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1

Introduction and Overview

1.1 Origins

Let us begin with the problems which gave rise to Domain Theory:

1. Least fixpoints as meanings of recursive definitionsRecursive definitions of

procedures, data structures and other computational entities abound in program-
ming languages. Indeed, recursion is the basic effective mechanism for describ-
ing infinite computational behaviour in finite terms. Given a recursive definition:

X=..X.. (1)

How can we give a non-circular account of its meaning? Suppose we are work-
ing inside some mathematical structuve We want to find an elememnt € D

such that substituting for z in (1) yields a valid equation. The right-hand-side

of (1) can be read as a function &f, semantically ag: D — D. We can now

see that we are asking for an elemért D such thatl = f(d)—that is, for a
fixpointof f. Moreover, we want aniform canonicaimethod for constructing
such fixpoints for arbitrary structurd3 and functionsf: D — D within our
framework. Elementary considerations show that the usual categories of math-
ematical structures either fail to meet this requirement at all (sets, topological
spaces) or meet it in a trivial fashion (groups, vector spaces).

. Recursive domain equations. Apart from recursive definitions of computa-

tional objects, programming languages also abound, explicitly or implicitly, in
recursive definitions oflatatypes The classical example is the type-frae
calculus [Bar84]. To give a mathematical semantics forXfoalculus is to find

a mathematical structur® such that terms of tha-calculus can be interpreted

as elements oD in such a way that application in the calculus is interpreted
by function application. Now consider the self-application termux2. By the

usual condition for type-compatibility of a function with its argument, we see
that if the second occurrence ofin zz has typeD, and the whole termz has

type D, then the first occurrence must have, or be construable as having, type
[D — D]. Thus we are led to the requirement that we have

[D—>D]§D.

If we view [. — ] as afunctor F': C°” x C — C over a suitable categoi@

of mathematical structures, then we are looking for a fixpéingz F(D, D).

Thus recursive datatypes again lead to a requirement for fixpoints, but now lifted
to the functorial level. Again we want such fixpoints to exist uniformly and
canonically.

This second requirement is even further beyond the realms of ordinary mathemati-

cal experience than the first. Collectively, they call for a novel mathematical theory to
serve as a foundation for the semantics of programming languages.



A first step towards Domain Theory is the familiar result that every monotone
function on a complete lattice, or more generally on a directed-complete partial or-
der with least element, has a least fixpoint. (For an account of the history of this
result, see [LNS82].) Some early uses of this result in the context of formal lan-
guage theory were [Ard60, GR62]. It had also found applications in recursion theory
[Kle52, Pla64]. Its application to the semantics of first-order recursion equations and
flowcharts was already well-established among Computer Scientists by the end of the
1960’s [dBS69, Bek69, Bek71, Par69]. But Domain Theory proper, at least as we un-
derstand the term, began in 1969, and was unambiguously the creation of one man,
Dana Scott [Sco69, Sco70, Sco71, Sco72, Sco93]. In particular, the following key
insights can be identified in his work:

1. Domains as types.The fact that suitable categories of domains eagesian
closed and hence give rise to models of typgdalculi. More generally, that
domains give mathematical meaning to a broad class of data-structuring mecha-
nisms.

2. Recursive types.Scott's key construction was a solution to the “domain equa-
tion”

D=[D— D

thus giving the first mathematical model of the type-feeealculus. This led

to a general theory of solutions of recursive domain equations. In conjunction
with (1), this showed that domains form a suitable universe for the semantics of
programming languages. In this way, Scott provided a mathematical foundation
for the work of Christopher Strachey on denotational semantics [MS76, Sto77].
This combination of descriptive richness and a powerful and elegant mathemati-
cal theory led to denotational semantics becoming a dominant paradigm in The-
oretical Computer Science.

3. Continuity vs. Computability. Continuityis a central pillar of Domain theory.
It serves as a qualitative approximation to computability. In other words, for
most purposes to detect whether some construction is computationally feasible
it is sufficient to check that it is continuous; while continuity is an “algebraic”
condition, which is much easier to handle than computability. In order to give
this idea of continuity as a smoothed-out version of computability substance, it
is not sufficient to work only with a notion of “completeness” or “convergence”;
one also needs a notion approximation which does justice to the idea that
infinite objects are given in some coherent way as limits of their finite approx-
imations. This leads to considering, not arbitrary complete partial orders, but
the continuousones. Indeed, Scott’'s early work on Domain Theory was semi-
nal to the subsequent extensive development of the theory of continuous lattices,
which also drew heavily on ideas from topology, analysis, topological algebra
and category theory [GHKS0].

4. Partial information. A natural concomitant of the notion of approximation in
domains is that they form the basis of a theory of partial information, which ex-
tends the familiar notion of partial function to encompass a whole spectrum of



“degrees of definedness”. This has important applications to the semantics of
programming languages, where such multiple degrees of definition play a key
role in the analysis of computational notions such as lazy vs. eager evaluation,
and call-by-name vs. call-by-value parameter-passing mechanisms for proce-
dures.

General considerations from recursion theory dictate that partial functions are
unavoidable in any discussion of computability. Domain Theory provides an

appropriately abstract, structural setting in which these notions can be lifted to
higher types, recursive types, etc.

1.2 Our approach

It is a striking fact that, although Domain Theory has been around for a quarter-
century, no book-length treatment of it has yet been published. Quite a number of
books on semantics of programming languages, incorporating substantial introduc-
tions to domain theory as a necessary tool for denotational semantics, have appeared
[Sto77, Sch86, Gun92b, Win93]; but there has been no text devoted to the underlying
mathematical theory of domains. To make an analogy, it is as if many Calculus text-
books were available, offering presentations of some basic analysis interleaved with its
applications in modelling physical and geometrical problems; but no textbook of Real
Analysis. Although this Handbook Chapter cannot offer the comprehensive coverage
of a full-length textbook, it is nevertheless written in the spirit of a presentation of Real
Analysis. That is, we attempt to give a crisp, efficient presentation of the mathematical
theory of domains without excursions into applications. We hope that such an account
will be found useful by readers wishing to acquire some familiarity with Domain The-
ory, including those who seek to apply it. Indeed, we believe that the chances for
exciting new applications of Domain Theory will be enhanced if more people become
aware of the full richness of the mathematical theory.

1.3 Overview
Domains individually

We begin by developing the basic mathematical language of Domain Theory, and then
present the central pillars of the theory: convergence and approximation. We put con-
siderable emphasis on bases of continuous domains, and show how the theory can be
developed in terms of these. We also give a first presentation of the topological view
of Domain Theory, which will be a recurring theme.

Domains collectively

We study special classes of maps which play a key role in domain theory: retractions,
adjunctions, embeddings and projections. We also look at construction on domains
such as products, function spaces, sums and lifting; and at bilimits of directed systems
of domains and embeddings.



Cartesian closed categories of domains

A particularly important requirement on categories of domains is that they should be
cartesian closed (i.e. closed under function spaces). This creates a tension with the
requirement for a good theory of approximation for domains, since neither the category
CONT of all continuous domains, nor the categdkizG of all algebraic domains

is cartesian closed. This leads to a non-trivial analysis of necessary and sufficient
conditions on domains to ensure closure under function spaces, and striking results
on the classification of the maximal cartesian closed full subcategori@®dfT and

ALG . This material is based on [Jun89, Jun9Q].

Recursive domain equations

The theory of recursive domain equations is presented. Although this material formed
the very starting point of Domain Theory, a full clarification of just what canonicity of
solutions means, and how it can be translated into proof principles for reasoning about
these canonical solutions, has only emerged over the past two or three years, through
the work of Peter Freyd and Andrew Pitts [Fre91, Fre92, Pit93b]. We make extensive
use of their insights in our presentation.

Equational theories

We present a general theory of the construction of free algebras for inequational theo-
ries over continuous domains. These results, and the underlying constructions in terms
of bases, appear to be new. We then apply this general theory to powerdomains and
give a comprehensive treatment of the Plotkin, Hoare and Smyth powerdomains. In ad-
dition to characterizing these as free algebras for certain inequational theories, we also
prove representation theorems which characterize a powerdomaioagia certain
space of subsets @¥; these results make considerable use of topological methods.

Domains and logic

We develop the logical point of view of Domain Theory, in which domains are charac-
terized in terms of their observable properties, and functions in terms of their actions
on these properties. The general framework for this is provided by Stone duality; we
develop the rudiments of Stone duality in some generality, and then specialize it to
domains. Finally, we present “Domain Theory in Logical Form” [Abr91b], in which a
metalanguage of types and terms suitable for denotational semantics is extended with
a language of properties, and presented axiomatically as a programming logic in such
a way that the lattice of properties over each type is the Stone dual of the domain de-
noted by that type, and the prime filter of properties which can be proved to hold of
a term correspond under Stone duality to the domain element denoted by that term.
This yields a systematic way of moving back and forth between the logical and deno-
tational descriptions of some computational situation, each determining the other up to
isomorphism.
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2 Domains individually

We will begin by introducing the basic language of Domain Theory. Most topics we
deal with in this section are treated more thoroughly and at a more leisurely pace in
[DP9Q].

2.1 Convergence
2.1.1 Posets and preorders

Definition 2.1.1. A setP with a binary relationC is called apartially ordered sedr
posetif the following holds for alkc, y, z € P:

1. x C x (Reflexivity)
2. x CyAyLC z= x C z (Transitivity)
3. 2 CyAy L x= z =y (Antisymmetry)

Small finite partially ordered sets can be drawn as line diagrams (Hasse diagrams).
Examples are given in Figure 1. We will also allow ourselves to draw infinite posets
by showing a finite part which illustrates the building principle. Three examples are
given in Figure 2. We prefer the notatiahto the more commort because the order
on domains we are studying here often coexists with an otherwise unrelated intrinsic
order. The flat and lazy natural numbers from Figure 2 illustrate this.

If we drop antisymmetry from our list of requirements then we get what is known
aspreorders This does not change the theory very much. As is easily seen, the sub-
relationC= N I is in any case an equivalence relation and if two elements from two
equivalence classes € A,y € B are related byZ, then so is any pair of elements
from A and B. We can therefore pass from a preorder to a canonical partially ordered
set by taking equivalence classes. Pictorially, the situation then looks as in Figure 3.

Many notions from the theory of ordered sets make sense even if reflexivity fails.
Hence we may sum up these considerations with the sldgeder theory is the study
of transitive relations A common way to extract the order-theoretic content from a
relationz is to pass to the transitive closure 8f defined a J, .y, (o) 1"

Ordered sets can be turned upside down:

Proposition 2.1.2. If (P, C) is an ordered set then so B°? = (P, J).

true false

A

The flat booleans The four-element lattice The four-element chain

Figure 1: A few posets drawn as line diagrams.
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. 2
2 1
o 1 2 3
1 oo 0
o N/
ordinal flat lazy

Figure 2: Three versions of the natural numbers.

O O O O

Figure 3: A preorder whose canonical quotient is the four-element lattice.

One consequence of this observation is that each of the concepts introduced below
has a dual counterpart.

2.1.2 Notation from order theory
The following concepts form the core language of order theory.
Definition 2.1.3. Let (P, C) be an ordered set.

1. A subsetd of P is anupper seff x € A impliesy € A for all y 3 z. We denote
by T A the set of all elements above some elememt.df no confusion is to be
feared then we abbreviatgz} asTx. The dual notions arower setand | A.

2. An element € P is called anupper boundor a subsetd C P, if x is above
every element ofl. We often writed C x in this situation. We denote mp(A)
the set of all upper bounds of. Dually, Ib(A) denotes the set of lower bounds
of A.

3. Anelement € P is maximalif there is no other element &f above it:TxNP =
{z}. Minimal elements are defined dually. For a subdetC P the minimal
elements ofib(A) are calledminimal upper bounds of. The set of all minimal
upper bounds ofl is denoted bynub(A).

11



4. If all elements of” are below a single element € P, thenz is said to be the
largest elementThe dually definetbast elementf a poset is also calledottom
and is commonly denoted by In the presence of a least element we speak of a
pointed poset

5. If for a subsetd C P the set of upper bounds has a least elementhenx
is called thesupremunor join. We writex = | | A in this case. In the other
direction we speak ohfimum or meetand writez = [ ] A.

6. A partially ordered seP is aLl-semilattice(r-semilatticg if the supremum (in-
fimum) for each pair of elements exists.Afis both aL- and ari-semilattice
thenP is called alattice A lattice iscompletef suprema and infima exist for all
subsets.

The operations of forming suprema, resp. infima, have a few basic properties which
we will use throughout this text without mentioning them further.

Proposition 2.1.4. Let P be a poset such that the suprema and infima occurring in the
following formulae exist. 4, B and all A; are subsets aP.)

1. AC Bimplies| |AC | |Band[]A3[]B.

2. [JA=1J(lA) and[ A =T](14).
3. IfA=J,c; Aithen| JA = | ],.;(L] A;) and similarly for the infimum.

Proof. We illustrate order theoretic reasoning with suprema by showing (3). The el-
ement| | A is above each elemehi 4; by (1), so it is an upper bound of the set
{JAi|ieI}. Sincel ., (| ]A:) is the least upper bound of this set, we have
1A 3 [;c;(LJA:). Conversely, each € A is contained in somel; and there-
fore below the correspondinigl A; which in turn is below |, (| | 4;). Hence the
right hand side is an upper bound dfand ag | A is the least such, we also have

UAC Uier (LA 0

Let us conclude this subsection by looking at an important family of examples of

complete lattices. SupposE is a set andC is a family of subsets oX. We call

L aclosure systenf it is closed under the formation of intersections, that is, when-
ever each member of a family;);c; belongs tol then so doe§),_; A;. Because

we have allowed the index set to be empty, this implies &ias in L. We call the
members ofl hulls or closed sets Given an arbitrary subset of X, one can form

N {B € L | A C B}. This is the least superset dfwhich belongs tdl and is called
thehull or theclosureof A.

Proposition 2.1.5. Every closure system is a complete lattice with respect to inclusion.

Proof. Infima are given by intersections and for the supremum one takes the closure of
the union. O

12



2.1.3 Monotone functions

Definition 2.1.6. Let P and @ be partially ordered sets. A functiofi: P — Q@ is
calledmonotondf for all z,y € P with 2z C y we also havef(z) C f(y) in Q.

‘Monotone’ is really an abbreviation for ‘monotone order-preserving’, but since we
have no use for monotone order-reversing maps(y = f(z) 3 f(y)), we have
opted for the shorter expression. Alternative terminologigdgone(vs. antitong or
the other half of the full expressionrder-preservingnapping.

The set[P ™ Q] of all monotone functions between two posets, when ordered
pointwise(i.e. f C g if forall € P, f(z) C g(x)), gives rise to another partially
ordered set, thenonotone function spadeetweenP and@. The categorfPOSET of
posets and monotone maps has pleasing properties, see Exercise 2.3.9(9).

Proposition 2.1.7. If L is a complete lattice then every monotone map ffoto L has
a fixpoint. The least of these is given by

[z eL|f(z)Ca},
the largest by
|_|{x€L|fo(x)}.

Proof. Let A = {z € L | f(z) C z} anda = [ | A. For eachz € A we havea C =
andf(a) C f(z) C z. Taking the infimum we gef(a) C[]f(4) C[]A = a and
a € A follows. On the other hand; € A always impliesf(xz) € A by monotonicity.
Applying this toa yields f(a) € A and hence C f(a). O

For lattices, the converse is also true: The existence of fixpoints for monotone maps
implies completeness. But the proof is much harder and relies on the Axiom of Choice,
see [Mar76].

2.1.4 Directed sets

Definition 2.1.8. Let P be a poset. A subset of P is directed if it is nonempty and
each pair of elements of has an upper bound iA. If a directed sed has a supremum
then this is denoted Hy| " A.
Directed lower sets are calleideals Ideals of the form « are calledprincipal
The dual notions aréltered setand (principal) filter.

Simple examples of directed sets ateains These are non-empty subsets which
are totally ordered, i.e. for each pairy eitherxz C y ory C z holds. The chain
of natural numbers with their natural order is particularly simple; subsets of a poset
isomorphic to it are usually called-chains. Another frequent type of directed set is
given by the set of finite subsets of an arbitrary set. Using this and Proposition 2.1.4(3),
we get the following useful decomposition of general suprema.

Proposition 2.1.9. Let A be a non-empty subset of asemilattice for which | A ex-
ists. Then the join ofl can also be written as

| |™{| | M | M C Afinite and non-emply.

13



General directed sets, on the other hand, may be quite messy and unstructured.
Sometimes one can find a well-behaved cofinal subset, such as a chain, where we say
that A is cofinalin B, if for all b € B there is aru € A above it. Such a cofinal subset
will have the same supremum (if it exists). But cofinal chains do not always exist, as
Exercise 2.3.9(6) shows. Still, every directed set may be thought of as being equipped
externally with a nice structure as we will now work out.

Definition 2.1.10. A monotone nein a posetP is a monotone function from a di-
rected sef into P. The sefl is called theindex sebf the net.

Leta: I — P be a monotone net. If we are given a monotone fungtiod — I,
whereJ is directed and where for all € I there isj € J with 3(j) > 4, then we call
ao(3:J — P asubnebfa.

A monotone netv: I — P has asupremunin P, if the set{«(:) | i € I} has a
supremum irP.

Every directed set can be viewed as a monotone net: let the set itself be the index
set. On the other hand, the image of a monotonewmndt — P is a directed set iP.
So what are nets good for? The answer is given in the following proposition (which
seems to have been stated first in [Kra39]).

Lemma 2.1.11.Let P be a poset and let: I — D be a monotone net. Thenhas a
subnetn o 3: J — D, whose index setf is a lattice in which every principal ideal is
finite.

Proof. Let J be the set of finite subsets bf Clearly,J is a lattice in which every prin-
cipal ideal is finite. We define the mapping J — I by induction on the cardinality
of the elements of:

B(¢) = anyelementof;
B(A) = any upperbound of the setU {3(B) | B C A}, A # ¢.

It is obvious tha{3 is monotone and defines a subnet. O

This lemma allows us to base an induction proof on an arbitrary directed set. This
was recently applied to settle a long-standing conjecture in lattice theory, see [TT93].

Proposition 2.1.12. Let I be directed andv: I x I — P be a monotone net. Under
the assumption that the indicated directed suprema exist, the following equalities hold:

L|"atig) = ||| Tati5) = || at. ) = | |Ta.).

i€l i€l jeJ jeJ el i€l
2.1.5 Directed-complete partial orders

Definition 2.1.13. A posetD in which every directed subset has a supremum we call a
directed-complete partial ordesr dcpofor short.

Examples 2.1.14. e Every complete lattice is also a dcpo. Instances of this are
powersets, topologies, subgroup lattices, congruence lattices, and, more gener-
ally, closure systems. As Proposition 2.1.9 shows, a lattice which is also a dcpo
is almost complete. Only a least element may be missing.

14



e Every finite poset is a dcpo.

e The set of natural numbers with the usual order does not form a dcpo; we have
to add a top element as done in Figure 2. In general, it is a difficult problem
how to add points to a poset so that it becomes a dcpo. Using Proposition 2.1.15
below, Markowsky has defined such a completion via chains in [Mar76]. Luckily,
we need not worry about this problem in domain theory because here we are
usually interested in algebraic or continuous dcpo’s where a completion is easily
defined, see Section 2.2.6 below. The correct formulation of what constitutes a
completion, of course, takes also morphisms into account. A general framework
is described in [P0i92], Sections 3.3 to 3.6.

e The points of a locale form a dcpo in the specialization order, see [Vic89, Joh82].

