
Semantics of Interaction

Samson Abramsky

Abstract

The “classical” paradigm for denotational semantics models data types asdomains,
i.e. structured sets of some kind, and programs as (suitable)functionsbetween do-
mains. The semantic universe in which the denotational modelling is carried out
is thus a category with domains as objects, functions as morphisms, and compo-
sition of morphisms given by function composition. A sharp distinction is then
drawn between denotational and operational semantics. Denotational semantics is
often referred to as “mathematical semantics” because it exhibits a high degree of
mathematical structure; this is in part achieved by the fact that denotational seman-
tics abstracts away from the dynamics of computation—from time. By contrast,
operational semantics is formulated in terms of the syntax of the language being
modelled; it is highly intensional in character; and it is capable of expressing the
dynamical aspects of computation.

The classical denotational paradigm has been very successful, but has some
definite limitations. Firstly, fine-structural features of computation, such as se-
quentiality, computational complexity, and optimality of reduction strategies, have
either not been captured at all denotationally, or not in a fully satisfactory fashion.
Moreover, once languages with features beyond the purely functional are consid-
ered, the appropriateness of modelling programs by functions is increasingly open
to question. Neither concurrency nor “advanced” imperative features such as local
references have been captured denotationally in a fully convincing fashion.

This analysis suggests a desideratum ofIntensional Semantics, interpolating
between denotational and operational semantics as traditionally conceived. This
should combine the good mathematical structural properties of denotational se-
mantics with the ability to capture dynamical aspects and to embody computational
intuitions of operational semantics. Thus we may think of Intensional semantics
as “Denotational semantics + time (dynamics)”, or as “Syntax-free operational
semantics”.

A number of recent developments (and, with hindsight, some older ones) can
be seen as contributing to this goal of Intensional Semantics. We will focus on the
recent work on Game semantics, which has led to some striking advances in the
Full Abstraction problem for PCF and other programming languages (Abramsky
et al. 1995) (Abramsky and McCusker 1995) (Hyland and Ong 1995) (McCusker
1996a) (Ong 1996). Our aim is to give a genuinely elementary first introduction;
we therefore present a simplified version of game semantics, which nonetheless

1

2 Abramsky

contains most of the essential concepts. The more complex game semantics in
(Abramskyet al. 1995) (Hyland and Ong 1995) can be seen as refinements of
what we present. Some background in category theory, type theory and linear
logic would be helpful in reading these notes; suitable references are (Crole 1994),
(Girardet al. 1989), (Girard 1995) (which contain much more than we will actu-
ally need).

Acknowledgements I would like to thank the Edinburgh “interaction group”
(Kohei Honda, Paul-André Melliès, Julo Chroboczek, Jim Laird and Nobuko Yoshida)
for their help in preparing these notes for publication, Peter Dybjer for his com-
ments on a draft version, and Peter Dybjer and Andy Pitts for their efforts in orga-
nizing the CLiCS summer school and editing the present volume.

Contents

1 Game Semantics 3

2 Winning Strategies 16

3 Polymorphism 18

4 Relational Parametricity 25

Notation

If X is a set,X∗ is the set of finite sequences (words, strings) overX. We use
s, t, u, v to denote sequences, anda, b, c, d, m, n to denote elements of these
sequences. Concatenation of sequences is indicated by juxtaposition, and we won’t
distinguish notationally between an element and the corresponding unit sequence.
Thusas denotes the sequence with first elementa and tails.

If f : X −→ Y thenf ∗ : X∗ −→ Y ∗ is the unique monoid homomorphism
extendingf . We write |s| for the length of a finite sequence, andsi for the ith
element ofs, 1 ≤ i ≤ |s|.

Given a setS of sequences, we writeSeven, Sodd for the subsets of even- and
odd-length sequences respectively.

We writeX + Y for the disjoint union of setsX, Y .

If Y ⊆ X ands ∈ X∗, we writes � Y for the sequence obtained by deleting
all elements not inY from s. In practice, we use this notation in the context where
X = Y +Z, and by abuse of notation we takes � Y ∈ Y ∗, i.e.we elide the use of
injection functions.

We writes v t if s is a prefix oft, i.e. t = su for someu.

Semantics of Interaction 3

Pref(S) is the set of prefixes of elements ofS ⊆ X∗. S is prefix-closedif
S = Pref(S).

1 Game Semantics

We give a first introduction to game semantics. We will be concerned with 2-
person games. Why the number 2? The key feature of games, by comparison with
the many extant models of computation (labelled transition systems, event struc-
tures, etc. etc.) is that they provide anexplicit representation of the environment,
and hence model interaction in an intrinsic fashion. (By contrast, interaction is
modelled in, say, labelled transition systems using some additional structure, typi-
cally a “synchronization algebra” on the labels.) One-person games would degen-
erate to transition systems; it seems that multi-party interaction can be adequately
modeled by two-person games, in much the same way that functions with multiple
arguments can be reduced to one-place functions and tupling. We will use such
games to model interactions between a System and its Environment. One of the
players in the game is taken to represent the System, and is referred to as Player or
Proponent; the other represents the Environment and is referred to as Opponent.
Note that the distinction between System and Environment and the corresponding
designation as Player or Opponent depend onpoint of view:

If Tom, Tim and Tony converse in a room, then from Tom’s point
of view, he is the System, and Tim and Tony form the Environment;
while from Tim’s point of view, he is the System, and Tom and Tony
form the Environment.

A single ‘computation’ or ‘run’ involving interaction between Player and Oppo-
nent will be represented by a sequence ofmoves, made alternately by Player and
Opponent. We shall adopt the convention thatOpponent always makes the first
move. This avoids a number of technical problems which would otherwise arise,
but limits what we can successfully model with games to thenegative fragmentof
Intuitionistic Linear Logic. (This is the⊗, (, &, !, ∀ fragment).

