now we build a model of IMLL2 by refining our previous model with this

specification structure . A variable type will now be a monotone function

with an action

We assume that the specification structure is monotone, in the sense that:

(this is easily seen to hold for and), and that

We also require that of and , then

We further assume that the specification structure is meet-closed. Then we
define:

(4.1)

(This latter equality holds because of the above monotonicity properties).
The fact that (-intro) and (-elim) are satisfied then automatically holds be-

cause of the definition of as a meet.
To apply this construction to , we must show that it is meet-closed.
Firstly, we characterise the partial order on properties in .

Proposition 4.2

We can read this as: at O-moves and at P-moves .

Proposition 4.3 is defined inductively by:

Note the similarity between this definition and that of , which is in fact
the unary case of the above, indexed over .

Exercise 4.2 1. Verify these propositions.

2. For the specification structure , show that:

.
.

Thus we obtain a model hf of IMLL, incorporating both:

the refinement to winning strategies

a notion of “relational parametricity”.

References

Abramsky, S., Gay, S. J., Nagarajan, R., (1996a) ‘Specification structures and propositions-
as-types for concurrency’, In G. Birtwhistle and F. Moller, editors, Logics for Concur-
rency: Structure vs. Automata, Proceedings of the VIIIth Banff Higher Order Work-
shop, Lecture notes in Computer Science. Springer Verlag.

Abramsky, S., Gay, S. J., Nagarajan, R., (1996b) ‘Interaction categories’, Marktoberdorf
proceedings, Springer Verlag.

Abramsky, S., Jagadeesan, R., (1994) ‘Games and full completeness for multiplicative lin-
ear logic’, Journal of Symbolic Logic, 59(2), 543 – 574. Also appeared as Technical
Report 92/24 of the Department of Computing, Imperial College of Science, Techno-
logy and Medicine.

Abramsky, S., Jagadeesan, R., Malacaria, P., (1995) ‘Full abstraction for PCF’, Submitted
for publication, ftp-able attheory.doc.ic.ac.uk in directorypapers/Malacaria.

Abramsky, S., McCusker, G., (1995) ‘Games for recursive types’, In C. L. Hankin, I. C. Mackie,
and R. Nagarajan, editors, Theory and Formal Methods of Computing 1994: Proceed-
ings of the Second Imperial College Department of Computing Workshop on Theory
and Formal Methods. Imperial College Press.

Abramsky, S., McCusker, G., (1995) ‘Games and full abstraction for the lazy -calculus’,
in the LICS’95 proceedings.

Crole, R., (1994) ‘Categories for Types’, Cambridge University Press.

Danos, V., Herbelin, H., Regnier, L., (1996) ‘Games and abstract machines’, to appear in
the LICS’96 proceedings.

Girard, J.-Y., Lafont, Y., Taylor, P., (1989) ‘Proofs and types’, Cambridge University Press.

Girard, J.-Y., (1995) ‘A survey of Linear Logic’, in Advances in Linear Logic, ed. Y. La-
font, Cambridge University Press 1995.

Hyland, J. M. E., Ong, C.-H. L, (1995) ‘On full abstraction for PCF: I, II, and III’, submit-
ted for publication, ftp-able at theory.doc.ic.ac.uk in directorypapers/Ong.

McCusker, G., (1996a) ‘Games and full abstraction for FPC’, to appear in the LICS’96
proceedings.

McCusker, G., (1996b) ‘Games and full abstraction for a functional metalanguage with
recursive types’, Phd thesis, University of London, to appear.

Nickau, H., (1994) ‘Hereditarily sequential functionals’, Proceedings of the Symposium
on Logical Fondations of Computer Science: Logic at St. Petersburg, Lecture notes in
Computer Science. Springer Verlag.

Ong, C.-H. L., (1996) ‘A semantic view of classical proofs’, to appear in the LICS’96
proceedings.

Pitts, A. M., (1996) ‘Relational properties of domains’, Information and Computation, in
press.