More examples will follow in the next subsection. There we will also discuss the
question of whether directed setswichains should be used to define dcpo’s. Arbi-
trarily long chains have the full power of directed sets (despite Exercise 2.3.9(6)) as the
following proposition shows.

Proposition 2.1.15. A partially ordered seD is a dcpo if and only if each chain iP
has a supremum.

The proof, which uses the Axiom of Choice, goes back to a lemma of Iwamura
[lwad4] and can be found in [Mar76].

The following, which may also be found in [Mar76], complements Proposi-
tion 2.1.7 above.

Proposition 2.1.16. A pointed posef is a dcpo if and only if every monotone map
on P has a fixpoint.

2.1.6 Continuous functions

Definition 2.1.17. Let D and E be dcpo’s. A functiory: D — FE is (Scott) con-
tinuousif it is monotone and if for each directed subseof D we havef(| |TA) =
|| f(A). We denote the set of all continuous functions fiono £, ordered pointwise,

A function between pointed dcpo’s, which preserves the bottom element, is called
strict We denote the space of all continuous strict functionh:byi E].

The identity function on a set is denoted byd 4, the constant function with im-
age{z} byc,.

The preservation of joins of directed sets is actually enough to define continuous
maps. In practice, however, one usually needs to show firsffthhtis directed. This
is equivalent to monotonicity.

Proposition 2.1.18.Let D and E be dcpo’s. ThenD — E] is again a dcpo. Di-
rected suprema ifiD — E] are calculated pointwise.
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Proof. Let F' be a directed collection of functions fromto F. Letg: D — E be the
function, which is defined by(z) = |_]Tf€F f(z). Let A C D be directed.

g "0 = [+ ]
fer
= ||| @
fEF a€A

= "] @

a€A feF

= | |"g(a).

acA
This shows thay is continuous. O

The class of all dcpo’s together with Scott-continuous functions forms a category,
which we denote bJpCPO. It has strong closure properties as we shall see shortly. For
the moment we concentrate on that property of continuous maps which is one of the
main reasons for the success of domain theory, namely, that fixpoints can be calculated
easily and uniformly.

Theorem 2.1.19.Let D be a pointed dcpo.

1. Every continuous functiorf on D has a least fixpoint. It is given by

l_lTnEN f“(L)
2. The assignmefiitx: [D — D] — D, f ~— |, . f™(L) is continuous.

Proof. (1) The set{ /(L) | n € N} is a chain. This follows fromL C f(L) and the
monotonicity off. Using continuity off we getf (||, oy /(L)) = U T, en /" TH(L)
and the latter is clearly equal k4", _ /™ (L).

If z is any other fixpoint off then from L C 2 we getf(L) C f(x) = « and so on
by induction. Hence is an upper bound of aji”(_L) and that is why it must be above
fix(f).

(2) Let us first look at thex-fold iteration operatoit,,: [D — D] — D which
mapsf to f*(L). We show its continuity by induction. The Oth iteration operator
equalsc; so nothing has to be shown there. For the induction step ket a directed
family of continuous functions of. We calculate:

o (LTF) = (LTE)(it(LITF)) definition
= U'AUepita(f) ind. hypothesis
= |_|Tg€F g(l_leeF(i n(f))) Prop.2.1.18
= Uler Ulreralita(£)) continuity ofg
= Uler /ML) Prop. 2.1.12

The pointwise supremum of all iteration operators (which form a chain as we have
seen in (1)) is preciselfix and so the latter is also continuous. O
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The least fixpoint operator is the mathematical counterpart of recursive and iterative
statements in programming languages. When proving a property of such a statement
semantically, one often employs the following proof principle which is known under
the namdixpoint induction(see [Ten91] or any other book on denotational semantics).
Call a predicate on (i.e. a subset of) a dgabmissibleif it contains L and is closed
under suprema ab-chains. The following is then easily established:

Lemma 2.1.20.Let D be a dcpo,P C D an admissible predicate, anfl: D — D
a Scott-continuous function. If it is true th#itz) satisfiesP whenever: satisfiesP,
then it must be true thdix( f) satisfiesP.

We also note the following invariance property of the least fixpoint operator. In
fact, it characterizefix uniquely among all fixpoint operators (Exercise 2.3.9(16)).

Lemma 2.1.21.Let D and E be pointed dcpo’s and let

D f E
f g
h
D E

be a commutative diagram of continuous functions wiieie strict. Thenfix(g) =
hfix(f)).

Proof. Using continuity ofh, commutativity of the diagram, and strictnesg:ah turn
we calculate:

hfix(f) = (1)
neN

= | |"ho s
neN

= g on(1)

neN
= fix(g)

2.2 Approximation

In the last subsection we have explained the kind of limits that domain theory deals
with, namely, suprema of directed sets. We could have said much more about these
“convergence spaces” called dcpo’s. But the topic can easily become esoteric and lose
its connection with computing. For example, the cardinality of dcpo’s has not been re-
stricted yet and indeed, we didn't have the tools to sensibly do so (Exercise 2.3.9(18)).
We will in this subsection introduce the idea that elements are composed of (or ‘ap-
proximated by’) ‘simple’ pieces. This will enrich our theory immensely and will also
give the desired connection to semantics.
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2.2.1 The order of approximation

Definition 2.2.1. Letz andy be elements of a dcpb. We say that: approximateg
if for all directed subsetst of D, y C | |TA impliesz C a for somea € A. We say
that x is compactf it approximates itself.

We introduce the following notation far,y € D and A C D:

r <<y < xapproximategy

lr = {yeD|y<uz}
fz = {yeD|lz<y}
fa = Ufta
acA
K(D) = {z € D |xzcompac}

The relationk is traditionally called ‘way-below relation’. M.B. Smyth introduced
the expression ‘order of definite refinement’ in [Smy86]. Throughout this text we will
refer to it as therder of approximationeven though the relation is not reflexive. Other
common terminology for ‘compact’ ifinite or isolated The analogy to finite sets is
indeed very strong; however one covers a finiteldely a directed collectiofA;);cs
of sets,M will always be contained in somé; already.

In general, approximation is not an absolute property of single points. Rather, we
could phrase: <« y as “x is a lot simpler thany”, which clearly depends opas much
as it depends omn.

An element which is compact approximates every element above it. More gener-
ally, we observe the following basic properties of approximation.

Proposition 2.2.2. Let D be a dcpo. Then the following is true for allz’, y, 3’ € D:
lzgy= xLCy;

27 CrkyCy =2’ <.

2.2.2 Basesindcpo’s

Definition 2.2.3. We say that a subsd® of a dcpoD is a basisfor D, if for every
element: of D the setB, = | N B contains a directed subset with supremunVe
call elements of3,, approximants ta: relative toB.

We may think of the rational numbers as a basis for the reals (with a top element
added, in order to get a dcpo), but other choices are also possible: dyadic numbers,
irrational numbers, etc.

Proposition 2.2.4. Let D be a dcpo with basis.
1. Foreveryz € D the setB, is directed andr = | |1 B,.
2. B containsK(D).

3. Every superset @8 is also a basis foD.
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Proof. (1) It is clear that the join oB,, equalsz. The point is directedness. From
the definition we know there is some directed subseif B, with [_|TA = x. Let
nowy,y’ be elements approximating There must be elemenisa’ in A abovey, v/,
respectively. These have an upper boufidn A, which by definition belongs t@®,..

(2) We have to show that every elemendf K(D) belongs toB. Indeed, since
¢ = | |"B. there must be an elemebtc B. abovec. All of B. is belowc, sob is
actually equal te.

(3) is immediate from the definition. O

Corollary 2.2.5. Let D be a dcpo with basi®.
1. The largest basis fab is D itself.
2. Bisthe smallest basis fdb if and only if B = K(D).

The ‘only if’ part of (2) is not a direct consequence of the preceding proposition.
We leave its proof as Exercise 2.3.9(26).

2.2.3 Continuous and algebraic domains

Definition 2.2.6. A dcpo is calleccontinuousor a continuous domaiif it has a basis.

It is called algebraicor an algebraic domaiif it has a basis of compact elements. We
say D is w-continuous if there exists a countable basis and we calt#igebraic if
K(D) is a countable basis.

Here we are using the word “domain” for the first time. Indeed, for us a structure
only qualifies as a domain if it embodies both a notion of convergence and a notion of
approximation.

In the light of Proposition 2.2.4 we can reformulate Definition 2.2.6 as follows,
avoiding existential quantification.

Proposition 2.2.7. 1. A dcpoD is continuous if and only if for alk € D, x =
LJ" |z holds.

2. ltis algebraic if and only if for alk € D, z = | |TK(D),. holds.
The word ‘algebraic’ points to algebra. Let us make this connection precise.

Definition 2.2.8. A closure systenf., (cf. Section 2.1.2) is callethductive if it is
closed under directed union.

Proposition 2.2.9. Every inductive closure systefnis an algebraic lattice. The com-
pact elements are precisely the finitely generated hulls.

Proof. If A is the hull of a finite sed and if (B;);cs is a directed family of hulls such
that| |",.; B; = U,c; Bi 2 A, thenM is already contained in sonté;. Hence hulls

of finite sets are compact elements in the complete laftic®n the other hand, every
closed set is the directed union of finitely generated hulls, so these form a basis. By
Proposition 2.2.4(2), there cannot be any other compact elements. O
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Given a group, (or, more generally, an algebra in the sense of universal algebra),
then there are two canonical inductive closure systems associated with it, the lattice of
subgroups (subalgebras) and the lattice of normal subgroups (congruence relations).

Other standard examples of algebraic domains are:

e Any set with the discrete order is an algebraic domain. In semantics one usually
adds a bottom element (standing for divergence) resulting in so-dtdiedo-
mains (The flat natural numbers are shown in Figure 2.) A basis must in either
case contain all elements.

e The setf{X — Y] of partial functions between sel§ andY ordered by graph
inclusion. Compact elements are those functions which have a finite carrier. Itis

naturally isomorphic t¢X — Y ] and to[X | ER Y.].
e Every finite poset.
Continuous domains:

e Every algebraic dcpo is also continuous. This follows directly from the defini-
tion. The order of approximation is characterizediby y if and only if there
exists a compact elemenbetweenz andy.

e The unit interval is a continuous lattice. It plays a central role in the theory of
continuous lattices, see [GHK0], Chapter IV and in particular Theorem 2.19.

Another way of modelling the real numbers in domain theory is to take all closed
intervals of finite length and to order them by reversed inclusion. Single element
intervals are maximal in this domain and provide a faithful representation of
the real line. A countable basis is given by the set of intervals with rational

endpoints.

e The lattice of open subsets of a sober sp&ctrms a continuous lattice if and
only if X is locally compact. Compact Hausdorff spaces are a special case. Here
O < U holds if and only if there exists a compact gésuch thatO C C' C
U. This meeting point of topology and domain theory is discussed in detail in
[Smy92, Vic89, Joh82, GHK80] and will also be addressed in Chapter 7.

At this point it may be helpful to give an example of a non-continuous dcpo. The
easiest to explain is depicted in Figure 4 (labelleyl We show that the order of
approximation onD is empty. Pairga;,b;) and(b;,a;) cannot belong to the order
of approximation because they are not related in the order. Two pgintsq; in the
same ‘leg’ are still not approximating becausg),.cn is a directed set with supremum
abovea; but containing no element aboug

A non-continuous distributive complete lattice is much harder to visualize by a line
diagram. From what we have said we know that the topology of a sober space which is
not locally compact is such a lattice. Exercise 2.3.9(21) discusses this in detail.

If D is pointed then the order of approximation is non-empty because a bottom
element approximates every other element.

A basis not only gives approximations for elements, it also approximates the order
relation:
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Figure 4: A continuousk) and a non-continuoud)) dcpo.
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Figure 5: Basis elememtwitnesses that is not belowy.

Proposition 2.2.10. Let D be a continuous domain with basis and letx and y be
elements oD. Thenz C y, B, C B, and B, C |y are all equivalent.

The form in which we will usually apply this proposition is: [Z y implies there
existsh € B, with b [Z y. A picture of this situation is given in Figure 5.

In the light of Proposition 2.2.10 we can now also give a more intuitive rea-
son why the dcpaD in Figure 4 is not continuous. A natural candidate for a ba-
sis in D is the collection of alla;’s and b;’s (certainly, T doesn't approximate any-
thing). Proposition 2.2.10 expresses the idea that in a continuous domain all informa-
tion about how elements are related is contained in the basis already. And the fact that
LT enan =",enbn = T holds inD is precisely what is not visible in the would-be
basis. Thus, the dcpo should look rather likeén the same figure (which indeed is an
algebraic domain).

Bases allow us to express the continuity of functions in a form reminiscent of the
-0 definition for real-valued functions.

Proposition 2.2.11. A map f between continuous domain3 and F with bases
B and C, respectively, is continuous if and only if for eaehe D ande € Cy,)
there existsl € B, with f(1d) C Te.
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Proof. By continuity we havef(z) = f(|"B.) = [|'cp, f(d). Sincee approx-
imates f (x), there existsl € B, with f(d) J e. Monotonicity of f then implies
f(1d) C Te.

For the converse we first show monotonicity. Suppose y holds butf (z) is not
below f(y). By Proposition 2.2.10 there isc C/s(,) \ | f(y) and from our assumption
we getd € B, such thatf(1d) C Te. Sincey belongs tdd this is a contradiction. Now
let A be a directed subset @ with = as its join. Monotonicity implie$ |Tf(A) C
f(LJTA) = f(=x). If the converse relation does not hold then we can again choose
e € Cyy with e Z | |"f(A) and for somel € B, we havef(7d) C fe. Sinced
approximates:, somea € A is aboved and we get |"f(A) 3 f(a) 3 f(d) D e
contradicting our choice af. O

Finally, we cite a result which reduces the calculation of least fixpoints to a basis.
The point here is that a continuous function need not preserve compactness nor the
order of approximation and so the sequence (L), f(f(L)),... need not consist of
basis elements.

Proposition 2.2.12.1f D is a pointedw-continuous domain with basi®8 and if
f: D — D is a continuous map, then there exists.achainby C b; C by C ... of
basis elements such that the following conditions are satisfied:

1. bp=1,

2. Vn € Nobyy1 C f(bn),

3. Ul bn = fix(f) (= T F7(L))-
A proof may be found in [Abro0b].

2.2.4 Comments on possible variations

directed sets vsw-chainsLet us start with the following observation.

Proposition 2.2.13. If a dcpoD has a countable basis then every directed subséx of
contains anw-chain with the same supremum.

This raises the question whether one shouldn’t build up the whole theory aising
chains. The basic definitions then read: &stcpo is a poset in which evetry-chain
has a supremum. A function is-continuous if it preserves joins af-chains. An
elementz is w-approximatingy if |_|TnEN an, 3 yimpliesa, 3 x for somen € N.
An w-ccpo is continuous if there is a countable sutiseuch that every element is the
join of anw-chain of elements fron®3 w-approximating it. Similarly for algebraicity.
(This is the approach adopted in [Plo81], for example.) The main point about these
definitions is the countability of the basis. It ensures that they are in complete harmony
with our set-up, because we can show:

Proposition 2.2.14. 1. Every continuous-ccpo is a continuous dcpo.

2. Every algebraicu-ccpo is an algebraic dcpo.
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3. Everyw-continuous map between continueugcpo’s is continuous.

Proof. (1) Let (b,,)nen be an enumeration of a badisfor D. We first show that the
continuousv-ccpo D is directed-complete, so let be a directed subset @. Let B’
be the set of basis elements which are below some elemefitamid, for simplicity,
assume thaB = B’. We construct aw-chain in A as follows: letag be an element
of A which is abovéy. Then leth,,, be the first basis element not belay: It must be
below some:} € A and we set:; to be an upper bound af, anda} in A. We proceed
by induction. It does not follow that the resulting chéin, ),.cx is cofinal in A but it is
true that its supremum is also the supremurd pbecause both subsetsidfdominate
the same set of basis elements.

This construction also shows thatapproximation is the same as approximation in
a continuousv-ccpo. The same basi$ may then be used to show thatis a continu-
ous domain. (The directedness of the g&tdollows as in Proposition 2.2.4(1).)

(2) follows from the proof of (1), so it remains to show (3). Monotonicity of the
function f is implied in the definition ofu-continuity. Therefore a directed sétC D
is mapped onto a directed setihand alsof (| |TA) 3 | |Tf(A) holds. Let(a,)nen

be anw-chain inA with | |TA = | |7 _ a,, as constructed in the proof of (1). Then

we havef(L]T4) = f(U" cnan) = U en flan) ELUTF(A). O

If we drop the crucial assumption about the countability of the basis then the two
theories bifurcate and, in our opinion, the theory based ahains becomes rather
bizarre. To give just one illustration, observe that simple objects, such as powersets,
may fail to be algebraic domains. There remains the question, however, whether in the
realm of a mathematical theory of computation one should startawvithains. Argu-
ments in favor of this approach point to pedagogy and foundations. The pedagogical
aspect is somewhat weakened by the fact that even in a continuogigo the set$x
happen to balirected. Glossing over this fact would tend to mislead the student. In
our eyes, the right middle ground forcamurseon domain theory, then, would be to
start withw-chains and motivations from semantics and then at some point (probably
where the ideal completion of a poset is discussed) to switch to directed sets as the
more general concept. This suggestion is hardly original. It is in direct analogy with
the way students are introduced to topological concepts.

Turning to foundations, we feel that the necessitghioosechains where directed
subsets are naturally available (such as in function spaces) and thus to rely on the
Axiom of Choice without need, is a serious stain on this approach. To take foundational
questions seriously implies a much deeper re-working of the theory: some pointers to
the literature will be found in Section 8.

We do not feel the need to say much about the use of chains of arbitrary cardi-
nality. This adds nothing in strength (because of Proposition 2.1.15) but has all the
disadvantages pointed out forchains already.

bases vs. intrinsic descriptionsThe definition of a continuous domain given here
differs from, and is in fact more complicated than the standard one (which we pre-
sented as Proposition 2.2.7(1)). We nevertheless preferred this approach to the concept
of approximation for three reasons. Firstly, the standard definition does not allow the
restriction of the size of continuous domains. In this respect not the cardinality of a do-
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main but the minimal cardinality of a basis is of interest. Secondly, we wanted to point
out the strong analogy between algebraic and continuous domains. And, indeed, the
proofs we have given so far for continuous domains specialize directly to the algebraic
case if one replaces?” by ‘K(D)’ throughout. Thus far at least, proofs for algebraic
domains alone would not be any shorter. And, thirdly, we wanted to stress the idea of
approximation by elements which are (for whatever reason) simpler than others. Such
a notion of simplicity does often exist for continuous domains (such as rational vs. real
numbers), even though its justification is not purely order-theoretical (see 8.1.1).

algebraic vs. continuous:This brings up the question of why one bothers with con-
tinuous domains at all. There are two important reasons but they depend on definitions
introduced later in this text. The first is the simplification of the mathematical theory
of domains stemming from the possibility of freely using retracts (see Theorem 3.1.4
below). The second is the observation that in algebraic domains two fundamental con-
cepts of domain theory essentially coincide, namely, that of a Scott-open set and that of
a compact saturated set. We find it pedagogically advantageous to be able to distinguish
between the two.

continuous dcpo vs. continuous domainlt is presently common practice to start
a paper in semantics or domain theory by defining the subclass of dcpo’s of interest
and then assigning the name ‘domain’ to these structures. We fully agree with this
custom of using ‘domain’ as a generic name. In this article, however, we will study
a full range of possible definitions, the most general of which is that of a dcpo. We
have nevertheless avoided calling these domains. For us, ‘domain’ refers to both ideas
essential to the theory, namely, the idea of convergence and the idea of approximation.