A game specifies the set of possible runs (or ‘plays’). It can be thought of as a
tree

◦
a1

��~~~~
~~~ a2

��@@@
@@@@

•
b1

��~~~~
~~~

•
b1

��~~~~
~~~ b2��

b3

��@@@
@@@@

◦ ◦ ◦ ◦

where hollow nodes◦ represent positions where Opponent is to move; solid nodes•
positions where Player is to move; and the arcs issuing from a node are labelled



4 Abramsky

with the moves which can be made in the position represented by that node.

Formally, we define a gameG to be a structure(MG, λG, PG), where

• MG is the set ofmovesof the game;

• λG : MG −→ {P,O} is a labelling function designating each move as by
Player or Opponent;

• PG ⊆nepref Malt
G , i.e. PG is a non-empty, prefix-closed subset ofMalt

G , the
set of alternating sequences of moves inMG.

More formally,Malt
G is the set of alls ∈M∗

G such that

∀i : 1 ≤ i ≤ |s| even(i) =⇒ λG(si) = P
∧ odd(i) =⇒ λG(si) = O

i.e.
s = a1 a2 · · · a2k+1 a2k+2 · · ·

λG ↓ ↓ ↓ ↓
O P O P

.

ThusPG represents the game tree by the prefix-closed language of strings labelling
paths from the root. Note that the tree can have infinite branches, corresponding to
the fact that there can be infinite plays in the game. In terms of the representation
by strings, this would mean that all the finite prefixes of some infinite sequence of
moves would be valid plays.

For example, the game

({a1, a2, b1, b2, b3}, { a1 , a2 , b1 , b2 , b3 },
↓ ↓ ↓ ↓ ↓
O O P P P

{ε, a1, a1b1, a2, a2b2, a2b3})

represents the tree
◦

a1

��~~~~
~~~ a2

��@@@
@@@@

•
b1

��~~~~
~~~

•
b2

��~~~~
~~~ b3

��@@@
@@@@

◦ ◦ ◦

We are using games to represent the meaning oflogical formulasor types. A
game can be seen as specifying the possible interactions between a System and its
Environment. In the traditional interpretation of types as structured sets of some
kind, types are used to classifyvalues. By contrast, games classifybehaviours.
Proofsor Programswill be modelled bystrategies, i.e. rules specifying how the
System should actually play.

Semantics of Interaction 5

Formally, we define a (deterministic) strategyσ on a gameG to be a non-empty
subsetσ ⊆ P even

G of the game tree, satisfying:

(s1) ε ∈ σ
(s2) sab ∈ σ =⇒ s ∈ σ
(s3) sab, sac ∈ σ =⇒ b = c.

To understand this definition, think of

s = a1b1 · · · akbk ∈ σ

as a record of repeated interactions with the Environment followingσ. It can be
read as follows:

If the Environment initially doesa1,
then respond withb1;
If the Environment then doesa2,

then respond withb2;
...

If the Environment finally doesak,
then respond withbk.

The first two conditions onσ say that it is a sub-tree ofPG of even-length paths.
The third is a determinacy condition.

This can be seen as generalizing the notion of graph of a relation,i.e. of a set
of ordered pairs, which can be read as a set of stimulus-response instructions. The
generalization is that ordinary relations describe a single stimulus-response event
only (giving rules for what the response to any given stimulus may be), whereas
strategies describe repeated interactions between the System and the Environment.
We can regardsab ∈ σ as saying: ‘when given the stimulusa in the contexts,
respond withb’. Note that, with this reading, the condition (s3) generalizes the
usual single-valuedness condition for (the graphs of) partial functions. Thus a
useful slogan is:

“Strategies are (partial) functions extended in time.”

Example 1.1 LetB be the game

({∗, tt ,ff }, {∗ 7→ O , tt 7→ P ,ff 7→ P}, {ε, ∗, ∗tt , ∗ff })