2.2.5 Useful properties

Let us start right away with the single most important feature of the order of approxi-
mation, theinterpolation property

Lemma 2.2.15. Let D be a continuous domain and I1&f C D be a finite set each of
whose elements approximatgs Then there existg’ € D such thatM < 3/ < y
holds. If B is a basis forD theny’ may be chosen from. (We sayy’ interpolates
betweenV/ andy.)

Proof. Given M « y in D we define the set
A={a€eD|3d €eD:a<xd <y}

It is clearly non-empty. It is directed because ik ¢’ < y andb < v < y then by
the directedness gy there isc’ € D such that’ C ¢’ < y andd’ C ¢’ < y and again
by the directedness ¢t there isc € D witha C ¢ < ¢’ andb C ¢ < ¢’. We calculate
the supremum ofl: lety’ be any element approximating Since|y’ € A we have that
LITA 3 "]y’ =y This holds for ally’ < y so by continuityy = | |"|y C | JTA.
All elements ofA are less thap, so in fact equality holdq:_my = | |TA. Remember
that we started out with a séf whose elements approximaje By definition there is
am € A withm C a,, for eachm € M. Leta be an upper bound of thg,, in A. By
definition, for somer/, ¢ <« ¢’ < y, and we can take’ as an interpolating element
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betweenM andy. The proof remains the same if we allow only basis elements to
enterA. 0

Corollary 2.2.16. Let D be a continuous domain with a bagisand letA be a directed
subset ofD. If ¢ is an element approximatirig]" A thenc already approximates some

a € A. As aformula:
H]a=U la

a€cA
Intersecting with the basis on both sides gives
Bis= | Ba
acA

Next we will illustrate how in a domain we can restrict attention to principal ideals.

Proposition 2.2.17. 1. If D is a continuous domain and if, y are elements irD,
thenz approximateg; if and only if for all directed setst with | |TA = y there
isana € A such thatu J .

2. The order of approximation on a continuous domain is the union of the orders of
approximation on all principal ideals.

3. Adcpo is continuous if and only if each principal ideal is continuous.
4. For a continuous domaii we haveK(D) = |, K(lz).
5. A dcpo is algebraic if and only if each principal ideal is algebraic.

Proposition 2.2.18. 1. In a continuous domain minimal upper bounds of finite sets
of compact elements are again compact.

2. Ina complete lattice the se}s are LI-sub-semilattices.
3. Inacomplete lattice the join of finitely many compact elements is again compact.

Corollary 2.2.19. A complete lattice is algebraic if and only if each element is the join
of compact elements.

The infimum of compact elements need not be compact again, even in an algebraic
lattice. An example is given in Figure 6.

2.2.6 Bases as objects

In Section 2.2.2 we have seen how we can use bases in order to express properties of
the ambient domain. We will now study the question of how far we can reduce domain
theory to a theory of (abstract) bases. The resulting techniques will prove useful in
later chapters but we hope that they will also deepen the reader’s understanding of the
nature of domains.

We start with the question of what additional information is necessary in order to
reconstruct a domain from one of its bases. Somewhat surprisingly, it is just the order
of approximation. Thus we define:
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Figure 6: The meet of the compact elementndb is not compact.

Definition 2.2.20. An (abstract basisis given by a se3 together with a transitive
relation < on B, such that

(INT) M<x=—Jdye BM<y<z
holds for all elements and finite subsetsd/ of B.

Abstract bases were introduced in [Smy77] where they are called “R-structures”.
Examples of abstract bases are concrete bases of continuous domains, of course, where
the relation< is the restriction of the order of approximation. Axiom (INT) is satisfied
because of Lemma 2.2.15 and because we have required bases in domains to have
directed sets of approximants for each element.

Other examples are partially ordered sets, where (INT) is satisfied because of re-
flexivity. We will shortly identify posets as being exactly the bases of compact elements
of algebraic domains.

In what follows we will use the terminology developed at the beginning of this
chapter, even though the relatienon an abstract basis need neither be reflexive nor
antisymmetric. This is convenient but in some instances looks more innocent than it
is. AnidealA in a basis, for example, has the property (following from directedness)
that for everyz € A there is another elemente A with = < y. In posets this doesn't
mean anything but here it becomes an important feature. Sometimes this is stressed by
using the expressiord' is aroundideal’. Note that a set of the forrw is always an
ideal because of (INT) but that it need not contaiitself. We will refrain from calling
Lz ‘principal’ in these circumstances.

Definition 2.2.21. For a basis(B, <) let IdI(B) be the set of all ideals ordered by
inclusion. It is called thaédeal completionof B. Furthermore, leti: B — IdI(B)
denote the function which mapse B to |x. If we want to stress the relation with
which B is equipped then we writdl( B, <) for the ideal completion.

Proposition 2.2.22. Let (B, <) be an abstract basis.
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1. The ideal completion a8 is a dcpo.

2. A < A’ holds inldI(B) if and only if there arer < y in B such thatd C i(x) C
i(y) € A

3. IdI(B) is a continuous domain and a basisldf{ B) is given byi(B).

4. If < is reflexive thend|(B) is algebraic.

[

. If (B, <) is a poset therB, K(IdI(B)), andi(B) are all isomorphic.

Proof. (1) holds because clearly the directed union of ideals is an ideal. Roundness
implies that everyA € IdI(B) can be written a§J, ., |=. This union is directed
becaused is directed. This proves (2) and also (3). The fourth claim follows from the
characterization of the order of approximation. The last clause holds because there is
only one basis of compact elements for an algebraic domain. O

Defining the product of two abstract bases as one does for partially ordered sets,
we have the following:

Proposition 2.2.23.1dI(B x B’) = IdI(B) x IdI(B’)
Our ‘completion’ has a weak universal property:

Proposition 2.2.24. Let (B, <) be an abstract basis and Ié? be a dcpo. For every
monotone functiorf: B — D there is a largest continuous functigh IdI(B) — D
such thatf o i is belowf. Itis given byf(A) = | |Tf(A).

The assignment — f is a Scott-continuous map frof® —— D] to [IdI(B) — D).
If the relation< is reflexive therf o i equalsf.

Proof. Let us first check continuity off. To this end let(A4;);c; be a di-
rected collection of ideals. Using general associativity (Proposition 2.1.4(3))
we can calculate: f(|",c; 4i) = f(Uie; Ai)) = UH{f(@) |z €Uies A} =
Ulie, U f (@) |2 € Ai} = Ter f(A0).

Sincef is assumed to be monotong,x) is an upper bound fof (| ). This proves
that f o i is below f. If, on the other handy: IdI(B) — D is another continuous
function with this property then we havA) = g(U,c4 l2) = T,ca9(lz) =
Lleag(i(@) CULea flz) = F(A).

The claim about the continuity of the assignmegnt— f is shown by the usual
switch of directed suprema. A R X

If <is a preorder then we can show thfati = f: f(i(z)) = f(lz) = || f(lz) =
f(x). O
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A particular instance of this proposition is the case thand B’ are two abstract
bases ang': B — B’ is monotone. By the extension gfto IdI(B) we mean the map

m: IdI(B) — IdI(B’). It maps an ideall C B to the ideall f(A).

Proposition 2.2.25. Let D be a continuous domain with basis Viewing(B, <) as
an abstract basis, we have the following:

1. IdI(B) is isomorphic taD. The isomorphisra: IdI(B) — D is the extensio@
of the embedding dB into D. Its inverse3 maps elements € D to B,.

2. For every dcpd? and continuous functiofi: D — E we havef = g o 3 where
g is the restriction off to B.

Proof. In a continuous domain we have= | | B, for all elements, s o 3 = idp.
Composing the maps the other way round we need to see thatewefy which ap-
proximates |" A, whereA is an ideal in( B, <), actually belongs tel. We interpolate:
¢ < d < | |"A and using the defining property of the order of approximation, we find
a € A aboved. Thereforec approximates and belongs tol.

The calculation for (2) is straightforwardi(z) = f(| |'B,) =

Corollary 2.2.26. A continuous function from a continuous domairto a dcpoF is
completely determined by its behavior on a basi®of

As we now know how to reconstruct a continuous domain from its basis and how to
recover a continuous function from its restriction to the basis, we may wonder whether
it is possible to work with bases alone. There is one further problem to overcome,
namely, the fact that continuous functions do not preserve the order of approximation.
The only way out is to switch from functions to relations, where we relate a basis
element to all basis elements approximatiffigc). This can be axiomatized as follows.

Definition 2.2.27. A relation R between abstract basds and C' is called approx-
imableif the following conditions are satisfied:

1. Vz € BYy,y' € C. (zRy » y = xzRY');

2.Vr € BYM C;, C. (Vy € M. xRy = (3z € C. xRz andz > M));
3. Va,2’ € BVy € C. (2' = xRy = 2'Ry);

4. Vx € BVy e C. (xRy = (3z € B. z > zRy)).

The following is then proved without difficulties.

Theorem 2.2.28.The category of abstract bases and approximable relations is equiv-
alent toCONT, the category of continuous dcpo’s and continuous maps.

The formulations we have chosen in this section allow us immediately to read off
the corresponding results in the special case of algebraic domains. In particular:

Theorem 2.2.29.The category of preorders and approximable relations is equivalent
to ALG, the category of algebraic dcpo’s and continuous maps.
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2.3 Topology

By atopologyon a spaceX we understand a system of subsetsXofcalled theopen

set9, which is closed under finite intersections and infinite unions. It is an amazing
fact that by a suitable choice of a topology we can encode all information about con-
vergence, approximation, continuity of functions, and even poini$ tifemselves. To

a student of Mathematics this appears to be an immense abstraction from the intuitive
beginnings of analysis. In domain theory we are in the lucky situation that we can tie
up open sets with the concrete idea of observable properties. This has been done in
detail earlier in this handbook, [Smy92], and we may therefore proceed swiftly to the
mathematical side of the subject.

2.3.1 The Scott-topology on a dcpo

Definition 2.3.1. Let D be a dcpo. A subset is called (Scott-)closedf it is a lower
set and is closed under suprema of directed subsets. Complements of closed sets are
called (Scott-)openthey are the elements of,, the Scott-topologyon D.

We shall use the notatid@i(A) for the smallest closed set containidg Similarly,
Int(A) will stand for the open kernel ol.

A Scott-open seb is necessarily an upper set. By contraposition it is characterized
by the property that every directed set whose supremum li€3 iras a non-empty
intersection withO.

Basic examples of closed sets are principal ideals. This knowledge is enough to
show the following:

Proposition 2.3.2. Let D be a dcpo.
1. Forelements, y € D the following are equivalent:

(@ =Ly,
(b) Every Scott-open set which containalso containgy,

(©) = € C({y}).

2. The Scott-topology satisfies tlig separation axiom.

3. (D,op) is a Hausdorff £ T5) topological space if and only if the order dn
is trivial.
Thus we can reconstruct the order between elements of a dcpo from the Scott-
topology. The same is true for limits of directed sets.

Proposition 2.3.3. Let A be a directed set in a dcpb. Thenz € D is the supremum
of A if and only if it is an upper bound foA and every Scott-neighborhood of
contains an element of.

Proof. Indeed, the closed set| |TA separates the supremum from all other upper
bounds ofA. O
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Proposition 2.3.4. For dcpo’s D and E, a functionf from D to F is Scott-continuous
if and only if it is topologically continuous with respect to the Scott-topologie®on
andE.

Proof. Let f be a continuous function fro» to £ and letO be an open subset &f.

It is clear thatf~1(0O) is an upper set because continuous functions are monotone. If
f maps the element = | |,_; z; € D into O then we havef(z) = f(|",c; z;) =
|_|Tl.61 f(z;) € O and by definition there must be somewhich is mapped int@.
Hencef~1(0) is open inD.

For the converse assume thyats topologically continuous. We first show thAt
must be monotone: Let C z’ be elements o). The inverse image of the Scott-
closed set f(z) containsz’. Hence it also contains. Now let A C D be directed.
Look at the inverse image of the Scott-closed|sgt ., f(a)). It containsA and is
Scott-closed, too. So it must also conthii A. Since by monotonicityf (| |TA) is an
upper bound off (A), it follows that f(| |TA) is the supremum of (A). O

So much for the theme of convergence. Let us now proceed to see in how far
approximation is reflected in the Scott-topology.
2.3.2 The Scott-topology on domains

In this subsection we work with the second-most primitive form of open sets, namely
those which can be written d3:. We start by characterizing the order of approxima-
tion.

Proposition 2.3.5. Let D be a continuous domain. Then the following are equivalent
for all pairs z,y € D:

1z Ky,
2. y € Int(Tx),

3. yc .

Comment: Of course, (1) is equivalent to (3) adl dcpos.

Proposition 2.3.6. Let D be a continuous domain with basis Then openness of a
subse® of D can be characterized in the following two ways:

1. O = Uxeo Tz,

2.0= U:EEOI’WB T'T

This can be read as saying that every open set is supported by its members from the
basis. We may therefore ask how the Scott-topology is derived from an abstract basis.

Proposition 2.3.7. Let(B, <) be an abstract basis and I&f be any subset d8. Then
the set{ A € IdI(B) | M N A # 0} is Scott-open indI(B) and all open sets okll(B)
are of this form.
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This, finally, nicely connects the theory up with the idea of an observable property.
If we assume that the elements of an abstract basis are finitely describable and finitely
recognisable (and we strongly approve of this intuition) then it is clear how to observe
a property in the completion: we have to wait until we see an element from a given set
of basis elements.

We also have the following sharpening of Proposition 2.3.6:

Lemma 2.3.8. Every Scott-open set in a continuous domain is a union of Scott-open
filters.

Proof. Let = be an element in the open g8t By Proposition 2.3.6 there is an ele-
menty € O which approximates. We repeatedly interpolate betwegmandx. This
gives us a sequenge < ... < y, < ... <€ y1 < z. The union of allfy, is a
Scott-open filter containing and contained id). O

In this subsection we have laid the groundwork for a formulation of Domain The-
ory purely in terms of the lattice of Scott-open sets. Since we construe open sets as
properties we have also brought logic into the picture. This relationship will be looked
at more closely in Chapter 7. There and in Section 4.2.3 we will also exhibit more
properties of the Scott-topology on domains.

Exercises 2.3.9. 1. Formalize the passage from preorders to their quotient posets.
2. Draw line diagrams of the powersets of a one, two, three, and four element set.
3. Show that a poset which has all suprema also has all infima, and vice versa.

4. Refine Proposition 2.1.7 by showing that the fixpoints of a monotone function on
a complete lattice form a complete lattice. Is it a sublattice?

5. Show that finite directed sets have a largest element. Characterize the class of
posets in which this is true for every directed set.

6. Show that the directed set of finite subsets of real numbers does not contain a
cofinal chain.

7. Which of the following are dcpo’sR, [0,1] (unit interval), Q, Z~ (negative
integers)?

8. Let f be a monotone map between complete lattitesnd M and let A be a
subset ofL. Prove: f(| | 4) 3| | f(A).

9. Show that the category of posets and monotone functions forms a cartesian
closed category.

10. Draw the line diagram for the function space of the flat booleans (see Figure 1).

11. Show that an ideal in a (binary) product of posets can always be seen as the
product of two ideals from the individual posets.
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12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

Show that a majf between two dcpo’® and E is continuous if and only if for
all directed setsA in D, f(| |TA) = || f(A) holds (i.e., monotonicity does not
need to be required explicitly).

Give an example of a monotone mgpon a pointed dcpoD for which
|_|TnGN f™(L) is not a fixpoint. (Some fixpoint must exist by Proposition 2.1.16.)

Use fixpoint induction to prove the following. Lgly: D — D be continuous
functions on a pointed dcpd with f(L) = g(L),andfog = go f. Then
fix(f) = fix(g).

(Dinaturality of fixpoints) LetD, F be pointed dcpo’s and lef: D —
E.g: E — D be continuous functions. Prove

fix(go f) = g(fix(f o g)) -

Show that Lemma 2.1.21 uniquely characterizesmong all fixpoint operators.

Prove: Given pointed dcpo® and E and a continuous functiofi: D x £ —

E there is a continuous functiol’(f): D — FE such thatY(f) = f o
(idp, Y (f)) holds. (This is the general definition of a category having fixpoints.)
How does Theorem 2.1.19 follow from this?

Show that each version of the natural numbers as shown in Figure 2 is an exam-
ple of a countable dcpo whose function space is uncountable.

Characterize the order of approximation on the unit interval. What are the com-
pact elements?

Show that in finite posets every element is compact.

LetL be the lattice of open sets @f, whereQ is equipped with the ordinary
metric topology. Show that no two non-empty open sets approximate each other.
Conclude thatl is not continuous.

Prove Proposition 2.2.10.

Extend Proposition 2.2.10 in the following way: For every finite subgedf
a continuous dcpd with basisB there existsM’ C B, such thatr — 2’ is
an order-isomorphism betweerd and M’ and such that for ale € M, the
element:’ belongs taB,.

Prove Proposition 2.2.17.

Show that elements of an abstract basis, which approximate no other element,
may be deleted without changing the ideal completion.

Show that iz is a non-compact element of a basidor a continuous domai
thenB \ {z} is still a basis. (Hint: Use the interpolation property.)
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27.

28.
29.

30.
31.

32.

33.

The preceding exercise shows that different bases can generate the same do-
main. Show that for a fixed basis different orders of approximation may also
yield the same domain. Show that this will definitely be the case if the two orders
<71 and < satisfy the equations;0<y =<7 and<s0<; =<s.

What is the ideal completion ¢, <)?

Let< be a relation on a seB such that<o< = < holds. Give an example
showing that Axiom (INT) (Definition 2.2.20) need not be satisfied. Nevertheless,
IdI(B, <) is a continuous domain. What is the advantage of our axiomatization
over this simpler concept?

Spell out the proof of Theorem 2.2.28.

Prove that in a dcpo every upper set is the intersection of its Scott-
neighborhoods.

Show that in order to construct the Scott-closure of a loweAs#ta continuous
domain it is sufficient to add all suprema of directed subsetsAo Give an
example of a non-continuous dcpo where this fails.

Given a subseY in adcpoD let X be the smallest superset&fwhich is closed
against the formation of suprema of directed subsets. Show that the cardinality
of X can be no greater thadlX!. (Hint: Construct a directed suprema closed
superset ofX by addingall existing suprema t&.)
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3 Domains collectively

3.1 Comparing domains
3.1.1 Retractions

A reader with some background in universal algebra may already have missed a discus-
sion of sub-dcpo’s and quotient-dcpo’s. The reason for this omission is quite simple:
there is no fully satisfactory notion of sub-object or quotient in domain theory based
on general Scott-continuous functions. And this is because the formation of directed
suprema is a partial operation of unbounded arity. We therefore cannot hope to be able
to employ the tools of universal algebra. But if e@mbinethe ideas of sub-object and
guotient then the picture looks quite nice.

Definition 3.1.1. Let P and (@ be posets. A pais: P — @, r: Q — P of monotone
functions is called anonotone section retraction pdiirr o s is the identity onP. In
this situation we will callP a monotone retraaf Q.

If P and @ are dcpo’s and if both functions are continuous then we speak of a
continuous section retraction pair

We will omit the qualifying adjective ‘monotone’, respectively ‘continuous’, if the
properties of the functions are clear from the context. We will alsosdspair as a
shorthand.

One sees immediately that in an s-r-pair the retraction is surjective and the section
is injective, so our intuition abouP being both a sub-object and a quotient(pfis
justified. In such a situatio® inherits many properties froiq:

Proposition 3.1.2. Let P and @ be posets and let: P — @, r: Q — P be a mono-
tone section retraction pair.

1. LetA be any subset @?. If s(A4) has a supremum i) then A has a supremum
in P. Itis given byr(| | s(A)). Similarly for the infimum.

2. IfQis a (pointed) dcpo, a semilattice, a lattice or a complete lattice then Bo is

Proof. Because of- o s = idp and the monotonicity of it is clear thatr(| | s(A))
is an upper bound foA. Letx be another such. Then by the monotonicitysofie
have thats(z) is an upper bound of(A) and hence it is above| s(A). So we get
x = r(s(x)) 2 r(Ls(4)).

The property of being a (pointed) dcpo, semilattice, etc., is defined through the ex-
istence of suprema or infima of certain subsets. The shape of these subsets is preserved
by monotone functions and so (2) follows from (1). O

Let us now turn to continuous section retraction pairs.

Lemma 3.1.3. Let (s,r) be a continuous section retraction pair between dcpo’s
D and E and letB be a basis fo. Thenr(B) is a basis forD.
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Proof. Let ¢ € B be an approximant te(x) for z € D. We show that-(c) approxi-
matesz. To this end let4 be a directed subset & with | |TA 3 z. By the continuity
of s we have |Ts(A4) = s(| |]TA) 3 s(z) and so for some € A4, s(a) 3 ¢ must hold.
This impliesa = r(s(a)) 3 r(c). The continuity ofr gives us that is the supremum
of T(Bs(z)). O

Theorem 3.1.4. A retract of a continuous domain via a continuous s-r-pair is contin-
uous.

The analogous statement for algebraic domains does not hold in general. Instead
of constructing a particular counterexample, we use our knowledge about the ideal
completion to get a general, positive result which implies this negative one.

Theorem 3.1.5. Every (v-) continuous domain is the retract of an-j algebraic do-
main via a continuous s-r-pair.

In more detail, we have:

Proposition 3.1.6. Let D be a continuous domain with basi3. Then the maps
s: D — IdI(B,C),z — B, andr: Idl(B,C) — D, A — | ]'A constitute a con-
tinuous section retraction pair betweénhandl|dI(B, C).

Proof. The continuity ofr follows from general associativity, Proposition 2.1.4, and
the fact that directed supremalii( B) are directed unions. For the continuity ofve
use the interpolation property in the form of Proposition 2.2.16(2). O

3.1.2 Ildempotents

Often the section part of an s-r-pair is really a subset inclusion. In this case we can hide
it and work with the map o~ on E alone. It is idempotent, becaugeo r) o (sor) =
so(ros)or=sor.

Proposition 3.1.7. 1. The image of a continuous idempotent nfagn a dcpaoD is
a dcpo. The suprema of directed subsetsngff), calculated inim(f), coincide
with those calculated i®. The inclusionim(f) — D is Scott-continuous.

2. The set of all continuous idempotent functions on a dcpo is again a dcpo.

Proof. (1) The first part follows from Proposition 3.1.2 because the inclusion is surely
monotone. For the second part léte a directed set containedim(f). We need to

see that |TA belongs toim(f) again. This holds becaugeis continuous:| |TA =
LTF(4) = F(LU"TA).

(2) Let(f;):cr be a directed family of continuous idempotents. For ary D we
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can calculate
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Hence the supremum of continuous idempotents is again an idempotent function. We
have proved in Proposition 2.1.18 that it is also continuous. O

If fis a continuous idempotent map on a continuous donkaithen we know
that its image is again continuous. But itrist true that the order of approximation
onim(f) is the restriction of the order of approximation @& For example, every
constant map is continuous and idempotent. Its image is an algebraic domain with one
element, which is therefore compact. But surely not every element of a continuous
domain is compact. However, we can say something nice about the Scott-topology on
the image:

Proposition 3.1.8. If f is a continuous idempotent function on a ddpt¢hen the Scott-
topology onim( f) is the restriction of the Scott-topology @nto im(f).

Proof. This follows immediately because a continuous idempotent functigives
rise to a continuous s-r-pair betweiem( f) andD. O

Useful examples of idempotent self-maps are retractienysonto principal ideals.

They are given by
. y, fyCuax;
ret, (y) = { x, otherwise

Their continuity follows from the fact thafz is always Scott-closed. Dually, we can
define a retraction onto a principal filtée. It is Scott-continuous if (but not only if)
its generator: is compact.

3.1.3 Adjunctions

An easy way to avoid writing this subsection would be to refer to category theory and to
translate the general theory of adjoint functors into the poset setting. However, we feel
that the right way to get used to the idea of adjointness is to start out with a relatively
simple situation such as is presented by domain theory. (In fact, we will use adjoint
functors later on, but really in a descriptive fashion only.)

Let us start with the example of a surjective m@afsrom a poset) onto a posef’.
It is natural to ask whether there is a one-sided invers® — @ for f, i.e. a map
such thatf o ¢ = idp holds. Figure 7 illustrates this situation. Such a map must
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. f fHe)
b E f71(0)
a T, f~'(a)

Figure 7: The right inverse problem for a surjective function

pick out a representative frorfi-!(x) for eachz € P. Set-theoretically this can be
done, but the point here is that we wartb be monotone. If we succeed theand f
form a (monotone) section retraction pair. Even nicer would it be if we could pick
out a canonical representative frgfn! (z), which in the realm of order theory means
that we wantf ~!(z) to have a least (or largest) element. If this is the case then how
can we ensure that the assignment: +— min(f~!(x)) is monotone? The solution

is suggested by the observation that ifs monotone ther(z) is not only the least
element off ~!(x) but also off~!(7x). This condition is also sufficient. The switch
from f=%(z) to f~1(1x) (and this is a trick to remember) may allow us to construct
a partial right inverse even if is not surjective. Thus we arrive at a first, tentative
definition of an adjunction.

Definition 3.1.9. (preliminary)Let P and@ be posets and lédt P — Q andu: Q —
P be monotone functions. We say tliat:) is anadjunctionbetweenP and Q if for
everyz € P we have that(z) is the least element af *(1z).

This definition is simple and easy to motivate. But it brings out just one aspect of
adjoint pairs, namely, thatis uniquely determined by. There is much more:

Proposition 3.1.10. Let P and @ be posets and: P — @ andu: Q — P be mono-
tone functions. Then the following are equivalent:

1. Vz € P.l(z) = min(u~!(Tx)),
2. vy € Q. u(y) = max(I"'(ly)),
3. louCidganduol Jidp,
4. Vxe PYye Q. (zCuly) ©l(z)Cy).
(For (4)=—>(1) the monotonicity ofi and! is not needed.)

Proof. (1)=(2) Pick an elemenj € Q. Then because(y) C u(y) we have from (1)
that/(u(y)) C y holds. Sou(y) belongs ta~!(]y). Now letz’ be any element of
I=%(ly), or, equivalently/(z') C y. Using (1) again, we see that this can only happen
if u(y) 2 2’ holds. Sou(y) is indeed the largest elementiof'(|y). The converse is
proved analogously, of course.

(1) and (2) together immediately give both (3) and (4).

From (3) we get (4) by applying the monotone niap the inequalityr C u(y)
and using o u C idg.
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Assuming (4) we see immediately thidtr) is a lower bound for:~!(7z). But
becausé(x) C I(z) and hence: C u(I(x)) we have that(x) also belongs ta—!(Tz).
We get the monotonicity of as follows: Ifz C 2’ holds in P then becausé(z’) C
I(«") we haver’ C u(l(z")) and by transitivityz T w(I(z’)). Using (4) again, we get
I(x) Cl(). O

We conclude that despite the lopsided definition, the situation described by an ad-
junction is completely symmetric. And indeed, adjunctions are usually introduced us-
ing either (3) or (4).

Definition 3.1.11. (official) Let P and @ be posets and lét P — @ andu: Q — P
be functions. We say thét «) is anadjunctionbetweenP and( if for all « € P and
y € Q we haver C u(y) < [(z) C y. We calll thelower andw the upper adjoinend
writel: P = Q : u.

Proposition 3.1.12.Let!: P = @ : u be an adjunction between posets.
1. uolou=wvandlouol =1,

2. The image of; and the image of are order-isomorphic. The isomorphisms are
given by the restrictions af and! to im(l) andim(u), respectively.

3. wis surjectives u ol = idp < [ is injective,
4. lis surjectives [ o u = idg < u is injective,
5. [ preserves existing supremapreserves existing infima.

Proof. (1) We use Proposition 3.1.10(3) twice:= idpou C (uol)ou = uo(lou) C
uoidg = u.

(2) The equations from (1) say precisely that on the imagesarfidi, v o [ and
[ o u, respectively, act like identity functions.

(3) If u is surjective then we can canaebn the right in the equationolou = u
and getu o [ = idp. From this it follows thal must be injective.

(5) Letz = | JA for A C P. By monotonicity,!(z) 3 I(a) for eacha € A.
Conversely, leyy be any upper bound @fA). Thenu(y) is an upper bound for each
u(l(a)) which in turn is abover. Sou(y) 3 | | A = « holds and this is equivalent to
y 3 l(x). O

The last property in the preceding proposition may be used to define an adjunc-
tion in yet another way, the only prerequisite being that there are enough sets with an
infimum (or supremum). This is the Adjoint Functor Theorem for posets.

Proposition 3.1.13.Let f: L — P be a monotone function from a complete lattice to
a poset. Then the following are equivalent:

1. f preserves all infima,
2. f has a lower adjoint.

And similarly: f preserves all suprema if and onlyjithas an upper adjoint.
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Proof. We already know how to define a candidate for a lower adjginte try g(x) =
[ £ 1(7x). All that remains, is to show that(z) belongs tof = (1z). This follows

becausef preserves meetst(g(x)) = F(I1/~(12)) = [1£(f~1(12)) 2 M1z =
x. O

This proposition gives us a way of recognizing an adjoint situation in cases where
only one function is explicitly given. Itis then useful to have a notation for the missing
mapping. We writef* for the upper and', for the lower adjoint off.

Now it is high time to come back to domains and see what all this means in our
setting.

Proposition 3.1.14. Let!: D = E : u be an adjunction between dcpo’s.
1. [is Scott-continuous.
2. Ifwis Scott-continuous therpreserves the order of approximation.
3. If D is continuous then the converse of (2) is also true.

Proof. Continuity of the lower adjoint follows from Proposition 3.1.12(5). Saidek
y be elements irD and letA be a directed subset @ such that(y) C | |74 holds.
This impliesy C u(| |TA) and from the continuity of, we deducey C | |Tu(A).
Hence some:(a) is abovexr which, going back t&®, meand(z) C a.

(3) For the converse led be any directed subset &f. Monotonicity ofu yields
| |Tu(A) T u(]|TA). In order to show that the other inequality also holds, we prove
that| | Tu(A) is above every approximanttd| |TA). Indeed, ifr < u(| |TA) we have
I(z) < l(u(||TA)) C | |TA by assumption. So someis abovel(z) and for thisa we
havez C u(a) C | |Tu(A). O

3.1.4 Projections and sub-domains

Let us now combine the ideas of Section 3.1.1 and 3.1.3.

Definition 3.1.15. Let D and E be dcpo’s and let: D — E andp: E — D be
continuous functions. We say that p) is acontinuous embedding projection pé&r
e-p-pai) if poe =idp andeop C idg.

We note that the section retraction pair between a continuous domain and its ideal
completion as constructed in Section 3.1.1 is really an embedding projection pair.

From the general theory of adjunctions and retractions we already know quite a
bit about e-p-pairs. The embedding is injectipeis surjective,e preserves existing
suprema and the order of approximatipmreserves existing infimd) is continuous
if E is continuous, and, finally, embeddings and projections uniquely determine each
other. Because of this last property the term ‘embedding’ has a well-defined meaning;
it is an injective function which has a Scott-continuous upper adjoint.

An injective lower adjoint also reflects the order of approximation:

Proposition 3.1.16.Lete: D = FE : p be an e-p-pair between dcpo’s and teandy
be elements ab. Thene(z) < e(y) holds inE if and only ifx approximateg, in D.
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Let us also look at the associated idempotenton E. As itis below the identity, it
makes good sense to call such a functidemnel operatorbut often such maps are just

calledprojections We denote the set of kernel operators on a dbplay [D 4, D).
Itis important to note that while a kernel operator preserves infima as a magifrom
its image, it doesiot have any preservation properties as a map fioro D besides
Scott-continuity. What we can say is summarized in the following proposition.

Proposition 3.1.17. Let D be a dcpo.
1. [D L, D] is adcpo.

2. Ifpis a kernel operator orD then for allz € D we have thap(z) = max{y €
im(p) |y E x}.

3. The image of a kernel operator is closed under existing suprema.
4. Kim(p)= (Kp) N (im(p) x im(p)).
5. For kernel operatorg, p’ on D we havep C p’ if and only ifim(p) C im(p’).

Proof. (1) is proved as Proposition 3.1.7 and (2) follows becausmether with the
inclusion ofim(p) into D form an adjunction. This also shows (4). Finally, (3) and (5)
are direct consequences of (2). O

In the introduction we explained the idea that the order on a semantic domain
models the relation of some elements bebwgter than others, where—at least in
semantics—'better’ may be replaced more precisely by ‘better termination’. Thus we
view elements at the bottom of a domain as being less desirable than those higher up;
they are ‘proto-elements’ from which fully developed elements evolve as we go up in
the order. Now, the embedding part of an e-p-pailD = FE : p placesD at the bot-
tom of E. Following the above line of thought, we may thinkiofas being a collection
of proto-elements from which the elementsifevolve. Because there is the projec-
tion part as well, every element &f exists in some primitive form i already. Also,

D contains some information about the order and the order of approximatidn on
We may therefore think ob as a preliminary version df/, as anapproximationto £

on the domain level. This thought is made fruitful in Sections 4.2 and 5. Although the
word does not convey the whole fabric of ideas, we ndima sub-domairof E, just

in case there is an e-p-pair D = E : p.

3.1.5 Closures and quotient domains

The sub-domain relation is preeminent in domain theory but, of course, we can also
combine retractions and adjunctions the other way around. Thus we ardoatat-

uous insertion closure pair§-c-pairs). Because adjunctions are not symmetric as far
as the order of approximation is concerned, Proposition 3.1.14, the situation is not just
the order dual of that of the previous subsection. We know that the insertion preserves
existing infima and so on, but in addition we now have that the surjective part preserves
the order of approximation and therefofe s algebraic ifE is.
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The associated idempotent is calledlasure operator For closure operators the
same caveat applies as for kernel operators; they need not preserve suprema. Worse,
such functions do no longer automatically have a Scott-continuous (upper) adjoint.
This is the price we have to pay for the algebraicity of the image. Let us formulate this
precisely.

Proposition 3.1.18. Let D be an algebraic domain and let D — D be a monotone
idempotent function abovep. Thenim(c) is again an algebraic domain if and only if
it is closed under directed suprema.

The reader will no doubt recognize this statement as being a reformulation and
generalization of our example of inductive closure systems from Chapter 2, Proposi-
tion 2.2.9. It is only consequent to cdll a quotient domairof the continuous domain
E if there exists ani-c-pai#: D = E: c.

3.2 Finitary constructions

In this section we will present a few basic ways of putting domains together so as to
build up complicated structures from simple ones. There are three aspects of these
constructions which we are interested in. The first one is simply the order-theoretic
definition and the proof that we stay within dcpo’s and Scott-continuous functions.
The second one is the question how the construction can be described in terms of bases
and whether the principle of approximation can be retained. The third one, finally, is
the question of what universal property the construction has. This is the categorical
viewpoint. Since this Handbook contains a chapter on category theory, [P0i92] (in
particular, Chapter 2), we need not repeat here the arguments for why this is a fruitful
and enlightening way of looking at these type constructors.

There are, however, several categories that we are interested in and a construction
may play different roles in different settings. Let us therefore list the categories that,
at this point, seem suitable asiaiverse of discourséThere is, first of all DCPO, the
category of dcpo’s and Scott-continuous functions as introduced in Section 2.1. We
can restrict the objects by taking only continuous or, more special, algebraic domains.
Thus we arrive at the full subcategori€ONT andALG of DCPO. Each of these
may be further restricted by requiring the objects to have a bottom element (and Theo-
rem 2.1.19 tells us why one would be interested in doing so) resulting in the categories
DCPO_, CONT _, andALG ;. The presence of a distinguished point in each object
suggests that morphisms should preserve them. But this is not really appropriate in
semantics; strict functions are tied to a particular evaluation strategy. For us this means
that there is yet another cascade of categob€0,,, CONT 4, andALG |, where
objects have bottom elements and morphisms are strict and Scott-continuous. Finally,
we may bound the size of (minimal) bases for continuous and algebraic domains to be
countable. We indicate this by the prefix-".
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3.2.1 Cartesian product

Definition 3.2.1. Thecartesian produdaif two dcpo’sD and E is given by the follow-
ing data:

D x E={(z,y) |z € D,y e E},

(z,y) C (2/,y) ifand only ifz C 2" andy C ¢/

This is just the usual product of sets, augmented by the coordinatewise order.
Through induction, we can define the cartesian product for finite non-empty collec-
tions of dcpo’s. For the product over the empty index set we define the result to be a
fixed one-element dcpb

Proposition 3.2.2. The cartesian product of dcpo’s is a dcpo. Suprema and infima are
calculated coordinatewise.

With each producD x E there are associated two projections:
m:DxFE— Dandny: Dx E — E.

These projections are always surjective but they are upper adjoints dplgintl £ are
pointed. So there is a slight mismatch with Section 3.1.4 here. Given ald@ral
continuous functiong: F — D andg: F — E, we denote the mediating morphism
from Fto D x E by (f,g). ltmapsz € Fto (f(z),g(z)).

Proposition 3.2.3. Projections and mediating morphisms are continuous.

If f: D — D’andg: E — E’ are Scott-continuous, then so is the mediating map
(fom,gom): Dx E — D' x E’. The common notation for it ig x ¢g. Since
our construction is completely explicit, we have thus defined a functor in two variables
onDCPO.

Proposition 3.2.4. Let D and E be dcpo’s.

1. Atuple(z, y) approximates atuplér’, ') in D x F if and only ifz approximates
Z' in D andy approximateg/’ in E.

2. If B and B’ are bases forD and E, respectively, thelB x B’ is a basis for
D x E.

3. D x FE'is continuous if and only iD and E are.
4. K(D x E) = K(D) x K(E).

The categorical aspect of the cartesian product is quite pleasing; it is a categorical
product in each case. But we can say even more.

Lemma 3.2.5. Let C be a full subcategory oDCPO or DCPO, which has finite
products. Then these are isomorphic to the cartesian product.
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In a restricted setting this was first observed in [Smy83a]. The general proof may
be found in [Jun89].

A useful property which does not follow from general categorical or topological
considerations, is the following.