◦
∗��
•

tt

��~~~~
~~~ ff

��@@@
@@@@

◦ ◦



6 Abramsky

This game can be seen as representing the data type of booleans. The opening
move∗ is a request by Opponent for the data, which can be answered by eithertt
or ff by Player. The strategies onB are as follows:

{ε} Pref{∗tt} Pref{∗ff }

The first of these is the undefined strategy (‘⊥’), the second and third corre-
spond to the boolean valuestt andff . Taken with the inclusion ordering, this
“space of strategies” corresponds to the usual flat domain of booleans:

tt

????
????

ff

����
���

⊥

Constructions on games

We will now describe some fundamental constructions on games.

Tensor Product

Given gamesA,B, we describe the tensor productA⊗B.

MA⊗B = MA +MB

λA⊗B = [λA, λB]
PA⊗B = {s ∈Malt

A⊗B | s�MA ∈ PA ∧ s�MB ∈ PB}

We can think ofA⊗B as allowing play to proceed inboththe subgamesA and
B in an interleaved fashion. It is a form of ‘disjoint (i.e. non-communicating or
interacting) parallel composition’.

A first hint of the additional subtleties introduced by the explicit representation
of both System and Environment is given by the following result.

Proposition 1.1 (Switching condition)
In any plays ∈ PA⊗B, if successive movessi, si+1 are in different subgames (i.e.
one is inA and the other inB), thenλA⊗B(si) = P , λA⊗B(si+1) = O.

In other words, only Opponent can switch from one subgame to another; Player
must always respond in the same subgame that Opponent just moved in.

To prove this, consider for eachs ∈ PA⊗B the ‘state’

psq = (parity(s � A), parity(s � B))

We will write O for even parity, andP for odd parity, sincee.g.after a play of
even parity, it is Opponent’s turn to move. Initially, the state ispεq = (O,O).



Semantics of Interaction 7

Note that O can move in either sub-game in this state. If O moves inA, then the
state changes to(P,O). P can now only move in the first component. After he
does so, the state is back to(O,O). Thus we obtain the following ‘state transition
diagram’:

��
(O,O)

O

������
����

����
���

O

��;;;
;;;;

;;;;
;;;;

(P,O)
@A
GF

P

55kkkkkkkkkkkkkkkkk

(O,P )
BC
ED

P

iiSSSSSSSSSSSSSSSSSS

We see immediately from this that the switching condition holds; and also that
the state(P, P ) can never be reached (i.e. for nos ∈ PA⊗B is psq = (P, P )).

Linear Implication

Given gamesA,B, we define the gameA ( B as follows:

MA(B = MA +MB

λA⊗B = [λA, λB] where λA(m) =

{
P whenλA(m) = O
O whenλA(m) = P

PA(B = {s ∈Malt
A(B | s � MA ∈ PA ∧ s � MB ∈ PB}

This definition isalmostthe same as that ofA⊗B. The crucial difference is the
inversion of the labelling function on the moves ofA, corresponding to the idea
that on the left of the arrow the rôles of Player and Opponent are interchanged.

If we think of ‘function boxes’, this is clear enough:

Input Output

// System //
On the output side, the System is the producer and the Environment is the con-
sumer; these rôles are reversed on the input side.

Note thatMalt
A(B, and hencePA(B, are in general quite different toMalt

A⊗B,
PA⊗B respectively. In particular, the first move inPA(B must always be inB,
since the first move must be by Opponent, and all opening moves inA are labelled
P by λA.

We obtain the following switching condition forA ( B:

If two consecutive moves are in different components, the first was
by Opponent and the second by Player; so only Player can switch
components.



8 Abramsky

This is supported by the following state-transition diagram:

��
(P,O)

O��
(P, P )

P

������
����

����
���

P

��:::
::::

::::
::::

(O,P )
@A
GF

O

55kkkkkkkkkkkkkkkkkk

(P,O)
BC
ED

O

iiSSSSSSSSSSSSSSSSS

Example 1.2 The copy-cat strategy.

For any gameA, we define a strategy onA ( A. This will provide the identity
morphisms in our category, and the interpretation of logical axiomsA ` A.

To illustrate this strategy, we undertake by the power of pure logic to beat a
Grand-Master in chess. To do this, we play two games, one against, say, Kasparov,
as White, and one against Short) as Black. The situation is as follows:

Kasparov Short

B

W

W

B

·

PPPPPPPPPPPPPP
mmmmmmmmmmmmmm

We begin with the game against Short. He plays his opening move, and we play
his move in our game against Kasparov. After Kasparov responds, we play his
move as our response to Short. In this way, weplay the same game twice, butonce
as Whiteandonce as Black. Thus, whoever wins, we win one game. Otherwise
put, we act as a buffer process, indirectly playing Kasparov off against Short.

This copy-cat process can be seen as a ‘dynamic tautology’, by contrast with
classical propositional tautologies, which are vacuous static descriptions of states
of affairs. The logical aspect of this process is a certain ‘conservation of flow of
information’ (which ensures that we win one game).

Exercise 1.1 Suppose we had to play intwo gamesagainst Short, both as Black,



Semantics of Interaction 9

as well as one game against Kasparov as White.

Kasparov Short Short

B

W

W

B

W

B

·

PPPPPPPPPPPPPP
nnnnnnnnnnnnnn

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
Would the same idea work?

How about playing in two games against Kasparov, both as White?

Kasparov Kasparov Short

B

W

B

W

W

B

·

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
PPPPPPPPPPPPPP

nnnnnnnnnnnnnn
Comment on the logical significance of these observations.

In general, a copy-cat strategy onA proceeds as follows:

A ( A
Time

1 a1 O
2 a1 P
3 a2 O
4 a2 P
...

...
...

idA = {s ∈ P even
A1(A2

| ∀t even-length prefix ofs : t�A1 = t�A2}

(Here, we writeA1, A2 to index the two occurrences ofA in A ( A for ease of
reference. Note also that we writes � A1 rather thans�MA1. We will continue
with both these notational “abuses”).

We indicate such a strategy briefly byA
'& %$

( A , alluding to axiom links in the
proof nets of Linear Logic.



10 Abramsky

Example 1.3 Application (Modus Ponens).

ApA,B : (A ( B)⊗ A ( B

This is the conjunction of two copy-cat strategies

(A
'& %$

( B)
GF ED

⊗ A ( B

Note thatA andB each occur once positively and once negatively in this for-