Lemma 3.2.6. A functionf: D x E — F'is continuous if and only if it is continuous
in each variable separately.

Proof. Assumef: D x E — F is separately continuous. Thghis monotone, be-
cause giverix, y) C (z/,y’) we canfill in(x, y’) and use coordinatewise monotonicity
twice. The same works for continuity: # C D x F is directed then

|_|T f(x,y) = |_|T |_|T f(:my)

(z,y)€EA zem (A) yema(A)

= |_|T f($7 |_|T y)

zem(A) yema(A)

= f( I_lT T, |_|T y)

zem(A)  yem(A)
= f(]"4).

This proves the interesting direction. O

3.2.2 Function space

We have introduced the function space in Section 2.1.6 already. It consists of all
continuous functions between two dcpo’s ordered pointwise. We know that this
is again a dcpo. The first morphism which is connected with this construction is
apply: [D — E]x D — E, (f,x) — f(x). Itis continuous because it is contin-
uous in each argument separately: in the first because directed suprema of functions
are calculated pointwise, in the second, becdlilse— E] contains only continuous
functions.

The second standard morphism is the operation which rearranges a function of two
arguments into a combination of two unary functions. That ig,iiapsD x E to F,
thenCurry(f): D — [E — F)] is the mapping which assigns tbbc D the function
which assigns te € F the elemenf(d, ¢). Curry(f) is a continuous function because
of Lemma 3.2.6. And for completely general reasons we haveGhay itself is a
continuous operation froiD x E — F| to [D — [E — F]]. Another derived
operation is composition which is a continuous operation filbm— E|x [E — F]
to[D — F].

All this shows that the continuous function space is the exponentiBIGRO.
Taking cartesian products and function spaces together we have shovdCiRétis
cartesian closed.

We turn the function space construction into a functor fi@PO°? x DCPO to
DCPO by setting[- — “|(f,g)(h) = go ho f,wheref: D’ - D,g: E — E’ and
his an element ofD — EJ.
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Figure 8: The coalesced sum of two pointed dcpo’s.

As for the product we can show that the choice of the exponential object is more
or less forced upon us. This again was first noticed by Smyth in the above mentioned
reference.

Lemma 3.2.7. LetC be a cartesian closed full subcategonyfB£PO. The exponential
of two objectsD and E of C is isomorphic tdD — E].

Let us now turn to the theme of approximation in function spaces. The reader
should brace himself for a profound disappointment: Even for algebraic domains it
may be the case that the order of approximation on the function space is empty! (Exer-
cise 3.3.12(11) discusses an example.) This fact together with Lemmas 3.2.5 and 3.2.7
implies that neitheCONT nor ALG are cartesian closed. The only way to remedy
this situation is to move to more restricted classes of domains. This will be the topic of
Chapter 4.

3.2.3 Coalesced sum

In the category of sets the coproduct is given by disjoint union. This works equally
well for dcpo’s and there isn't really anything interesting to prove about it. We denote
itbhy DU E.

Disjoint union, however, destroys the property of having a least element and this
in turn is indispensable in proving that every function has a fixpoint, Theorem 2.1.19.
One therefore looks for substitutes for disjoint union which retain pointedness, but,
of course, one cannot expect a clean categorical characterization such as for cartesian
product or function space. (See also Exercise 3.3.12(12).) In fact, it has been shown in
[HP90] that we cannot have cartesian closure, the fixpoint property and coproducts in
a non-degenerate category.

So let us now restrict attention to pointed dcpo’s. One way of putting a family of
them together is to identify their bottom elements. This is calledtizdesced surand
denotedD @ E. Figure 8 illustrates this operation. Elements frémp E different
from | pg g carry a label which indicates where they came from. We write them in the
form (z: i), i € {1,2}.

Proposition 3.2.8. The coalesced sum of pointed dcpo’s is a pointed dcpo.
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The individual dcpo’s may be injected into the sum in the obvious way:

inl(z) :{ (z:1), z# Lp;

J—DEBE, Tr = J_D

)

and .
inr(z) = { (:2), x# Llp;

lpgr, z=1g
A universal property for the sum holds only in the realm of strict functions:

Proposition 3.2.9. The coalesced sum of pointed dcpo’s is the coprodubGir O |,
CONT 4, andALG 1.

Once we accept the restriction to bottom preserving functions it is clear how to turn
the coalesced sum into a functor.

3.2.4 Smash product and strict function space

It is clear that insideDCPQO_ | a candidate for the exponential is not the full function

space but rather the sgb ESR E)] of strict continuous functions from» to £. How-
ever, it does not harmonize with the producBi@PO | |, which, as we have seen, must
be the cartesian product. We do get a match if we consider the so-saibesth product
It is defined like the cartesian product but all tuples which contain at least one bottom
element are identified. Common notatiomisg E.

We leave it to the reader to check that smash product and strict function space turn
DCPO, into a monoidal closed category.

3.2.5 Lifting

Set-theoreticallylifting is the simple operation of adding a new bottom element to a
dcpo. Applied toD, the resulting structure is denoted By, . Clearly, continuity or
algebraicity don'’t suffer any harm from this.

Associated with it is the mapp: D — D, which maps each € D to its name-
sakeinD| .

The categorical significance of lifting stems from the fact that it is left adjoint to
the inclusion functor frorDCPO,, into DCPO. (Where a morphisnf: D — E'is
lifted by mapping the new bottom elementf; to the new bottom element @f, .)

3.2.6 Summary

For quick reference let us compile a table of the constructions looked at so fafr. A *
indicates that the category is closed under the respective constructiorsays that, in
addition, the construction plays the expected categorical role as a product, exponential
or coproduct, respectively. Observe that for the constructions considered in this section
it makes no difference if we restrict the size of a (minimal) basis.
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CONT | CONT |,

DCPO DCPO | DCPO | CONT ALG ALG |’ ALG |
DxE  + + + + + +
[D — E] + + v
DUE  + +
D®FE v v v v
PN v +
Do FE v + v +
D, v v v v v v

3.3 Infinitary constructions

The product and sum constructions from the previous section have infinitary counter-
parts. Generally, these work nicely as long as we are only concerned with questions
of convergence, but they cause problems with respect to the order of approximation.
This is exemplified by the fact that an infinite power of a finite poset may fail to be
algebraic. In any case, there is not much use of these operations in semantics. Much
more interesting is the idea of incrementally building up a domain in a limit process.
This is the topic of this section.

3.3.1 Limits and colimits

Our limit constructions are to be understood categorically and hence we refer once
more to [Poi92] for motivation and general results. Here are the basic defini-
tions. A diagramin a categoryC is given by a functor from a small categoty

to C. We can describe, somewhat sloppily but more concretely, a diagram by a pair
((Di)icos (fj: Dagjy — Dejy)jem) of a family of objects and a family afonnect-

ing morphisms The shape of the diagram is thus encoded in the indexéghich
correspond to the objects bf and M (which correspond to the morphismsligfand

in the maps:, d: M — O which corresponds to thdom andcodom map onl. What

is lost is the information about compositionlin In the cases which interest us, this

is not a problem. Aconeover such a diagram is given by an objéetand a fam-

ily (fi: D — D;)ico of morphisms such that for allc M we havef;o fq;y = fo()-

A cone islimiting if for every other con€E, (g;):co) there is exactly one morphism

f: E — Dsuchthatforali € O, g; = fio f. If (D,(fi)ico) is a limiting cone,
then D is calledlimit and thef; are calledimiting morphisms The dual notions are
cocone colimit, andcolimiting morphism

Theorem 3.3.1. DCPOChas limits of arbitrary diagrams.

Proof. The proof follows general category theoretic principles. We describe the limit
of the diagram({(D;)ico, (f;: Da;) — De(s))jem) as a set of particular elements of
the product of allD;’s, the so-calledommuting tuples

D={(z;:i€0)e [ Di|VieMay = filzap)}
1€0
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NS

Figure 9: An expanding sequence of finite domains.

The order on the limit object is inherited from the product, that is, tuples are ordered
coordinatewise. Itis again a dcpo because the coordinatewise supremum of commuting
tuples is commuting as afl; are Scott-continuous. This also proves that the projections
7;: [;eo Di — Dj restricted taD are continuous. They give us the maps needed to
complementD to a cone.

Given any other conéE, (¢;: E — D;);c0), we define the mediating morphism
h: E — Dby h(z) = (¢g:(x) : ¢ € O). Again, it is obvious that this is well-defined
and continuous, and that it is the only possible choice. O

We also have the dual:
Theorem 3.3.2. DCPOChas colimits of arbitrary diagrams.

This was first noted in [Mar77] and, for a somewhat different setting, in [Mes77].
The simplest way to prove it is by reducing it to completen&eda Theorem 23.14
of [HS73]. This appears in [LS81]. A more detailed analysis of colimits appears in
[Fie92]. There the problem of retaining algebraicity is also addressed.

Theorem 3.3.3. DCPQOis cartesian closed, complete and cocomplete.
Theorem 3.3.4. DCPQ, is monoidal closed, complete and cocomplete.

How aboutDCPQ, , where objects have least elements but morphisms need not
preserve them? The truth is that both completeness and cocompleteness fail for this
category. On the other hand, it is the right setting for denotational semantics in most
cases. As a result of this mismatch, we quite often must resort to detailed proofs on
the element level and cannot simply apply general category theoretic principles. Let us
nevertheless write down the one good propertp6O, :

Theorem 3.3.5. DCPQ is cartesian closed.

3.3.2 The limit-colimit coincidence

The theorems of the previous subsection fall apart completely if we pass to domains,
that is, toCONT or ALG . To get better results for limits and colimits we must restrict
both the shape of the diagrams and the connecting morphisms used.
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For motivation let us look at a chaif, D, ... of domains where each,, is
a sub-domain of),, 1 in the sense of Section 3.1.4. Taking up again the animated
language from that section we may think of the pointsibf;; as growing out of
points of D,,, the latter being the buds which contain the leaves and flowers to be seen
at later stages. Figure 9 shows a, hopefully inspiring, example. Intuition suggests that
in such a situation a well-structured limit can be found by adding limit points to the
union of theD,,, and that it will be algebraic if th®,, are.

Definition 3.3.6. A diagram ((D,,)nen, (€mn : Dr, = Dp)n<men) In the category
DCPO is called anexpanding sequengi the following conditions are satisfied:

1. Eache,,,: D, — D, is an embedding. (The associated projectigy, we
denote by,,,,.)

2.VneN. ey, =idp, .
3. Vn<m<keN. ey =€mOemn -

Note that because lower adjoints determine upper adjoints and vice versa, we have
Pnk = Pnm © Pmir Whenevem < m < k € N.

It turns out that, in contrast to the general situation, the colimit of an expanding
sequence can be calculated easily via the associated projections.

Theorem 3.3.7.Let((D,,)nen, (€mn: Dn — D )n<men) be an expanding sequence
in DCPO. Define

D={{zn:neN)e[],exDn|Vn<meN. z, =ppm(zm)},
Pm: D — Dy {xyn :n €N) — xzp,m €N,
em: Dy — D,z — <|_|Tk;n’mpnkoekm(x) :n € N);m e N.

Then

1. The mapse.,, pm ), m € N, form embedding projection pairs aMTmGN €m O
pm = idp holds.

S

(Pn)nen) is a limit of the diagram ((Dy)nen; (Pnm)n<men). I
, (9n)nen) is another cone, then the mediating map fréito D is given

Q

(

byg(x) = <g7,,(x) ine N> org= |_|TneN €n O dn.

2.
3. (D, (en)nen) is a colimit of the diagram((D,)nen, (€mn)n<men). If
(E, (fn)nen) is another cocone, then the mediating map frbnto E is given

by f((zn : n € N>) = I_lTneN fn(zn)or f= I_lTneN Jn 0D

Proof. We have already shown in Theorem 3.3.1 that a limit of the diagram
((Dr), (Pnm)) is given by (D, (p,,)) and that the mediating morphism has the (first)
postulated form.

For the rest, let us start by showing that the functiepsare well-defined, i.e. that
y = en(x) IS a commuting tuple. Assume < n’. Then we havep,, (y./) =

pnn/(l_lTkgn’,m Pn/k © €xm(T)) = UTan’,m Pnn’ © Pn'k © €pm (T) = I_lTan’,m Pnk ©
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exm(z) = yn. The assignment — e,,(z) is Scott-continuous because of general
associativity and because only Scott-continuous maps are involved in the definition.
Next, let us now check that,, andp,, form an e-p-pair.

em o Ppm((xn:n eN)) = en(m)
= <|—|Tk’gn77n Pnk © ekm(xm) ne N)
LITkam Pnk © €km Opmk(xk) ne N)

(
(U %am.m Pk (zk) : n € N)
(xn :n €N)

Im1

andp, o ex () = pim ({ Tk;n,m Pk © €km(z) 1 1 € N)) = I_lTk;m, Pk © m () =
Z.

A closer analysis reveals that, o p,,, will leave all those elements of the tuple
(xn, : n € N) unchanged for which < m:

Pr(emopm((zn in€N))) = .= | |" puk 0 €xm 0 pmn(i)
k>n,m

= |_|T Pnm © Pmk © €km Opmk(xk)

k>n,m
= |_|T Pnm Opmk(xkr) = |_|T Ty = T
k>n,m k>n,m

This proves that the,,, op,,,, m € N, add up to the identity, as stated in (1). Putting this
to use, we easily get the second representation for the mediating map inéwed as
alimit. g =idog = |_|TmGN €m O Pm © g = LITmeNem o Ggm-

It remains to prove the universal property Bf as a colimit. To this end let
(E, (fn)nen) be a cocone over the expanding sequence. We have to check that
f= |_|TnGN fn o pyn is well-defined in the sense that the supremum is over a directed
set. So leth < m. We getf,, o pn = fim © €mn © Prm © Pm E fm © pm. It cOmmutes
with the colimiting maps because

foem = |_|Tfn0PnO€m

n>m

_ T

= || faopncencenm
n>m

= UTfnoenm:Llem:fm
n>m n>m

We also have to show that there is no other choiceffoikgain the equation in (1)
comes in handy: Lef’ be any mediating morphism. It must satisf{/o e, = f,,
and sof’ o e, © P = fm © pm. FOrming the supremum on both sides giyés=
LI e fm © pm Which is the definition off. O

This fact, that the colimit of an expanding sequence is canonically isomorphic to
the limit of the associated dual diagram, is called lthvét-colimit coincidence It is
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one of the fundamental tools of domain theory and plays its most prominent role in
the solution of recursive domain equations, Chapter 5. Because of this coincidence we
will henceforth also speak of thalimit of an expanding sequence and denote it by
bilim{(D,,), (emn))-

We can generalize Theorem 3.3.7 in two ways; we can ref¥abg an arbitrary
directed set (in which case we will speak of expanding systeyjrand we can use
general Scott-continuous adjunctions instead of e-p-pairs. The first generalization is
harmless and does not need any serious adjustments in the proofs. We will freely use
it from now on. The second, on the other hand, is quite interesting. By the passage
from embeddings to, no longer injective, lower adjoints, we allow domains not only to
grow but also to shrink as we move on in the index set. Thus points, which at some
stage looked different, may at a later stage be recognised to be the same. The interested
reader will find an outline of the mathematical theory of this in the exercises. For the
main text, we must remind ourselves that this generalization has so far not found any
application in semantics.

Part (1) of the preceding theorem gives a characterization of bilimits:

Lemma 3.3.8.Let (F,(fn)nen) be a cocone for the expanding sequence
((Dr)nens(€mn: Dn — Dp)n<men). It is colimiting if and only if, firstly, there
are Scott-continuous functiong,: ¥ — D,, such that eachf,, g,) is an e-p-pair
and, secondl, " _ f» © gn = idg holds.

Proof. Necessity is Part (1) of Theorem 3.3.7. For sufficiency we show that the
bilimit D as constructed there, is isomorphicHo We already have maps: D — E
andg: F — D becauséD is the bilimit. These commute with the limiting and the
colimiting morphisms, respectively. So let us check that they compose to identities:

fogl@) = f(gn(z):neN))
= |_|Tfn o gn(x)
neN

and

gof = (I_lTenogn)o(Llemopm)

neN meN
= |_|T6n 0 Gn© frnopn
neN
= |_|Ten O Pn = |dD
neN

O

We note that in the proof we have used the conditij)heN fnogn, =idg only
for the first calculation. Without it, we still get thgtandg form an e-p-pair. Thus we
have:
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Proposition 3.3.9. Let (E, (f.)nen) be a cocone over the expanding sequence
((Dn)nens (émn: Dn — Dp)n<men) Where thef,, are embeddings. Then the bilimit
of the sequence is a sub-domainff

In other words:

Corollary 3.3.10. The bilimit of an expanding sequence is also the colimit (limit) in
the restricted category of dcpo’s with embeddings (projections) as morphisms.

3.3.3 Bilimits of domains

Theorem 3.3.11.Let ((Dy,)nen, (€mn: Dn — Dm)n<men) be an expanding se-
quence andD, (e, )nen) its bilimit.

1. Ifall D,, are (w-)continuous then so i®. If we are given baseB™,n € N for

eachD, then a basis foD is given byl J,, . €. (B™).

2. Ifall D, are (w-)algebraic then so i$) andK(D) = U,,cy en(K(Dr))-

Proof. Given an element € D we first show thatJ,,c ex (B, ) is directed. To
this end it is sufficient to show that for all < m € N and foreacty € B}, thereis

y € B () with e, (y) C e (y'). Well, becausg approximates,, () and because
embeddings preserve the order of approximation, we Bav€y) < emn(pn(x)) =
emn(Pnm © Pm(x)) E pm(z). Sincep,,(r) = |_|TB;’7L”(I), somey’ < pp(x) is
abovee, ., (y). This impliese,, (y) = em(emn(y)) T em(y).

The setlJ,cy en(Bgn(gC)) gives backz becauser = |_|TnEN en © pp(T) =
I_ITnENen(l_lTBn,,L(m)) = LlTneNl—lTen(B;Ln(w)) =7 Uen(By (,))- It consists
solely of approximants te because the,, are lower adjoints. 0

Exercises 3.3.12. 1. LetD be a continuous domain and l¢t: D — D be an
idempotent Scott-continuous function. Show tfat) < f(y) holds in the
image off if and only if there exists < f(y) in D such thatf(z) C f(z) C
f(y). In the case thaD is algebraic conclude that an elementof im(f) is
compact if and only if there is € K(D) ¢(,,) with f(c) = f(x).

2. Letp be a kernel operator with finite image. Show that(p) is contained
in K(D) and thatp itself is compact ifD — D].

3. [Hut92] A chainC'is calledorder densé for each pairz C y there exists € C
suchthate C z C y.

(a) LetC be an order dense chain in an algebraic domdn Construct a
continuous idempotent functighon D with im(f) € C andim(f) not
algebraic (it must be continuous by Theorem 3.1.4).

(b) Let, converselyf be a continuous and idempotent function on an algebraic
dcpo D such that its image is not algebraic. Show tkgtD) contains an
order dense chain.
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11.

12.
13.

14.

15.

(c) An algebraic domain is calletetraction stabléf every idempotent o
has an algebraic image. Prove that an algebraic domain is retraction stable
if and only ifK(D) does not contain an order dense chain.

(d) Formulate a similar result for projection stable domains.

. Lete: D = FE : p be an embedding projection pair betwegrsemilattices.

Show thatim(e) is a lower set inE if and only if for allz C y in E we have
e(p(x)) = e(p(y)) M.

. Formulate and prove a generalization of Proposition 3.1.13 for arbitrary posets.

. Formulate an analogue of Proposition 3.2.4 for infinite products. Proceed as fol-

lows: First restrict to pointed dcpo’s. Next find an example of a (non-pointed) fi-
nite poset which has a non-algebraic infinite power. This should give you enough
intuition to try the general case.

. A dcpo may be seen as a topological space with respect to the Scott-topology.

Given two dcpo’s we can form their product BCPO. Show that the Scott-
topology on the product need not be the product topology but that the two topolo-
gies coincide if one of the factors is a continuous domain.

. Construct an example which shows that Lemma 3.2.6 does not hold for infinite

products.

. DeriveCurry and composition as maps in an arbitrary cartesian closed category.
10.

LetC be a cartesian closed full subcategory @CPO. Let R-C be the full
subcategory oDCPO whose objects are the retracts of objectofShow that
R-C is cartesian closed.

LetZ~ be the negative integers with the usual ordering. Show that the order
of approximation onZ~— — Z~] is empty. Find a pointed algebraic dcpo in
which a similar effect takes place.

Show thaDCPO does not have coproducts.

Show thaCONT does not have equalizers for all pairs of morphisms. (Hint:
First convince yourself that limits iIGONT, if they exist, have the same under-
lying dcpo as when they are calculateddCPO.)

Complement the table in Section 3.2.6 with the infinitary counterparts of carte-
sian product, disjoint union, smash product and sum. Observe that for these
the cardinality of the basis does play a role, so you have to add columns for
w-CONT etc.

Show that the embeddings into the bilimit of an expanding sequence are given
more concretely by,, (z) = (z, : n € N) with

_J pam(z), n<my
Ty =
enm(x), n>m.

Find a similar description for expanding systems.
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16. Redo Section 3.3.2 for directed index sets and Scott-continuous adjunctions. The
following are the interesting points:

(&) The limit-colimit coincidence, Theorem 3.3.7, holds verbatim.

(b) The characterization of bilimits given in Lemma 3.3.8 does not suffice. It
states thatF’ must not contain superfluous elements. Now we also need to
say thatE' does not identify too many elements.

(c) Given an expanding systeftD; ), (1;;)) with adjunctions, we can pass to
quotient domaind by settingD, = im(uTkjiuik o ly;). Show that the
original adjunctions when restricted and corestricted to fhgbecome e-
p-pairs and that these define the same bilimit.

17. LetRD be the space of Scott-continuous idempotents on a dcpApply the
previous exercise to show tht’,_, r; = r in RD impliesbilim(im(r;)) =
im(r) (where the connecting adjunctions are given by restricting the retractions
to the respective image).

18. Prove that the Scott-topology on a bilimit of continuous domains is the restriction
of the product topology on the product of the individual domains.
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4 Cartesian closed categories of domains

In the last chapter we have seen that our big ambient cated@@€© andDCPO ;.

are, among other things, cartesian closed and we have already pointed out that for the
natural classes afomains CONT andALG, this is no longer true. The problematic
construction is the exponential, which as we know by Lemma 3.2.7, must be the set
of Scott-continuous functions ordered pointwise. If, on the other hand, we find a full
subcategory ofCONT which is closed under terminal object, cartesian product and
function space, then it is also cartesian closed, because the necessary universal proper-
ties are inherited frondCPO.

Let us study more closely why function spaces may fail to be domains. The fact
that the order of approximation may be empty tells us that there may be no natural
candidates for basis elements in a function space. This we can better somewhat by
requiring the image domain to contain a bottom element.

Definition 4.0.1. For D and E dcpo’s where has a least element antle D, e € E,
we define thatep function(d \, e¢): D — E by

e if z € Int(1d);
(d\ e)(z) = { Lp, otherwise.

More generally, we will uséO *\ e) for the function which maps the Scott-open@et
to e and everything else ta.

Proposition 4.0.2. 1. Step functions are Scott-continuous.

2. LetD and E be dcpo’s wherd® is pointed and leff: D — E be continuous. If
e approximatesf (d) then(d \, e) approximates .

3. If, in addition,D and E are continuous therf is a supremum of step functions.

Proof. (1) Continuity follows from the openness bit(1d), respectivehO.

(2) LetG be a directed family of functions with| TG’ 3 f. Suprema inD — E)
are calculated pointwise so we also h@égeag(d) 3 f(d). This implies that for
someg € G, g(d) 3 e holds. A simple case distinction then shows thahust be
above(d \, e) everywhere.

(3) We show that for eacd € D and eache <« f(d) in E there is a step
function approximatingf which mapsd to e. Indeed, fromd = |_|Tid we get
f(d) = f(U",«qy) = U',«q f(y) and so for somg < d we havef(y) 3 e.
The desired step function is therefore given(py\, e). Continuity of E implies that
we can get arbitrarily close tf(d) this way. O

Note that the supremum in (3) need not be directed, so we hatvehown that
[D — E] is again continuous. Was it a mistake to require directedness for the set of
approximants? The answer is no, because without it we could not have proved (3) in
the first place.

The problem of joining finitely many step functions together, so as to llirddted
collections of approximants, comes up already in the case of two step fun@fions
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Figure 10: Finding an upper bound for two step functions.

e1) and(ds \, e2) which approximate a given continuous functifn The situation

is illustrated in Figure 10. The problem is where to map the (Scott-open but otherwise
unstructured) setl = d; N {d.. It has to be done in such a way that the resulting
function still approximateg. As it will turn out, it suffices to make special assumptions
abouteitherthe image domai—the topic of Section 4.1—er about the pre-image
domainD — the topic of Section 4.2. In both cases we restrict our attention to pointed
domains, and we work with step functions and joins of these. From these we can pass to
more general domains in again two ways. This will be outlined briefly in Section 4.3.2.
The question then arises whether we have not missed out on some alternative way of
building a cartesian closed category. This is not the case as we will see in Section 4.3.
The basic tool for this fundamental result, Lemma 4.3.1, will nicely connect up with
the dichotomy distinguishing 4.1 and 4.2.

4.1 Local uniqueness: Lattice-like domains

The idea for adjusting the image domain is simple; we assumesthetde; have a
least upper bound (if bounded at all). Mapping the intersectiohto e (and?fd; \ A
to e; andfd, \ A to ey) results in a continuous functignwhich is above(d; \, e;)
and (d2 \, e3) and still approximateg. This is seen as follows: Supposgis a
directed collection of functions with supremum abgveSomeg; € G must be above
(d1 "\, e1) and somey, € G must be abovéd, \, e2). Then by construction every
upper bound of g1, g2} in G is aboveh.

In fact, we do not need that the join ef ande, exists globally inE. It suffices to
form the join for everyu € A inside] f(a), because we have seen in Proposition 2.2.17
that all considerations about the order of approximation can be performed inside prin-
cipal ideals. We have the following list of definitions.

Definition 4.1.1. Let E be a pointed continuous domain. We say thds
1. anL-domain if each paire;, e5 € E bounded by € E has a supremum ife;

2. abounded-complete domafor bc-domain, if each bounded paie;,es € E
has a supremum;
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Figure 11: Separating examples for the categories of lattice-like domains.

3. (repeated for comparison) eontinuous latticeif each paire;,es € E has a
supremum.

We denote the full subcategories@DNT | corresponding to these definitions by
L, BC, andLAT . For the algebraic counterparts we uak, aBC, andalLAT .

All this still makes sense if we forget about approximation but, surely, at this point
the reader does not suffer from a lack of variety as far as categories are concerned.
We would like to point out that continuous lattices are the main objects of study in
[GHK*80], a mathematically oriented text, whereas the objects-aBC are often
the domains of choice in semantics, where they appear under theSwottedomain
Typical examples are depicted in Figure 11. They even characterize the corresponding
categories, see Exercise 4.3.11(3).

Since domains have directed joins anyway, we see that in L-domains every subset
of a principal ideal has a supremum in that ideal. We also know that complete lattices
can alternatively be characterized by infima. The same game can be played for the
other two definitions:

Proposition 4.1.2. Let D be a pointed continuous domain. ThBris an L-domain, a
bc-domain, or a continuous lattice if and only if it has infima for bounded non-empty,
non-empty, or arbitrary subsets, respectively.

The consideration of infima may seem a side issue in the light of the problem of
turning function spaces into domains. Its relevance becomes clear when we remember
that upper adjoints preserve infima. The second half of the following is therefore a
simple observation. The first half follows from Proposition 3.1.2 and Theorem 3.1.4.

Proposition 4.1.3. Retracts and bilimits of L-domains (bc-domains, continuous lat-
tices) are again L-domains (bc-domains, continuous lattices).

We can treat continuous and algebraic lattice-like domains nicely in parallel be-
cause the ideal completion respects these definitions:
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Proposition 4.1.4. Let D be an L-domain (bc-domain, continuous lattice). Then
IdI(D, C) is an algebraic L-domain (bc-domain, lattice).

ThusL, BC, andLAT contain precisely the retracts of objectsatf, aBC, and
aLAT, respectively. We conclude this section by stating the desired closure property
of lattice-like domains.

Proposition 4.1.5. Let D be a continuous domain anl an L-domain (bc-domain,
continuous lattice). ThefD — E] is again an L-domain (bc-domain, continuous
lattice).

Corollary 4.1.6. The categoried, BC, LAT, and their algebraic counterparts are
cartesian closed.

4.2 Finite choice: Compact domains

Let us now turn our attention to the first argument of the function space construction,
which means by the general considerations from the beginning of this chapter, the study
of open sets and their finite intersections. Step functions are defined using basic open
sets of the form{d, and the fact that there is a single generatavas crucial in the

proof that(d \, e) approximatesf whenevere approximatesf(d). Arbitrary open

sets are unions of such basic opens (Proposition 2.3.6) but in general this is an infinite
union and so the proof of Proposition 4.0.2 will no longer work. For the first time
we have now reached a point in our exposition where the theory of algebraic domains
is definitely simpler and better understood than that of continuous domains. Let us
therefore treat this case first.

4.2.1 Bifinite domains

Step functiongd \, e) may in the algebraic case be defined using compact elements
only, where the characteristic pre-imagié is actually equal tod. Taking up our

line of thought from above, we want for the algebraicity of the function space that
the intersectiod = Td; N Tdy is itself generated by finitely many compact points:

A =1Tc; U...UTc,. Note that the;; must be minimal upper bounds 6d,, d-}. For
eachc; we choose a compact element belf{;) and above:;, eo. New intersections
then come up, this time between the differgnts. Let us therefore further assume that
after finitely many iterations this process stops. It is an easy exercise to show that the
function constructed in this way is a compact element befaand aboved; \ e;)
and(dz \, e2). We hope that this provides sufficient motivation for the following list
of definitions.

Definition 4.2.1. Let P be a poset. (Think aP as the basis of an algebraic domain.)

1. We say thaP’ is mub-completdor: hasproperty n) if for every upper bound:
of a finite subsed/ of P there is a minimal upper bound af below:zx. Written
as aformula:vM C, P. (,,cps T = Tmub(M).

2. For a subsetA of P let its mub-closuremc(A) be the smallest superset df
which for every finitel/ C mc(A) also containgnub(M).
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3. We say thaP has thefinite mub propertyf it is mub-complete and if every finite
subset has a finite mub-closure. If, in additidnhas a least element, then we
call it a Plotkin-order

4. An algebraic domain whose basis of compact elements is a Plotkin-order is
called abifinite domain The full subcategory dALG ;| of bifinite domains we
denote byB.

With this terminology we can formulate precisely how finitely many step functions
combine to determine a compact element in the function space [Abr91b].

Definition 4.2.2. Let D be a bifinite domain and leE’ be pointed and algebraic. A
finite subsef” of K(D) x K(FE) is calledjoinableif

VG C F3H CF. (m(H) =mub(m(G)) A Ve e ma(G),d e m(H). cCd).
The function which we associate with a joinable fan#ilys
| [{e|3deKD).dCx A (de)€ F}.

Lemma 4.2.3.If D is a bifinite domain and¥ is pointed and algebraic, then every
joinable subset oK(D) x K(F) gives rise to a compact element[&f — E].
If FandG are joinable families then the corresponding functions are related if and
only if
V(d,e) € G3I(d',e') € F.d Cdande C ¢

The expected result, dual to Proposition 4.1.5 above, then is:

Proposition 4.2.4.1f D is a bifinite domain andt is pointed and algebraic, then
[D — E] is algebraic. All compact elements[d® — E] arise from joinable fami-
lies.

Note that this is strictly weaker

Comment: Unfortunately, it is as yet unproven.

than Proposition 4.1.5 and we do not immediately get Bhé cartesian closed. For

this we have to find alternative descriptions. The fact that we can get an algebraic
function space by making special assumptions aleither the argument domaior

the target domain was noted in a very restricted form in [Mar81].

The concept of finite mub closure is best explained by illustrating what can go
wrong. In Figure 12 we have the three classical examples of algebraic domains which
are not bifinite; in the first one the basis is not mub-complete, in the second one there is
an infinite mub-set for two compact elements, and in the third one, although all mub-
sets are finite, there occurs an infinite mub-closure. On a more positive note, it is clear
that every finite and pointed poset is a Plotkin-order and hence bifinite. This trivial
example contains the key to a true understanding of bifiniteness; we will now prove
that bifinite domains are precisely the bilimits of finite pointed posets.
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Figure 12: Typical non-bifinite domains.

Proposition 4.2.5. Let D be an algebraic domain with mub-complete bas{®) and
let A be a set of compact elements. Then there is a least kernel operaton D
which keeps fixed. Itis given by a(z) = | |T{c € mc(A) | ¢ C z}.

Proof. First note thaip, is well-defined because the supremum is indeed over a di-
rected set. This follows from mub-completeness. Continuity follows from Corol-
lary 2.2.16. On the other hand, it is clear that a kernel operator which fixesist
also fix each element of the mub-closuie(A), and sop4 is clearly the least mono-
tone function with the desired property. O

In a bifinite domain finite sets of compact elements have finite mub-closures. By
the preceding proposition this implies that there are many kernel operators on such a
domain which have a finite image. In fact, we get a directed family of them, because the
order on kernel operators is completely determined by their images, Proposition 3.1.17.
For the sake of brevity, let us call a kernel operator with finite imagelampotent
deflation

Theorem 4.2.6.Let D be a pointed dcpd. The following are equivalent
1. D is a bifinite domain.

2. There exists a directed collectidif;);c; of idempotent deflations dd whose
supremum equalid p.

3. The set of all idempotent deflations is directed and yielgsas its join.

Proof. What we have not yet said is how algebraicityloffollows from the existence

of idempotent deflations. For this observe that the inclusion of the image of a kernel
operator is a lower adjoint and as such preserves compactness. For the implication
‘2 = 3" we use the fact that idempotent deflations are in any case compact elements
of the function space. O
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It is now only a little step to the promised categorical characterization.

Theorem 4.2.7. A dcpo is bifinite if and only if it is a bilimit of an expanding system
of finite pointed posets.

Proof. Let D be bifinite and let f;);c; be a family of idempotent deflations gener-
ating the identity. Construct an expanding system by taking as objects the images of
the deflations and as connecting embeddings the inclusion of images. The associated
upper adjoint is given byf; restricted toim(f;). D is the bilimit of this system by
Lemma 3.3.8.

If, conversely(D, (f;)icr) is a bilimit of finite posets then clearly the compositions
fi o g;, whereg; is the upper adjoint of;, satisfy the requirements of Theorem 4.2.6.

O

So we have three characterizations of bifiniteness, the original one, which may
be called an internal description, a functional description by Theorem 4.2.6, and a
categorical one by Theorem 4.2.7. Often, the functional characterization is the most
handy one in proofs. We should also mention that bifinite domains were first defined
by Gordon Plotkin in [Plo76] using expanding sequences. (In our taxonomy these are
precisely the countably based bifinite domains.) The acronym he used for them, SFP,
continues to be quite popular.

Theorem 4.2.8. The categorB of bifinite domains is closed under cartesian product,
function space, coalesced sum, and bilimits. In particiBag cartesian closed.

Proof. Only function space and bilimit are non-trivial. We leave the latter as an exer-
cise. For the function space I8t and E be bifinite with families of idempotent defla-
tions (f;)ier and(g,), ec. A directed family of idempotent deflations @ — E] is
given by the maps’,;: h — gjoho f;, (i,j) € I x J. O

4.2.2 FS-domains

Let us now look at continuous domains. The reasoning about what the structOre of
should be in order to ensure thHd@ — E] is continuous is pretty much the same as
for algebraic domains. But at the point where we there introduced the mub-closure of
a finite set of compact elements, we must now postulatexistenceof some finite

and finitely supported partitioning ab. This is clearly an increase in the logical
complexity of our definition and also of doubtful practical use. It is more satisfactory
to generalise the functional characterization.

Definition 4.2.9. Let D be a dcpo and’: D — D be a Scott-continuous function. We
say thatf is finitely separatedrom the identity orD, if there exists a finite sé/ such
that for anyz € D thereism € M with f(z) C m C . We speak o$trong separation
if for eachx there are elementsi, m’ € M with f(x) Cm < m/ C z.

A pointed dcpd is called anFS-domairnif there is a directed collectiofif;);c; of
continuous functions o, each finitely separated froid p, with the identity map as
their supremum.
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It is relatively easy to see that FS-domains are indeed continuous. Thus it makes
sense to speak &S as the full subcategory ;EONT where the objects are the FS-
domains.

We have exact parallels to the properties of bifinite domains, but often the proofs
are trickier.

Proposition 4.2.10.1f D is an FS-domain andE is pointed and continuous then
[D — E] is continuous.

Theorem 4.2.11.The categor§Sis closed under the formation of products, function
spaces, coalesced sums, and bilimits. It is cartesian closed.

What we do not have are a categorical characterization or a description of FS-
domains as retracts of bifinite domains. All we can say is the following.

Proposition 4.2.12. 1. Every bifinite domain is an FS-domain.
2. Aretract of an FS-domain is an FS-domain.
3. An algebraic FS-domain is bifinite.

To fully expose our ignorance, we conclude this subsection with an example of a
well-structured FS-domain of which we do not know whether it is a retract of a bifinite
domain.

Example. Let Disc be the collection of all closed discs in the plane plus the plane
itself, ordered by reversed inclusion. One checks that the filtered intersection of discs
is again a disc, sBisc is a pointed dcpo. A disé; approximates a disg; if and only
if d; is a neighborhood of;. This proves thabDisc is continuous. For every > 0
we define a may. on Disc as follows. All discs inside the open disc with radiyare
mapped to their closedneighborhood, all other discs are mapped to the plane which
is the bottom element dbisc. Because the closed discs contained in some compact
set form a compact space under the Hausdorff subspace topology, these functions are
finitely separated from the identity map. This proves that is a countably based
FS-domain.

4.2.3 Coherence

This is a good opportunity to continue our exposition of the topological side of domain
theory, which we began in Section 2.3. We need a second tool complementing the
lattice o p of Scott-open sets, namely, the compact saturated sets. Here ‘compact’ is to
be understood in the classical topological sense of the word, i.e Aadet topological

space iscompactif every covering ofA by open sets contains a finite subcovering.
Saturatedare those sets which are intersections of their neighborhoods. In dcpo’s
equipped with the Scott-topology these are precisely the upper sets, as is easily seen
using opens of the form \ |z.