mula; we simply connect up the positive and negative occurrences by ‘copy-cats’.

ApA,B = {s ∈ P even
(A1(B1)⊗A2 ( B2

|
∀t even-length prefix ofs : t�A1 = t�A2 ∧ t�B1 = t�B2}

To understand this strategy as a protocol for function application, consider the
following play:

( A ( B ) ⊗ A ( B
O ro
P ro
O ri
P ri
O id
P id
O od
P od

ro — request for output
ri — request for input
id — input data
od — output data

The request for output to the application function is copied to the output side of
the function argument; the function argument’s request for input is copied to the
other argument; the input data provided at the second argument is copied back to
the function argument; the output from the function argument is copied back to
answer the original request. It is a protocol forlinear function application since
the state of both the function and the argument will change as we interact with
them; we have no way of returning to the original state. Thus we “consume” our
“resources” as we produce the output. In this way there is a natural match between
game semantics and linear logic.

The Category of GamesG

• Objects: Games

• Morphisms:σ : A −→ B are strategiesσ onA ( B.

• Composition: interaction between strategies.



Semantics of Interaction 11

This interaction can be described as “parallel composition plus hiding”.

σ : A→ B τ : B → C

σ; τ : A→ C

σ; τ = (σ ‖ τ)/B = {s�A,C | s ∈ σ ‖ τ}
σ ‖ τ = {s ∈ (MA +MB +MC)∗ | s�A,B ∈ σ ∧ s�B,C ∈ τ}.

(Note that we extend our abuse of notation for restriction here; bys�A,B we
mean the restriction ofs to MA + MB as a “subset” ofMA + MB + MC , and
similarly for s�A,C ands�B,C.) This definition looks very symmetric, but the
actual possibilities are highly constrained by the switching condition.

A
σ

( B B
τ

( C
c1

b1
b1
b2

b2
...

...
bk

bk
a1

Initially, Opponent must move inC (say withc1). We considerτ ’s response. If
this is inC, then this is the response ofσ; τ to c1. If τ responds inB, say with
b1, then a move by Player inB in B ( C is a move by Opponent inA ( B.
So it makes sense to considerσ’s response tob1. If it is in A, this is the overall
response ofσ; τ to c1. If σ responds withb2 in B, thenb2 is a move by Opponent
in B ( C, and we considerτ ’s response. Continuing in this way, we obtain a
uniquely determined sequence.

c1b1b2 · · · bk · · ·

If the sequence ends in a visible action inA or C, this is the response by the
strategyσ; τ to the initial movec1, with the internal dialogue betweenσ and τ
in B being hidden from the Environment. Note thatσ andτ may continue their
internal dialogue inB forever. This is “infinite chattering” in CSP terminology,
and “divergence by an infiniteτ -computation” in CCS terminology.

As this discussion clearly shows composition inG is interaction between strate-
gies. The following fact is useful in the analysis of composition.

The maps 7→ s�A,C induces a surjective map

ψ : σ ‖ τ −→ σ; τ



12 Abramsky

Covering Lemma. ψ is injective (and hence bijective) so for eacht ∈ σ; τ there
is a uniques ∈ σ ‖ τ such thats � A,C = t.

If t = m1m2....mk, thens has the form

m1u1m2u2....uk−1mk

whereui ∈M∗
B, 1 ≤ i < k.

Exercise 1.2 Prove the Covering lemma by formalizing the preceding discussion.

An alternative definition of Cut

We give a more direct, ‘computational’ definition.

σ; τ = {s; t | s ∈ σ ∧ t ∈ τ ∧ s�B = t�B}.

This defines Cut ‘pointwise’ via an operation on single plays. This latter operation
is defined by mutual recursion of four operations covering the following situations:

1. s T t O is to move inA.
2. s U t O is to move inC.
3. s  t σ to move.
4. s � t τ to move.

γs T t = γ(s  t)
εT t = ε
s U bt = b(s � t)
sU ε = ε
γs  t = γ(sT t) (γ ∈MΓ)
as  at = s � t (a ∈MA)
s � bt = b(s U t) (b ∈MB)
as � at = s  t (a ∈MA)

We can then define
s; t = sU t.

Exercise 1.3 Prove that the two definitions ofσ; τ coincide.

Proposition 1.2 G is a category.

In particular,idA : A −→ A is the copy-cat strategy described previously.

Exercise 1.4 Verify this Proposition.



Semantics of Interaction 13

Exercise 1.5 Define a strategynot : B −→ B on the boolean game defined
previously to represent Boolean complement. Calculate explicitly the strategies

⊥; not tt ; not ff ; not

and hence show that this strategy does indeed represent the intended function. (For
this purpose, treat strategiesσ onB as strategiesσ : I −→ B where

I = (∅, ∅, {ε})

is the empty game, so that the above compositions make sense).

Exercise 1.6 Embed the category of sets and partial functions faithfully intoG.
Is your embedding full? What about the category of flat domains and monotone
maps?

Tensor structure of G

We will now see (in outline) thatG is an “autonomous”= symmetric monoidal
closed category, and hence a model for IMLL, Intuitionistic Multiplicative Linear
Logic.

We have already defined the tensor productA⊗ B on objects. Now we extend
it to morphisms:

σ : A→ B τ : A′ → B′

σ ⊗ τ : A⊗ A′ → B ⊗B′

σ ⊗ τ = {s ∈ P even
A⊗A′(B⊗B′ | s � A,B ∈ σ ∧ s � A′, B′ ∈ τ}.

This can be seen as disjoint (i.e. non-communicating) parallel composition ofσ
andτ .

Exercise 1.7 Check functoriality, i.e. the equations

• (σ ⊗ τ); (σ′ ⊗ τ ′) = (σ; σ′)⊗ (τ ; τ ′).

• idA ⊗ idB = idA⊗B.

The tensor unit is defined by:

I = (∅, ∅, {ε})



14 Abramsky

The canonical isomorphisms are conjunctions of copy-cat strategies.

assocA,B,C : (A⊗B)⊗ C ∼−→ A⊗ (B ⊗ C)

(A
�� ��
⊗ B)

?> =<
⊗ C

ON ML
( A ⊗ (B ⊗ C)

symmA,B : A⊗B ∼−→ B ⊗ A

A
GF ED
⊗ B

'& %$
( B ⊗ A

unitlA : (I ⊗ A)
∼−→ A

(I ⊗ A)
'& %$

( A

unitrA : (A⊗ I) ∼−→ A

(A
'& %$
⊗ I) ( A

The application (or evaluation) morphisms

ApA,B : (A ( B)⊗ A −→ B

have already been defined. For currying, given

σ : A⊗B ( C

define
Λ(σ) : A −→ (B ( C)

by
Λ(σ) = {α∗(s) | s ∈ σ}

whereα : (MA +MB)+MC
∼−→MA +(MB +MC) is the canonical isomorphism

in Set.

Exercise 1.8 Verify that the above definitions work!E.g. verify the equations
Ap ◦ (Λ(σ)⊗ idA) = σ:

(A ( B)⊗ A
Ap - B

�
�
�
�
�

σ

�

C ⊗ A

Λ(σ)⊗ idA

6



Semantics of Interaction 15

andΛ(Ap ◦ (τ ⊗ idA)) = τ for τ : C −→ (A ( B).

Exercise 1.9 Prove thatI is terminal inG, i.e. for eachA there is a unique mor-
phismtA : A −→ I.

This shows thatG is really a model of Affine Logic, in which (unlike in Linear
Logic proper) the Weakening rule is valid. Indeed, tensor has “projections”:

A⊗B idA⊗tB−→ A⊗ I
unitr
∼−→ A.

Exercise 1.10 GivenA,B defineA&B by

MA&B = MA +MB

λA&B = [λA, λB]
PA&B = {inl∗(s) | s ∈ PA} ∪ {inr∗(t) | t ∈ PB}.

(Draw a picture of the game tree ofA&B; it is formed by gluing together the trees
for A andB at the root. There is no overlap because we take the disjoint union
of the alphabets.) Prove thatA&B is the product ofA andB in G, i.e. define
projections

A
fst←− A&B

snd−→ B

and pairing
〈 , 〉 : G(C,A)× G(C,B) −→ G(C,A&B)

and verify the equations

〈σ, τ〉; fst = σ
〈σ, τ〉; snd = τ
〈v; fst, v; snd〉 = v for v : C −→ A&B

Exercise 1.11 Try to define coproducts inG. What is the problem?

Exercise 1.12 A strategyσ onA is history-freeif it satisfies

• sab, tac ∈ σ ⇒ b = c.

• sab, t ∈ σ, ta ∈ PA ⇒ tab ∈ σ.

Prove thatidA, assocA,B,C , symA,B, ApA,B, unitlA, unitrA, fstA,B, sndA,B are
all history-free; and that ifσ andτ are history free so areσ ; τ , σ ⊗ τ , andΛ(σ).
Conclude that the sub-categoryGhf, of history-free strategies is also a model of
IMLL. What about the pairing operation〈σ, τ〉? DoesGhf have binary products?



16 Abramsky

2 Winning Strategies

As we have seen, deterministic strategies can be viewed as partial functions ex-
tended in time. This partiality is appropriate when we aim to model program-
ming languages with general recursion, in which the possibility of non-termination
arises. However we would also like to use game semantics to model logical sys-
tems satisfying Cut Elimination or Strong Normalization. We would therefore like
to find a condition on strategies generalizing totality of functions. The obvious
candidate is to require that at each stage of play, a strategyσ on A has some re-
sponse to every possible move by opponent.

(tot) s ∈ σ, sa ∈ PA ⇒ ∃b : sab ∈ σ

Call a strategytotal if it satisfies this condition. However, totality as so defined
does not suffice ; in particular, it is not closed under composition.

Exercise 2.1 Find gamesA,B,C and strategiesσ : A → B andτ : B → C,
such that

• σ andτ are total

• σ; τ is not total.

(Hint: use infinite chattering inB.)

The best analogy for understanding this fact is with the untypedλ-calculus: the
class of strongly normalizing terms is not closed under application. Thus in the
Tait/Girard method for proving strong normalization in various systems of typed
λ-calculus, one introduces a stronger property which does ensure closure under
application. The approach we will pursue with strategies can be seen as a semantic
analogue of this idea.

The idea is to takewinningstrategies. Given a game A, define P∞
A , the infinite

plays over A, by
P∞A = {s ∈Mω

A | Pref(s) ⊆ PA}

(By Pref(s) we mean the set offiniteprefixes.) Thus the infinite plays correspond
exactly to the infinite branches of the game tree.

Now a setW ⊆ P∞A can be interpreted as designating those infinite plays which
are “wins” for Player. We say thatσ is a winning strategywith respect to W
(notation:σ |= W ), if:

• σ is total

• {s∈ P∞A | Pref(s) ⊆ σ} ⊆ W .



Semantics of Interaction 17

Thusσ is winning if at each finite stage when it is Player’s turn to move it has a
well defined response, and moreover every infinite play followingσ is a win for
Player.

We introduce an expanded of refined notion of game as a pair(A,WA), where
A is a game as before, andWA ⊆ P∞A is the designated set of winning infinite plays
for Player. A winnining strategy for(A,WA) is a strategy forA which is winning
with respect toWA.

We now extend the definitions of⊗ and( to act on the winning set specifica-
tions:

(A,WA)⊗ (B,WB) = (A⊗B,WA⊗B)
(A,WA) ( (B,WB) = (A ( B,WA(B)

where

WA⊗B = {s ∈ P∞A⊗B | s � A ∈ PA ∪WA ∧ s � B ∈ PB ∪WB}
WA(B = {s ∈ P∞A(B | s � A ∈ PA ∪WA ⇒ s � B ∈ WB}

Exercise 2.2 Why did we not define

WA⊗B = {s ∈ P∞A⊗B | s � A ∈ WA ∧ s � B ∈ WB}?

(Hint: consider the switching condition for⊗).

In order to check that these definitions work well, we must show that the construc-
tions on strategies we have introduced in order th model the proof rules of Linear
Logic are well-defined with respect to winning strategies.

Exercise 2.3 Show that, for any(A,WA), the copy-cat strategyidA is a winning
strategy.

Now we consider the crucial case of the Cut rule.

Suppose then thatσ : (A,WA) ( (B,WB) andτ : (B,WB) ( (C,WC). We
want to prove thatσ; τ is total, i.e. that there can be no infinite chattering in B.
Suppose for a contradiction that there is an infinite play

t = sb0b1 · · · ∈ σ‖τ

with all moves after the finite prefixs in B. Thent � A,B is an infinite play in
A ( B following σ, while t � B,C is an infinite play inB ( C following τ .
Sinceσ is winning andt � A is finite, we must havet � B ∈ WB. But then since
τ is winning we must havet � C ∈ WC , which is impossible sincet � C is finite.

Exercise 2.4 Give a direct proof (not using proof by contradiction) that winning
stratregies compose.



18 Abramsky

Exercise 2.5 Prove thatidA, assocA,B,C , symA,B, ApA,B, unitlA, unitrA, fstA,B,
sndA,B are all winning strategies; and that ifσ and τ are winning, so areσ ; τ ,
σ ⊗ τ , 〈σ, τ〉, andΛ(σ).

Exercise 2.6 Verify that the total strategies

σ : B→ B

correspond exactly to the total functions on the booleans.

Exercise 2.7 Consider a game of binary streamsStr

��
◦

��
•

@A
GF

0

//
BC
ED

1

oo

with plays∗b1 ∗ b2 ∗ b3 . . ., alternating between requests for data by Opponent and
bits supplied by Player. LetWStr be all infinite plays of this game.

Verify that the winning strategies on (Str,WStr) correspond exactly to the infinite
binary sequences. Verify that the winning strategies

σ : (Str,WStr)→ (Str,Wstr)

induce functions which map infinite streams to infinite streams. Can you charac-
terize exactly which functions on the domain

{0, 1}∗ ∪ {0, 1}ω

with the prefix ordering are induced by winning strategies?