Theorem 4.2.13.Let D be a continuous domain. The sets of open neighborhoods of
compact saturated sets are precisely the Scott-open filterg in
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By Proposition 7.2.27 this is a special case of the Hofmann-Mislove Theorem 7.2.9.

Let us denote the set of compact saturated sets of a ficpmrdered by reverse
inclusion, byxp. We will refer to families inkp which are directed with respect to
reverse inclusion, more concretely as filtered families. The following, then, is only a
re-formulation of Corollary 7.2.11.

Proposition 4.2.14. Let D be a continuous domain.
1. kp is a dcpo. Directed suprema are given by intersection.

2. If the intersection of a filtered family of compact saturated sets is contained in a
Scott-open sab then some element of it belongs@already.

3. kp \ {0} is a dcpo.
Proposition 4.2.15. Let D be a continuous domain.
1. kp is a continuous domain.
2. A < Bholds inkp if and only if there is a Scott-open s@twith B C O C A.

3. O <« U holds inop if and only if there is a compact saturated sétwith
OCACU.

Proof. All three claims are shown easily using upper sets generated by finitely many
points: If O is an open neighborhood of a compact saturatedigéen there exists a
finite set)M of points ofO with A C 1M C 1M C O. O

The interesting point about FS-domains then is, that their space of compact sat-
urated sets is actually a continuous lattice. We already have directed suprema (in
the form of filtered intersections) and continuity, so this boils down to the property
that the intersection of two compact saturated sets is again compact. Let us call do-
mains for which this is truegoherent domaingGiven the intimate connection between
op andkp, it is no surprise that we can read off coherence from the lattice of open
sets.

Proposition 4.2.16. A continuous domainD is coherent if and only if for all
O,U,,Uy € op WithO < Uy andO « U, we also have) <« Uy N Us.

(In Figure 6 we gave an example showing that the condition is not true in arbitrary
continuous lattices.)
This result specializes for algebraic domains as follows:

Proposition 4.2.17. An algebraic domairD is coherent if and only iK(D) is mub-
complete and finite sets Bf D) have finite sets of minimal upper bounds.

This proposition was named ‘2/3-SFP Theorem’ in [Plo81] because coherence
rules out precisely the first two non-examples of Plotkin-orders, Figure 12, but not
the third. The only topological characterization of bifinite domains we have at the
moment, makes use of the continuous function space, see Lemma 4.3.2.
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We observe that for algebraic coherent domains.andxp have a common sub-
lattice, namely that of compact-open sets. These are precisely the sets of the form
Ter U ... U Te, with the¢; compact elements. This lattice generates lagihandx p
when we form arbitrary suprema. This pleasant coincidence features prominently in
Chapter 7.

Theorem 4.2.18.FS-domains (bifinite domains) are coherent.
Let us reformulate the idea of coherence in yet another way.

Definition 4.2.19. The Lawson-topologyon a dcpoD is the smallest topology con-
taining all Scott-open sets and all sets of the fabm Tx. It is denoted by p.

Proposition 4.2.20. Let D be a continuous domain.

1. The Lawson-topology ob is Hausdorff. Every Lawson-open set has the form
O\ A whereO is Scott-open and! is Scott-compact saturated.

2. The Lawson-topology aob is compact if and only iD is coherent.

3. A Scott-continuous retract of a Lawson-compact continuous domain is Lawson-
compact and continuous.

So we see that FS-domains and bifinite domains carry a natural compact Hausdorff
topology. We will make use of this in Chapter 6.

4.3 The hierarchy of categories of domains

The purpose of this section is to show that there are no other ways of constructing a
cartesian closed full subcategory@®NT or ALG than those exhibited in the previous

two sections. The idea that such a result could hold originated with Gordon Plotkin,
[Plo81]. For the particular classALG | it was verified by Mike Smyth in [Smy83a],

for the other classes by Achim Jung in [Jun88, Jun89, Jun90]. All these classification
results depend on the Axiom of Choice.

4.3.1 Domains with least element

Let us start right away with the crucial bifurcation lemma on which everything else in
this section is based.

Lemma 4.3.1. Let D and E be continuous domains, whefe is pointed, such that
[D — E]is continuous. The® is coherent otF is an L-domain.

Proof. By contradiction. Assume is not coherent and’ is not an L-domain. By
Proposition 4.2.16 there exist open séxs/;, andU, in D such thatO <« U; and
O < Us hold but notO <« U; NU,. Therefore there is a directed collection ) ;< ; of
open sets covering; N Us, none of which cover®. We shall also need interpolating
setsU; andU,, thatis,0 < U] < U; andO < Uy < Us.

The assumption aboi not being an L-domain can be transformed into two special
cases. EitheF contains the algebraic domaihfrom Figure 12 (where the descending
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chain inA may generally be an ordinal) of from Figure 11 as a retract. We have left
the proof of this as Exercise 4.3.11(3). Note thatifis a retract ofF then[D — E’]
is aretract of D — FE] and hence the former is continuous if the latter is. Let us now
prove for both cases thab — FE] is not continuous.

Case 1:E = A. Consider the step functions = (U] \, a) andfo = (U} \, b).
They clearly approximatg, which is defined by

co, ifxelU;NUs;

) oa, fxeU\Us;

) = b, ifxeUy\ U
1, otherwise.

Since approximating sets are directed we ought to find an upper hoiang; and f,
approximatingf. But this impossible: Given an upper bound{df, f>} below f we
have the directed collectidfh;);c; defined by

co, if x € Vj;
hi(z) =< cpy1, fze(UinNUs)\V;andg(z) = cy;
g(z), otherwise.

No h; is abovey becaus¢U; NUs) \ V; must contain a non-empty piece@fand there
h; is strictly belowg. The supremum of thk;, however, equalg. Contradiction.
Case 2.F = X. We choose open sets In as in the previous case. The various
functions, giving the contradiction, are now definedfay= (U7 \ a), fo = (Uj \,
b),
c1, if v € Uy NUy;

) oa, fzelU \Us;
F@ =934 itzcu\,.
1, otherwise.

T, if v e Vj;
hi(z) =< ¢, if x € (U1 NU2)\ Vi
g(z), otherwise.
O
The remaining problem is that coherence does not imply tha an FS-domain

(nor, in the algebraic case, that it is bifinite). It is taken care of by passing to higher-
order function spaces:

Lemma 4.3.2. Let D be a continuous domain with bottom element. Thems an
FS-domain if and only if botth and[D — D] are coherent.

(The proof may be found in [Jun90].)
Combining the preceding two lemmas with Lemmas 3.2.5 and 3.2.7 we get the
promised classification result.

Theorem 4.3.3. Every cartesian closed full subcategory@DNT | is contained in
FSorlL.
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Adding Proposition 4.2.12 we get the analogue for algebraic domains:

Theorem 4.3.4. Every cartesian closed full subcategoryAdfG ; is contained inB
oral.

Forming the function space of an L-domain may in general increase the cardinality
of the basis (Exercise 4.3.11(17)). If we restrict the cardinality, this case is ruled out:

Theorem 4.3.5. Every cartesian closed full subcategoryudfCONT | (w-ALG ) is
contained inv-FS (w-B).

4.3.2 Domains without least element

The classification of pointed domains, as we have just seen, is governed by the di-
chotomy between coherent and lattice-like structures. Expressed at the element level,
and at least for algebraic domains we have given the necessary information, it is the
distinction between finite mub-closures and locally unique suprema of finite sets. It
turns out that passing to domains which do not necessarily have bottom elements im-
plies that we also have to study the mub-closure of the empty set. We get again the
same dichotomy. Coherence in this case meansihigelf, that is, the largest ele-
ment ofop, is a compact element. This is just the compactned3 af a topological
space. And the property thét is lattice-like boils down to the requirement that each
element ofE is above a unique minimal element, Bobis really the disjoint union of
pointed components.

Lemma 4.3.6. Let D and E be continuous domains such tH& — F] is continu-
ous. ThenD is compact orE is a disjoint union of pointed domains.

The proof is a cut-down version of that of Lemma 4.3.1 above. The surprising
fact is that this choice can be mateependentlyffrom the choice between coher-
ent domains and L-domains. Before we state the classification, which because of this
independence, will now involve x 2 = 4 cases, we have to refine the notion of com-
pactness, because just like coherence it is not the full condition necessary for cartesian
closure.

Definition 4.3.7. A dcpoD is afinite amalganif it is the union of finitely many pointed
dcpo’sDy, ..., D, such that every intersection &f;’s is also a union ofD;’s. (Com-
pare the definition of mub-complete.)

For categories whose objects are finite amalgams of objects from another cate-
gory C we use the notatioR-C. Similarly, we writeU-C if the objects are disjoint
unions of objects of.

Proposition 4.3.8. A mub-complete dcpo is a finite amalgam if and only if the mub-
closure of the empty set is finite.

Lemma 4.3.9. If both D and[D — D] are compact and continuous théhis a finite
amalgam.

Theorem 4.3.10. 1. The maximal cartesian closed full subcategorieSONT are
F-FS, U-FS, F-L, andU-L.
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2. The maximal cartesian closed full subcategoried\b® are F-B, U-B, F-alL,
andU-aL.

At this point we can answer a question that may have occurred to the diligent reader
some time ago, hamely, why we have defined bifinite domains in terpaitedfinite
posets, where clearly we never needed the bottom element in the characterizations of
them. The answer is that we wanted to emphasize the uniform way of passing from
pointed to general domains. The fact that the objectB-8f can be represented as
bilimits of finite posets is then just a pleasant coincidence.

Exercises 4.3.11. 1. [Jun89] Show that a dcpd is continuous if the function
space[D — D] is continuous.

2. LetD be a bounded-complete domain. Show thafs a Scott-continuous func-
tion fromD x D to D.

3. Characterize the lattice-like (pointed) domains by forbidden substructures:
() FE is w-continuous but not mub-complete if and only if domdimn Fig-
ure 12 is a retract oft.

(b) E is mub-complete but not an L-domain if and only if domairin Fig-
ure 11 is a retract of.

(c) E is an L-domain but not bounded-complete if and only if dongim
Figure 11 is a retract of.

(d) E is a bounded-complete domain but not a lattice if and only if dorvain
in Figure 11 is a retract ofZ.

4. Find a poset in which all pairs have finite mub-closures but in which a triple of
points exists with infinite mub-closure.

5. Show that if for an algebraic domaii the basis is mub-complete thénitself
is not necessarily mub-complete.

6. Show that in a bifinite domain finite sets of non-compact elements may have
infinitely many minimal upper bounds and, even if these are all finite, may have
infinite mub-closures.

7. Show that ifA is a two-element subset of an L-domain thém mub(A) is
mub-closed.

8. Prove that bilimits of bifinite domains are bifinite.
9. Prove the following statements about retracts of bifinite domains.

(a) A pointed dcpdD is a retract of a bifinite domain if and only if there is a
directed family( f;);c of functions onD such that eaclyf; has a finite im-
age and such that| TZ.GI fi = idp. (You may want to do this for countably
based domains first.)

(b) The ideal completion of a retract of a bifinite domain need not be bifinite.
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10.

11.

12.
13.

14.
15.
16.

17.

(c) If D is a countably based retract of a bifinite domain then it is also the
image of a projection from a bifinite domain. (Without countability this is
an open problem.)

(d) The category of retracts of bifinite domains is cartesian closed and closed
under bilimits.

Prove that FS-domains have infima for downward directed sets. As a conse-
guence, an FS-domain which has binary infima, is a bc-domain.

Show that in a continuous domain the Lawson-closed upper sets are precisely
the Scott-compact saturated sets.

Characterize Lawson-continuous maps between bifinite domains.

We have seen that every bifinite domain is the bilimit of finite posets. As such,
it can be thought of as a subset of the product of all these finite posets. Prove
that the Lawson-topology on the bifinite domain is the restriction of the product
topology if each finite poset is equipped with the discrete topology.

Prove that a coherent L-domain is an FS-domain.
Characterize those domains which are both L-domains and FS-domains.

Characterize Scott-topology and Lawson-topology on both L-domains and FS-
domains by the ideal of functions approximating the identity.

[Jun89] LetE be an L-domain such thaE' — E] is countably based. Show
that £ is an FS-domain.
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5 Recursive domain equations

The study of recursive domain equations is not easily motivated by reference to other
mathematical structure theories. So we shall allow ourselves to deviate from our gen-
eral philosophy and spend some time on examples. Beyond motivation, our examples
represent three different (and almost disjoint) areas in which recursive domain equa-
tions arise, in which they serve a particular role, and in which particular aspects about
solutions become prominent. It is an astonishing fact that within domain theory all
these aspects are dealt with in a unified and indeed very satisfactory manner. This rich-
ness and interconnectedness of the theory of recursive domain equations, beautiful as it
is, may nevertheless appear quite confusing on a first encounter. As a general guideline
we offer the following: Recursive domain equations and the domain theory for solv-
ing them comprise gechniquethat is worthlearning But in order tounderstandhe
meaningof a particular recursive domain equation, you have to know the context in
which it came up.

5.1 Examples
5.1.1 Genuine equations

The prime example here i§ =~ [X — X]. Solving this equation in a cartesian
closed category gives a model for the untypedalculus [Sco80, Bar84], in which, as
we know, no type distinction is made between functions and arguments. When setting
up an interpretation oh-terms with values inD, where D solves this equation, we
need the isomorphismsé: D — [D — D] and«: [D — D] — D explicitly. We
conclude that even in the case of a genuine equation we are looking not only for an
object but an objecplus an isomorphism. This is a first hint that we shall need to
treat recursive domain equations in a categorical setting. However, the function space
operator is contravariant in its first and covariant in its second argument and so there
is definitely an obstacle to overcome. A second problem that this example illustrates
is that there may be many solutions to choose from. How do we recognize a canonical
one? This will be the topic of Section 5.3.

Besides this classical example, genuine equations are rare. They come up in se-
mantics when one is confronted with the ability of computers to treat information both
as program text and as data.

5.1.2 Recursive definitions

In semantics we sometimes need to make recursive definitions, for very much the same
reasons that we need recursive function calls, namely, we sometimes do not know how
often the body of a definition (resp. function) needs to be repeated. To give an example,
take the following definition of a space of so-called ‘resumptions’:

R~[S— (S& S x R)).

We read it as follows: A resumption is a map which assigns to a state either a final state
or an intermediary state together with another resumption representing the remaining
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computation. Such a recursive definition is therefore nothing but a shorthand for an
infinite (but regular) expression. Likewisewile loop could be replaced by an infinite
repetition of its body. This analogy suggests that the way to give meaning to a recursive
definition is to seek a limit of the repeated unwinding of the body of the definition
starting from a trivial domain. No doubt this is in accordance with our intuition, and
indeed this is how we shall solve equations in general. But again, before we can do
this, we need to be able to turn the right hand side of the specification into a functor.

5.1.3 Datatypes

Data types are algebras, i.e. sets together with operations. The study of this notion is
known as ‘Algebraic Specification’ [EM85] or ‘Initial Algebra Semantics’ [GTW78].
We choose a formulation which fits nicely into our general framework.

Definition 5.1.1. Let F' be a functor on a categor@. An F'-algebrais given by an ob-
ject A and amapf: F(A) — A. A homomorphism between algebrasF'(4) — A
andf’: F(A") — A’isamapg: A — A’ such that the following diagram commutes:

Fa) L poay
f f
g

A A

For example, if we lef be the functor oveBetwhich assignd U A x A to A
(wherel is the one-point dcpo as discussed in Section 3.2.1), Fhalgebras are pre-
cisely the algebras with one nullary and one binary operation in the sense of universal
algebra. Lehmann and Smyth [LS81] discuss many examples. Many of the data types
which programming languages deal with are furthermore totally free algebras, or term
algebras on no generators. These are distinguished by the fact that there is precisely
one homomorphism from them into any other algebra of the same signature. In our cat-
egorical language we express this by initiality. Term algebras (alias init@lebras)
are connected with the topic of this chapter because of the following observation:

Lemmab5.1.2.If i: F(A) — Alis an initial F-algebra theni is an isomorphism.

Proof. Consider the following composition of homomorphisms:

Feay FUL poay 2O, g
i F(i) i

f

A A

F(A)

where f is the unique homomorphism from F(A) — Ato F(i): F?(A) — F(A)
guaranteed by initiality. Again by initiality; o f must beid 4. And from the first
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quadrangle we gef o i = F (i) o F'(f) = F(ida) = idp(4). Sof andi are inverses
of each other. O

So in order to find an initiaF-algebra, we need to solve the equati®re F(X).

But once we get a solution, we still have to check initiality, that is, we must validate
that the isomorphism fromi'(X) to X is the right structure map.

In category theory we habitually dualize all definitions. In this case we get (final)
co-algebras. Luckily, this concept is equally meaningful. Where the fnap(A) —

A describes the way how new objects of typareconstructedrom old ones, a map

g: A — F(A) stands for the opposite process, tlezompositiorof an object into its
constituents. Naturally, we want the two operations to be inverses of each other. In
other words, ifi: F/(A) — A s an initial F-algebra, then we requite*: A — F(A)

to be the final co-algebra.

Peter Freyd [Fre91] makes this reasoning the basis of an axiomatic treatment of
domain theory. Beyond and above axiomatizing known results, he treats contravariant
and mixed variant functors and offers a universal property encompassing both initial-
ity and finality. This will allow us to judge the solution of general recursive domain
equations with respect to canonicity.

5.2 Construction of solutions

Suppose we are given a recursive domain equatio® F'(X) where the right hand

side defines a functor on a suitable category of domains. As suggested by the ex-
ample in Section 5.1.2, we want to repeat the trick which gave us fixpoints for Scott-
continuous functions, namely, to take a (bi-)limit of the sequéng&ll), F(F(I)),....
Remember that bilimits are defined in terms of e-p-pairs. This makes it necessary that
we, at least temporarily, switch to a different category. The convention that we adopt
for this chapter is to leD stand for any category gfointeddomains, closed under
bilimits. All the cartesian closed categories of pointed domains mentioned in Chapter 4
qualify. We denote the corresponding subcategory where the morphisms are embed-
dings byD®. Some results will only hold for strict functions. Recall that our notation

for these werg': D B andD  , for categories. Despite this unhappy (but unavoid-
able) proliferation of categories, recall that the central limit-colimit Theorem 3.3.7 and
Corollary 3.3.10 state a close connection: Colimits of expanding sequenbésaire
also colimits inD and, furthermore, if the embeddings defining the sequence are re-
placed by their upper adjoints, the colimit coincides with the corresponding limit. This
will bear fruit when we analyze the solutions we getDfi from various angles as
suggested by the examples in the last subsection.

Let us now start by just assuming that our functor restric3%to

5.2.1 Continuous functors

Definition 5.2.1. A functor F': D¢ — D° is called continuous if for every ex-
panding sequencéD,,)nen, (€mn: Dy — Dp)ncmen) With colimit (D, (e,,)nen)
we have that(F'(D), (F(e,))nen) is a colimit of the sequencé(F(D,))nen,
(F(emn): F(Dn) - F(DHL))HE7HEN>'
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This, obviously, is Scott-continuity expressed for functors. Whether we formulate
it in terms of expanding sequences or expanding systems is immaterial. The question is
not, what is allowed to enter the model, but rather, how much do | have to check before
I can apply the theorems in this chapter. And sequences are all that is needed.