3 Polymorphism

Our aim now is to use game semantics to give a model for polymorphism. We
extend our notation for types with type variablesX,Y, ... and with second order
quantifiers

∀X.A

As a test case, we want our model to have the property that the interpretation it
yields of the polymorphic (affine) booleans

∀X.X ( (X ( X)

has only two elements, corresponding to the denotations of the terms

tt
def≡ ΛX .λx , y : X .x



Semantics of Interaction 19

ff
def≡ ΛX .λx , y : X .y

Firstly, we need some control over thesizeof the universe of types. To achieve
this, we assume a non empty setV satisfying

V + V ⊆ V

(for example takeV = {0, 1}∗).
Now we define a gameU by:

MU = V + V

λU = [KP,KO]

PU = Malt
U .

(HereKP is the constant function valued atP .) We can define a partial order on
games by:

A E B
def≡ MA ⊆ MB ∧ λA = λB � MA ∧ PA ⊆ PB

Now define
GU = {A ∈ Obj(G) | A E U}

We define avariable type(in k variables) to be a function (monotone with
respect toE)

F : Gk
U → GU

Note that
A,B ∈ GU ⇒ A⊗B,A ( B ∈ GU

(that was the point of havingV + V ⊆ V)

Exercise 3.1 (If you care about details) The above is notquite true. Amend the
definition ofA⊗B, A ( B slightly to make it true.

Thus variable types will be closed under⊗ and(. GivenF,G : Gk
U → GU , we

can define
F ⊗G( ~A) = F ( ~A)⊗G( ~A)

F ( G( ~A) = F ( ~A) ( G( ~A)

A uniform strategyσ on a variable typeF is defined to be a strategy onF (~U)

such that, for all~A ∈ Gk
U , σ ~A is a well-defined strategy onF ( ~A), whereσ ~A is

defined inductively by

σ ~A = {ε} ∪ {sab | s ∈ σ ~A, sa ∈ PF ( ~A), sab ∈ σ}

(NB: in this notation,σ = σ~U ).



20 Abramsky

Exercise 3.2 Show that the following properties hold for a uniform strategyσ on
F :

(i) ~A E ~B (component-wise)⇒ σ ~A = σ ~B ∩ PF ( ~A) ⊆ σ ~B

(ii) if ( ~Ai |i ∈ I) is aE-directed family inGk
U , then

σ∨
i∈I

~Ai
=

⋃
i∈Iσ ~Ai

where∨
i∈I
~Ai is the directed join of the~Ai (defined by component-wise union),

and
⋃

i∈Iσ ~Ai
is the directed union of the strategiesσ ~Ai

.

Our aim now is to show that, for eachk ∈ ω, we obtain a categoryG(k) with:

objects : variable typesF : Gk
U → GU

morphisms : σ : F → G are uniform strategiesσ onF ( G

MoreoverG(k) is an autonomous category.

The idea is that all the structure is transferred pointwise fromG to G(k). E.g if
σ : F ( G, τ : G ( H, thenσ; τ : F → H is given byσ; τ = σ~U ; τ~U .

Exercise 3.3 Check thatσ; τ is a well-defined uniform strategy onF ( H.

Similarly, we define
idF = idF (~U)

ApF,G = ApF (~U),G(~U)

etc.

Now we define a “base category”B with the objectsGk
U , k ∈ ω, and E-

monotone functions as morphisms. For each objectGk
U of B, we have the au-

tonomous categoryG(k). For each monotone

F = 〈F1, . . . , Fl〉 : Gk
U → Gl

U

we can define a functor
F ∗ : G(l)→ G(k)

by
F ∗(G)( ~A) = G(F ( ~A))

F ∗(σ ~A) = σF ( ~A)

Proposition 3.1 The above defines a (strict) indexed autonomous category.

At this point, we have enough structure to interpret types and terms with type
variables. It remains to interpret the quantifiers. For notational simplicity, we
shall focus on the case∀X.A(X) whereX is the only type variable free inA.



Semantics of Interaction 21

Semantically A will be interpreted by a functionF : GU → GU . We must define a
gameΠ(F ) ∈ GU as the interpretation of∀X.A

Corresponding to the polymorphic type inference rule(∀ − elim)
Γ ` t : ∀X.A

Γ ` t{B} : A[B/X]
we must define a uniform strategy

π : KΠ(F )→ F.

(HereKΠ(F ) : GU → GU is the constant function valued atΠ(F ). Note that
K = t∗U wheret : U → 1 = G0

U is the map to the terminal object inB.)

Corresponding to the type inference rule

(∀ − intro)
Γ ` t : A

Γ ` ΛX.t : ∀X.A
if X 6∈ FTV(Γ)

we must prove the following universal property:

for everyC ∈ GU and uniform strategyσ : KC → F there exists a
unique strategyΛ2(σ) : C → Π(F ) such that

KΠ(F )
π - F

�
�
�
�
�

σ

�

KC

KΛ2(σ)

6

This says that there is an adjunction

GU = GU(0)

t∗U -
⊥�

Π(F )

GU(1)

Furthermore, we must show that the Beck-Chevalley condition holds (see (Crole
1994)).

Remark 3.1 More generally, we should show the existence of adjunctions

GU = GU(k)

p∗-
⊥�

Πk(F )

GU(k + 1)

wherep : Gk+1
U → Gk

U is the projection function.

Now, how are we to construct the gameΠ(F )? Logically,Π is a second-order
quantifier. Player must undertake to defendF at any instanceF (A), whereA is
specified by Opponent. If Opponent were to specify the entire instanceA at the



22 Abramsky

start of the game, this would in general require an infinite amount of information to
be specified in a finite time, violating a basic continuity principle of computation
(“Scott’s axiom”). Instead we propose the metaphor of the “veil of ignorance” (cf.
John Rawls,A Theory of Justice). That is, initially nothing is known about which
instance we are playing in. Opponent progressively reveals the “game board” ; at
each stage, Player is constrained to play within the instancethus far revealedby
Opponent.

Time
O 1
P A1 2
O 3
P A2 4
O 5
P A3 6
...

...

This intuition is captured by the following definition.

MΠ(F ) = MF (U)

λΠ(F ) = λF (U)

PΠ(F ) is defined inductively as follows:

PΠ(F ) = {ε}
∪ {sa | s ∈ Peven

Π(F ) ∧ ∃A.sa ∈ PF (A)}
∪ {sab | sa ∈ Podd

Π(F ) ∧ ∀A.sa ∈ PF (A) ⇒ sab ∈ PF (A)}

The first clause in the definition ofPΠ(F ) is the basis of the induction. The
second clause refers to positions in which it is Opponent’s turn to move. It says
that Opponent may play in any way which is valid insomeinstance (extending
the current one). The final clause refers to positions in which it is Player’s turn
to move. It says that Player can only move in a fashion which is valid inevery
possible instance.

For the polymorphic projection

Π(F )
πA→ F (A)

πA plays copy-cat betweenΠ(F ) andF (A). This is uniform, witnessed by the
“global copy-cat”idF (U).

Why does this definition work? Consider the situation

Π(F ) → F (A)
a

a



Semantics of Interaction 23

At this stage, it is Opponent’s turn to move, and of course there are many moves
in Π(F ) which would not be valid inF (A). However, Opponent inΠ(F ) in con-
travariant (i.e negative) position must play as Player inΠ(F ), and hence is con-
strained to respond toa only in a fashion which is valid ineveryinstance in which
a can be played, and which in particular is valid inF (A). Hence Opponent’s
response can safely be copied back intoF (A).

Now for the universal property. Given uniformσ : KC → F , we define

Λ2(σ) = σ : C → Π(F )

That this is valid follows from the uniformity ofσ so that at each stage its response
must be valid inany instance that we might be in. It is then clear that

KΛ2(σ); π = σ; idFU = σ

and hence that this definition fulfills the required properties.

Since we are interested in modeling IMLL2 (second order IMLL) we will refine
our model with the notion of winning strategy, as explained in the previous section.

Firstly, we briefly indicate the additional structure required of a specification
structure in order to get a model for IMLL2 in the refined category.

We assume that variable types are modeled by monotone functionsF : GU →
GU equipped with actions

FA : PA→ P (FA)

for eachA ∈ GU .

Also there is an action:

ΠF : 1→ P (Π(F ))

satisfying:

(∀ − elim) ΠF{πA}φ (A ∈ GU , φ ∈ P (FA))
(∀ − intro) (∀A ∈ GU , ψ ∈ PA. φ{σA}FA(ψ))⇒ φ{Λ2(σ)}ΠF .

Now in the case of the specification structureW for winning strategies, we
define:

ΠF = {s ∈ P∞Π(F ) | ∀A ∈ GU ,W ⊆ P∞A . s ∈ P∞F (A) ⇒ s ∈ FA(W )}.

Exercise 3.4 Verify that this satisfies(∀-intro) and(∀-elim).

Thus we have a game semantics for IMLL2 in which terms denote winning strate-
gies. How good is this semantics? As a basic test, let us look at the type

∀X.X ( (X ( X)



24 Abramsky

which we write as
∀X.X1 ( (X2 ( X3)

using indices to refer to the occurrences ofX. What are the winning strategies for
this type? Note that the first move must be inX3. Because of the definition ofΠ,
Player can only respond by playing the same move in a negative occurrence ofX,
i.eX1 orX2. Suppose Player responds inX2:

∀X.X1 ( (X2 ( X3)
a

a

At this point, by the switching condition Opponent must respond inX2, say
with a moveb ; what can Player do next? If he were playing as the termΛX.λx, y :
X.y, then he should copyb back toX3. However there is another possiblity
(pointed out by Sebastian Hunt): namely, Player canplay a in X1, and continue
thereafter by playing copy-cat betweenX1 andX3. This certainly yields a winning
strategy, but does not correspond to the denotation of any term.

To eliminate such undesirable possibilities, we introduce a constraint on strate-
gies. Recall from Exercise 1.10 that a strategy ishistory-freeif its response at any
point depends only on the last move by Opponent: that is, if it satisfies:

sab ∈ σ, ta ∈ PA ⇒ tab ∈ σ.

The history-free strategies suffice to model the multiplicatives and polymorphism,
so we get a modelGhf

W of IMLL2.

Now consider again the situation

∀X.X1 ( (X2 ( X3)
a

a
b

Player can only respond tob by copyingb intoX3 if he is following a history-free
strategy: the option of playinga inX1 is not open to him, becausea is not “visible”
to him. Thus he can only proceed by

∀X.X1 ( (X2 ( X3)
a

a
b

b

Moreover, Player must continue to play copy-cat betweenX2 andX3 ever there-
after, since the information available to him at each stage is only the move just
played by Opponent.



Semantics of Interaction 25

Note also that Player must play in the same way, regardless of which move is
initially made by Opponent. For example, suppose for a contradiction that Player
responded toa1, by copying it toX1, and toa2 by copying it toX2. Now consider
the situation:

∀X. X1 ( (X2 ( X3)
a1

a1

b1
b1
a2

a2

Since Player is following a history-free strategy, he mustalwaysrespond toa2

by copying it toX2; but the above position is clearly not valid, since there is an
instanceA with PA = Pref{a1b1a2} in which a2 cannot be played as an initial
move.

Thus we conclude that for our test case the modelGhf
W does indeed have the

required property that the only strategies for the game

∀X.X1 ( (X2 ( X3)

are the denotations of the terms:

ΛX.λx, y : X.x ΛX.λx, y : X.y
copycat betweenX1 andX3 copycat betweenX2 andX3.

Exercise 3.5 Show that the only two strategies inGhf
W for the game

∀X. (X ⊗X) ( (X ⊗X)

are those corresponding to the identity and the twist map.

Open problem For which class of (closed) types of IMLL2 do we get a “Full
Completeness” result, i.e. that all strategies at that type inGhf

W are definable in
IMLL2?

4 Relational Parametricity

In this section, we investigate how the notion of relational parametricity can be
adapted to the setting of games.

Firstly, we go back to the general level of Specification Structures. We use some
notions due to Andy Pitts (1996).

Givenφ, ψ ∈ PA, we define:

φ ≤ ψ ≡ φ{idA}ψ.



26 Abramsky

This is always a preorder by(ss1)and(ss2). Say that the specification structureS
is posetalif it is a partial order (i.e. antisymmetric). Now the notion of meet of
properties

∧
i∈I φi can be defined onPA. Say thatS is meet-closedif it is posetal

and eachPA has all meets.
Now we define a notion ofrelationson games. We shall focus on binary re-

lations. Say thatR is a relation fromA to B (notation:R ⊆ A × B) if R is a
non-empty subsetR ⊆ PA × PB satisfying:

• R(s, t) ⇒ |s| = |t|.

• R(sa, tb) ⇒ R(s, t).

(SoR is a length-preserving non-empty prefixed closed subset).
We shall define a specification structureR on the product categoryG × G by

taking P (A,B) to be the set of relationsR ⊆ A × B. Given a relationR ⊆
A × B, we lift it to a relationR̂ between strategies onA and strategies onB, by
the following definition:

R̂(σ, τ) ⇐⇒ ∀s ∈ σ, t ∈ τ. R(sa, ta′)
⇒ [(sa ∈ dom(σ) ⇔ ta′ ∈ dom(τ))

∧ sab ∈ σ, ta′b′ ∈ τ ⇒ R(sab, ta′b′)]

This definition is “logical relations extended in time”; it relativizes the usual clause:

R(x, y) ⇒ [(fx↓ ⇔ gy↓) ∧ (fx↓, gy↓ ⇒ R(fx, gy))]

to the context (previous history)s. It can also be seen as a form of bisimulation:

“If σ andτ reach related states atP ’s turn to move, then one has a
response iff the other does, and the states after the response are still
related.”

Also, if R ⊆ A× A′ andS ⊆ B ×B′, then we define:

R⊗(A, A′), (B, B′) S = { (s, t) ∈ PA⊗B × PA′⊗B′ |
R(s � A, t � A′) ∧ S(s � B, t � B′)
∧ out∗(s) = out∗(t)) }

whereout : MA + MB → {0, 1} is given by:

out = [K0,K1]

Similarly we define:

R ((A, A′), (B, B′) S = { (s, t) ∈ PA(B × PA′(B′ |
R(s � A, t � A′ ∧ S(s � B, t � B′)
∧ out∗(s) = out∗(t)) }

Now we define:
R{(σ, τ)}S ≡ R̂ ( S(σ, τ)



Semantics of Interaction 27

Proposition 4.1 This is a specification structure inG × G. In particular,

R{(σ, τ)}S, S{(σ′, τ ′)}T =⇒ R{(σ; σ′, τ ; τ ′)}T

A

R
@@@

@@@
σ // B

S
@@@

@@@
τ // C

T
BBB

BBB
A′

σ′ // B τ ′ // C ′

b1

⇐=S
>>>

>>>
c

T
@@@@

@@@@
b′1

⇓

c′

b2

S
>>>

>>>
b′2

⇓

a

R
>>>>

>>>>
bk

⇐= S
>>>

>>>
a′ b′k

Exercise 4.1 Prove this! (The above “logical waterfall” diagram gives the idea of
the proof.)

We shall in fact be more interested in “pulling back” this specification structure
along the diagonal functor∆ : G → G × G. That is, we are interested in the
categoryGR with objects(A,R) whereR ⊆ A× A and morphismsσ : (A,R)→
(B, S) which are strategiesσ : A → B such thatR̂ ( S(σ, σ). We are also
interested in the categoryGhf

WR where we combine the winning strategy and rela-
tional structures, so that objects are(A,WA, RA), whereWA is a set of designated
winning plays, andRA ⊆ A × A is a relation andσ : (A,WA, RA) is a strategy
σ : A→ B such thatWA{σ}WB ∧RA{σ}RB.

Now we build a model of IMLL2 by refining our previous model with this
specification structureR. A variable type will now be a monotone function

F : (GU ,E)→ (GU ,E)

with an action
FA : PA→ P (FA).



28 Abramsky

We assume that the specification structure is monotone, in the sense that:

A E B ⇒ PA ⊆ PB

(this is easily seen to hold forR andW ), and that

PA ⊂ - PB

P (FA)

FA

?
⊂ - P (FB)

FB

?

We also require that ifφ ∈ PA, ψ ∈ PA,A E A′ andB E B′, then

φ{F}A,Bψ ⇔ φ{F}A′,B′ψ.

We further assume that the specification structure is meet-closed. Then we define:

ΠF
df
=

∧
{FA(φ) | A ∈ GU , φ ∈ PA} =

∧
{FA(φ) | φ ∈ PU} (4.1)

(This latter equality holds because of the above monotonicity properties).
The fact that (∀-intro) and (∀-elim) are satisfied then automatically holds be-

cause of the definition ofΠF as a meet.
To apply this construction toR, we must show that it is meet-closed.
Firstly, we characterise the partial order on properties inR.

Proposition 4.2

R ≤ S ⇔ Reven(s, t) ∧ S(sa, tb) ⇒ R(sa, tb)
∧ Sodd(s, t) ∧R(sa, tb) ⇒ S(sa, tb).

We can read this as: at O-movesS ⊆ R and at P-movesR ⊆ S.

a1

⇐=R
@@@

@@@
a1

S
@@@

@@@
b1 b1

a2

R
@@@

@@@ =⇒

a2

S
@@@

@@@
b2 b2

a3

S
@@@

@@@⇐=

b3



Semantics of Interaction 29

Proposition 4.3
∧

i∈I Ri is defined inductively by:∧
i∈I Ri = {(ε, ε)}

∪ {(sa, ta′) | (s, t) ∈ ∧i∈IR
even
i ∧

∃i ∈ I.Ri(sa, ta
′)}

∪ {(sab, ta′b′) | (sa, ta′) ∈ ∧i∈IR
odd
i ∧

∀i ∈ I.Ri(sa, ta
′) ⇒ Ri(sab, ta

′b′)}.

Note the similarity between this definition and that ofPΠ(F ), which is in fact
the unary case of the above, indexed overP⊆neprefPF (U).

Exercise 4.2 1. Verify these propositions.

2. For the specification structureW, show that:

• V ≤ W ⇔ V ⊆ W .

•
∧

i∈I Wi =
⋂

i∈I Wi.

Thus we obtain a modelGhf
WR of IMLL, incorporating both:

• the refinement to winning strategies

• a notion of “relational parametricity”.

References

Abramsky, S., Gay, S. J., Nagarajan, R., (1996a) ‘Specification structures and propositions-
as-types for concurrency’, In G. Birtwhistle and F. Moller, editors, Logics for Concur-
rency: Structure vs. Automata,Proceedings of the VIIIth Banff Higher Order Work-
shop, Lecture notes in Computer Science, pages 5–40, Springer Verlag.

Abramsky, S., Gay, S. J., Nagarajan, R., (1996b) ‘Interaction categories and the Founda-
tions of Typed Concurrent Programming’, in Proceedings of the Nato Advanced Study
Institute on Deductive Program Design, held in Marktoberdorf 1994, pages 35–113,
Springer Verlag.

Abramsky, S., Jagadeesan, R., (1994) ‘Games and full completeness for multiplicative lin-
ear logic’,Journal of Symbolic Logic, 59(2), 543 – 574. Also appeared as Technical
Report 92/24 of the Department of Computing, Imperial College of Science, Technol-
ogy and Medicine.

Abramsky, S., Jagadeesan, R., Malacaria, P., (1995) ‘Full abstraction for PCF’, Submitted
for publication, ftp-able attheory.doc.ic.ac.uk in directorypapers/Malacaria .

Abramsky, S., McCusker, G., (1995) ‘Games for recursive types’, In C. L. Hankin, I. C. Mackie,
and R. Nagarajan, editors, Theory and Formal Methods of Computing 1994: Proceed-
ings of the Second Imperial College Department of Computing Workshop on Theory
and Formal Methods. Imperial College Press.



30 Abramsky

Abramsky, S., McCusker, G., (1995) ‘Games and full abstraction for the lazyλ-calculus’,
in the LICS’95 proceedings.

Crole, R., (1994) ‘Categories for Types’, Cambridge University Press.

Danos, V., Herbelin, H., Regnier, L., (1996) ‘Games and abstract machines’, in the LICS’96
proceedings.

Girard, J.-Y., Lafont, Y., Taylor, P., (1989) ‘Proofs and types’, Cambridge University Press.

Girard, J.-Y., (1995) ‘A survey of Linear Logic’, in Advances in Linear Logic, ed. Y. La-
font, Cambridge University Press 1995.

Hyland, J. M. E., Ong, C.-H. L, (1995) ‘On full abstraction for PCF: I, II, and III’, submit-
ted for publication, ftp-able attheory.doc.ic.ac.uk in directorypapers/Ong .

McCusker, G., (1996a) ‘Games and full abstraction for FPC’, in the LICS’96 proceedings.

McCusker, G., (1996b) ‘Games and full abstraction for a functional metalanguage with
recursive types’, Phd thesis, University of London, to appear.

Nickau, H., (1994) ‘Hereditarily sequential functionals’,Proceedings of the Symposium
on Logical Fondations of Computer Science: Logic at St. Petersburg, Lecture notes in
Computer Science. Springer Verlag.

Ong, C.-H. L., (1996) ‘A semantic view of classical proofs’, in the LICS’96 proceedings.

Pitts, A. M., (1996) ‘Relational properties of domains’, Information and Computation, vol.
127, no. 2, 66–90.