This, then, is the central lemma on which our domain theoretic technique for solv-
ing recursive domain equations is based (recall ffiats our notation for the upper
adjoint of f):

Lemma 5.2.2. Let F' be a continuous functor on a categdpy of domains. For each
embedding:: A — F(A) consider the colimi{D, (e,,)nen) Of the expanding se-

quenced —= F(A) o) F(F(A)) FEO) . ThenD is isomorphic toF'(D) via
the maps
fod = ||| cyens10F(e,)* : F(D)— D, and
unfold = ||| yFlen)oes, : D— F(D).

For eachn € N they satisfy the equations

F(e,) = unfoldoeniq
F(e,)* = ey ofold.

Proof. We know that(D, (e, ),en {0} is @ colimit over the diagram

X9 pp(ay) TE

F(4)
(clipping off the first approximation makes no difference), where there is also the co-
cone(F (D), (F(en))nen). The latter is also colimiting by the continuity d&f. In
this situation Theorem 3.3.7 provides us with unique mediating morphisms which are
precisely the statefbld andunfold. They are inverses of each other because both co-
cones are colimiting. The equations follow from the explicit description of mediating
morphisms in Theorem 3.3.7. O

Note that since we have restricted attention to pointed domains, we always have the
initial embeddingz: T — F(I). The solution taX = F'(X) based on this embedding
we callcanonicaland denote it by IX(F).

5.2.2 Local continuity

Continuity of a functor is a hard condition to verify. Luckily there is a property which
is stronger but nevertheless much easier to check. It will also prove useful in the next
section.

Definition 5.2.3. A functor F' from D to E, whereD andE are categories of domains,
is calledlocally continuousif the mapsHom(D, D') — Hom(F'(D), F(D’)), f —
F(f), are continuous for all object® and D’ fromD.

Proposition 5.2.4. A locally continuous functof': D — E restricts to a continuous
functor fromD*® to E°.
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We will soon generalize this, so there is no need for a proof at this point.

Typically, recursive domain equations are built from the basic constructions listed
in Section 3.2. The strategy is to check local continuity for each of these individually
and then rely on the fact that composition of continuous functors yields a continuous
functor. However, we must realize that the function space construction is contravariant
in its first and covariant in its second variable, and so the technique from the preceding
paragraph does not immediately apply. Luckily, it can be strengthened to cover this
case as well.

Definition 5.2.5. A functor F': D°? x D’ — E, contravariant in its first, covariant in
its second variable, is callddcally continuousif for directed setsA C Hom(Ds, D)
andA’ C Hom(D1, D}) (whereD,, D, are objects irD and D}, D), are objects irD’)

we have
F("A'ah=" || F(1)

feA fle A’
in Hom(F(Dy, D), F(Ds, D})).

Proposition 5.2.6.If F': D?” x D' — Eis amixed variant, locally continuous functor,
then it defines a continuous covariant funcfofrom D¢ x D€ to E® as follows:

F(D,D") = F(D,D')for objects, and
F(e,e’) = F(e*,¢€) for embeddings.

The upper adjoint td'(e, ¢’) is given byF (e, ¢').

Proof. Let (e,e*) and (¢/,¢’™) be e-p-pairs irD andD’, respectively. We calculate
F(e,e*)o F(e,e') = Fle,e’*) o Fe*,e') = F(e*oe,e’" oe') = F(id,id) = id and
F(e,e')o F(e,e") = F(e*,e') o Fle,e’™) = F(eoe*, e o€e'*) C F(id,id) = id, S0
F maps indeed pairs of embeddings to embeddings.

For continuity, let((D,,), (emr)) and{((D5,), (el,,,)) be expanding sequences in
D and D’ with colimits (D, (e,)) and (D', (e,)), respectively. By Lemma 3.3.8
this implies | | cyen o €, = idp and |]T e, o €, = idp. By lo-
cal continuity we havel | _ F(e,.¢e,) o Flen,e,)* = |1,y Fles,el) o
F(e’rla e/:) = LlTneN F(en o e:w e;L © 6'2) = F(I_l TnEN €n O e:u LlTnEN e‘;L © 6/2) =
F(idp,idp:) = idgp,py and so (F(D,D’), (F(en,el))nen) is a colimit of

n

<(F(DH7D;L))71€N7(F(emTﬂe;nn))nngN)' O

While it may seem harmless to restrict a covariant functor to embeddings in order
to solve a recursive domain equation, it is nevertheless not clear what the philosophical
justification for this step is. For mixed variant functors this question becomes even
more pressing since we explicitthangethe functor. As already mentioned, a satis-
factory answer has only recently been found, [Fre91, Pit93b]. We present Peter Freyd’s
solution in the next section.

Let us take stock of what we have achieved so far. Building blocks for recursive
domain equations are the constructors of Section:3,2), —, etc., each of which is
readily seen to define a locally continuous functor. Translating them to embeddings
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via the preceding proposition, we get continuous functors of one or two variables. We
further need the diagondk: D¢ — D¢ x D¢ to deal with multiple occurrences of

X in the body of the equation. Then we note that colimits in a finite poweDof

are calculated coordinatewise and hence the diagonal and the tupling of continuous
functors are continuous. Finally, we include constant functors to allow for constants to
occur in an equation. Two more operators will be added below: the bilimit in the next
section and various powerdomain constructions in Chapter 6.

5.2.3 Parameterized equations

Suppose that we are given a locally continuous funétoin two variables. Given
any domainD we can solve the equatioRN = F(D, X) using the techniques of
the preceding sections. Remember that by default we mean the solution according
to Lemma 5.2.2 based an I — F(D, 1), so there is no ambiguity. Also, we have
given a concrete representation for bilimits in Theorem 3.3.FIX0F (D, -)) is also
well-defined in this respect. We want to show that it extends to a functor.

Notation is a bit of a problem. LeF: D,y x E;; — E,, be a functor in two
variables. We seF'; for the functor orE | ; which mapsF to F(D, E) for objects and

g: E L Eto F(idp, g) for morphisms. Similarly fo'n,. The embeddings into the
canonical fixpoint ofFp, resp.Fp/, we denote by, e;,... andej, e}, ..., and we
usee ande’ for the unique strict function frorhinto D andD’, respectively.

Proposition 5.2.7.Let F: D, x E;; — E_, be a locally continuous functor. Then
the following defines a locally continuous functor frém, to E | ;:

On objects : D — FIX(Fp),

onmorphisms :  (f: D — D) — | |Tel, 0 fuoe;,
neN

where the sequend¢,,)..cn is defined recursively by = idy, frr1 = F(f, fn)-

Proof. Let D and D’ be objects oD, and letf: D % D’ be a strict function. The
solution toX = F(D, X) is given by the bilimit

FIX(Fp)
€0 e1 €9
I Fp) 2 gy .

and similarly forD’. Corresponding objects of the two expanding sequences are con-

nected byf,, : F73(I) =N F7, (). They commute with the embeddings of the expand-
ing sequences: For = 0 we haveF'), (¢/)o fo = ¢’ oidj =€’ = fioe = fi1 0 F2(e)
because there is only one strict map frbto F'!(D’). Higher indices follow by induc-
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tion:

FEri(e) o far1 = Flidp, Fpi(¢) o F(f, f)
= F(f,Fp(e')ofa)

F(f, fur10 Fp(e))
= F(f, fa41) o F(idp, Fp(e))
= far20 F5(e).

So we have a second cocone over the sequence defititidg’r) and using the fact
that colimits inE | ,° are also colimits irE | ;, we get a (unique) mediating morphism
from FIX(Fp) to FIX(Fp/). By Theorem 3.3.7 it has the postulated representation.
Functoriality comes for free from the unigueness of mediating morphisms. It re-
mains to check local continuity. So lgtbe a directed set of maps fromto D’. We
easily get| |TA),, = |_|TfeA fx» by induction and the local continuity df. The supre-
mum can be brought to the very front by the continuity of composition and general
associativity. O

Note that this proof works just as well for mixed variant functors. As an application,
suppose we are given a system of simultaneous equations

Xl = Fl(Xla"'aXn)

X, = Fn(Xla 7XTL)

We can solve these one after the other, viewXg ... , X,, as parameters for the

first equation, substituting the result féf; in the second equation and so on. ltis
more direct to pass fror® to D", for which Theorem 3.3.7 and the results of this
chapter remain true, and then solve these equations simultaneously with the tupling of
the F;. The fact that these two methods yield isomorphic results is knovBe&B’s

rule [Bek69].

5.3 Canonicity

We have seen in the first section of this chapter that recursive domain equations arise
in various contexts. After having demonstrated a technique for solving them, we must

now check whether the solutions match the particular requirements of these applica-
tions.

5.3.1 Invariance and minimality

Let us begin with a technique of internalizing the expanding sequéneeF'(I) —
F(F(I)) — --- into the canonical solution. This will allow us to do proofs about
FIX(F') without (explicit) use of the defining expanding sequence.

Lemma 5.3.1. Let F' be a locally continuous functor on a category of domdinand
leti: F/(A) — A be an isomorphism. Then there exists a least homomorphism
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from A to every otherF-algebra f: F(C) — C. It equals the least fixpoint of the
functional¢c 4 on[A — C] which is defined by

dc,alg) = foF(g)oi™t.

Least homomorphisms compose;j IfF(B) — B is also an isomorphism, then
hC,A = hC,B o hB,A-

Proof. The functionalp = ¢¢ 4 is clearly continuous becaugeis locally continu-
ous and composition is a continuous operation. Since we have globally assumed least
elements, the function spagd — C] containsc, as a least element. So the least
fixpoint b, 4 Of ¢c, 4 calculated as the supremum of the chainC ¢(c ) C ---
exists. We show by induction that it is below every homomorphisnforc, this is
obvious. For the induction step assumg h. We calculatep(g) = fo F(g)oi~t C
foF(h)oi~! = h. Itfollows thatfix(¢) = hc_a C h holds. On the other hand, every
fixpoint of ¢ is @ homomorphismh o i = ¢(h) oi = fo F(h)oi~toi= fo F(h).

The claim about composition of least homomorphisms can also be shown by in-
duction. But it is somewhat more elegant to use the invariance of least fixpoints,
Lemma 2.1.21. Consider the diagram

B—c 4
oc.B oc,A

B—c] L4

whereH is the strict operation which assigns hp 4 to g € [B — C]. The diagram
commutes, becausé o ¢c p(g) = fo F(g)oj tohga=foF(gohpa)oi!
(becauséiz, 4 is an homomorphismy ¢c a(H(g)). Lemma 2.1.21 then gives us
the desired equalityhc a4 = fix(¢c,a) = H(fix(¢pc,B)) = fix(¢pc,p) 0 hpa =
hC,B [¢] hB,A- D

Specializing the second algebra in this lemma ta b&'(A) — A itself, we de-
duce that on every fixpoint of a locally continuous functor there exists a least endomor-
phismhy4 4. Since the identity is always an endomorphism, the least endomorphism
must be below the identity and idempotent, i.e. a kernel operator and in particular strict.
This we will use frequently below.

Theorem 5.3.2. (Invariance, Part 1) et F' be a locally continuous functor on a cate-
gory of domain® and leti: F(A) — A be an isomorphism. Then the following are
equivalent:

1. Aisisomorphic to the canonical fixpoiftX(F');

2. id 4 is the least endomorphism df

3. id4 = fix(¢a,4) Whereg g 4: [A — A] — [A — A]isdefined by a(g) =
ioF(g)oi ™t
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4. id 4 is the only strict endomorphism df.

Proof. (1=>2) The least endomorphism di = FIX(F') is calculated as the least
fixpointof ¢p p: g — foldo F'(g)ounfold. With the usual notation for the embeddings
of F(I) into D we get (by induction)c; = eg o e and¢™(cy) = ¢(¢" (cL)) =
¢(en—10€el_1) =foldo F(e,_1)o F(e’_;)ounfold = e, oc}, where the last equality
follows becauséold andunfold are mediating morphisms. Lemma 3.3.8 entails that
the supremum of the” (c, ) is the identity.

The equivalence of (2) and (3) is a reformulation of Lemma 5.3.1.

(3=4) Supposeh: A 1L A defines an endomorphism of the algebra
i: F(A) — A. We apply the invariance property of least fixpoints, Lemma 2.1.21,
to the diagram (wherg now stands fotp 4 4)

A B g

Y Y

[AHA]E[A—»A}

whereH mapsg € [A — A]to hog. This is a strict operation becausés assumed to
be strict. The diagram commuteR:o ¢(g) = H(io F(g)oi~1) = hoioF(g)oi~! =
ioF(h)oF(g)oi™! = ¢(H(g)). By Lemma 2.1.21 we havel, = fix(¢) =
H(fix(¢)) = hoida = h.

(4= 1) By the preceding lemma we have homomorphisms betwéesnd
FIX(F). They compose to the least endomorphismsdgmesp.FIX(F'), which we
know to be strict. But then they must be equal to the identity as we have just shown for
FIX(F') and assumed foA. O

If, in the last third of this proof, we do not assume tiht is the only strict endo-
morphism or4, then we still get an embedding-projection pair betwelt{ ) and A.
Thus we have:

Theorem 5.3.3. (Minimality, Part 1) The canonical fixpoint of a locally continuous
functor is a sub-domain of every other fixpoint.

So we have shown that the canonical solution is l#eest fixpoint in a relevant
sense. This is clearly a good canonicity result with respect to the first class of examples.
For pedagogical reasons we have restricted attention to the covariant case first, but, as
we will see in section 5.3.3, this characterization is also true for functors of mixed
variance.

5.3.2 Initiality and finality

By a little refinement of the proofs of the preceding subsection we get the desired
result that the canonical fixpoint together withd is an initial F-algebra. One of the
adjustments is that we have to pass completely to strict functions, because Lemma5.3.1
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does not guarantee the existence of strict homomorphisms and only of these can we
prove unicity.

Theorem 5.3.4. (Initiality) Let F': D, — D_, be a locally continuous functor on a
category of domains with strict functions. Thed: F(D) — D is an initial F-
algebra whereD is the canonical solution t& = F'(X).

Proof. Let f: F(A) =+, Abea strictF’-algebra. The homomorphisin D — A we

get from Lemma 5.3.1 is strict as we see by inspecting its definition. That there are no
others is shown as in the proof of Theorem 5.3.2=(34). The relevant diagram for

the application of Lemma 2.1.21 is now:

[D—>D]£I>[D—>A]

¢D,D $A,D

[D—>D]£I>[D—>A].
O

By dualizing Lemma 5.3.1 and the proof of Theorem 5.3.2=34), we get the
final co-algebra theorem. It is slightly stronger than initiality since it holds for all
co-algebras, not only the strict ones.

Theorem 5.3.5. (Finality) Let F': D — D be a locally continuous functor with canon-
ical fixpointD = FIX(F). Thenunfold: D — F(D) is a final co-algebra.

5.3.3 Mixed variance

Let us now tackle the case that we are given an equation in which the vakiadgeurs

both positively and negatively in the body, as in our first examplez [X — X].

We assume that by separating the negative occurrences from the positive ones, we have
a functor in two variables, contravariant in the first and covariant in the second. As
the reader will remember, solving such an equation required the somewhat magical
passage to adjoints in the first coordinate. We will now see in how far we can extend
the results from the previous two subsections to this case. Note that for a mixed variant
functor the concept af'-algebra or co-algebra is no longer meaningful, as there are no
homomorphisms. The idea is to pass to pairs of mappings. Lemma 5.3.1 is replaced by

Lemma5.3.6.Let F': D°? x D — D be a mixed variant, locally continuous functor
and leti: F(A,A) — Aandj: F(B,B) — B be isomorphisms. Then there exists a
least pair of function&: A — B andk: B — A such that

F F
F(AA) M F(B,B) F(B,B) M F(AA)
i j and j i
A h B B i A
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commute.
The composition of two such least pairs gives another one.

Proof. Define a Scott-continuous functighon[A — B] x [B — A] by ¢(f,g) =
(joF(g,f)oi~tioF(f,g)oj 1) and let(h, k) be its least fixpoint. Commutativity
of the two diagrams is shown as in the proof of Lemma 5.3.1.

Comment: The statement about composition of least pairs of functions is certainly true for constant
bottom maps, and this is lifted to the limits by induction over the fixpoint computation.

O

By equatingA and B in this lemma, we get a least endofunctibrvhich satisfies
hof = foF(h,h). Again, it must be below the identity. Let us call such endofunctions
mixed endomorphisms

Theorem 5.3.7. (Invariance, Part 2)et F': D’ x D — D be a mixed variant and
locally continuous functor and let: (A, A) — A be an isomorphism. Then the
following are equivalent:

1. Ais isomorphic to the canonical fixpoiftX(F);
2. id 4 is the least mixed endomorphismaf

3. id4 = fix(¢a,4) Wheregg 4: [A — A] — [A — A]isdefined by 4(g) =

ioF(g,g)oi!;

4. id 4 is the only strict mixed endomorphism 4f

Proof. The proof is of course similar to that of Theorem 5.3.2, but let us

spell out the parts where mixed variance shows up. Recall from Sec-
tion 5.2.2 how the expanding sequence definiby = FIX(F) looks like:
I+ FILI) 2% PRI, FILI) — ---. If epeq,... are the col-

imiting maps intoD, then F' (e, e0), F'(e},e1),... form the cocone inta? (D, D),
which, by local continuity, is also colimiting. The equations from Lemma 5.2.2 read:
F(e},en) = unfold o e, 41 @andF(ey;, e,)* = Fl(ey,€};) = €5, o fold. We show that
then-th approximation to the least mixed endomorphism equatse). Forn = 0 we
getc, = eg o ¢, and for the induction step:

" cr) = ¢(¢"(cr))
= dlenoey)
— foldo F( n O e:‘” €n O e:) o unfold

(

= foldo F

*
= En+1°€p47-

e
ey, en) o F(en,er) ounfold

(Note how contravariance in the first argumenfo$hufflese,, ande? in just the right
way.)

(3=4) The diagram to which Lemma 2.1.21 is applied is as before, but
H:[A— A] - [A — A]lnow mapy: A — Atohogoh.

The rest can safely be left to the reader. O
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Theorem 5.3.8. (Minimality, Part 2) The canonical fixpoint of a mixed variant and
locally continuous functor is a sub-domain of every other fixpoint.

Now that we have some experience with mixed variance, it is pretty clear how
to deal with initiality and finality. The trick is to pass once more to pairs of (strict)
functions.

Theorem 5.3.9. (Free mixed variant algebrd)et F: D, x D;, — D, be a
mixed variant, locally continuous functor and I&t be the canonical solution to

X & F(X, X). Then for every pair of strict continuous functiofis A N F(B,A)

andg: F(A, B) =, Bthereare unique strict functioris: A 4 Dandk: D =5 B
such that

F(k,h F(h,k
Fp, 4y —FEN | pp py 0. D) —EBR) pa g
f unfold and fold g
h k
A ! ) D - B
commute.

We should mention that the passage from covariant to mixed-variant functors,
which we have carried out here concretely, can be done on an abstract, categorical
level as was demonstrated by Peter Freyd in [Fre91]. The feature of domain theory
which Freyd uses as his sole axiom is the existence and coincidence of initial algebras
and final co-algebras for “all” endofunctors (“all” to be interpreted in some suitable
enriched sense, in our case as “all locally continuous endofunctors”). Freyd’s results
are the most striking contribution to date towards Axiomatic Domain Theory, for which
see 8.4 below.

5.4 Analysis of solutions

We have worked hard in the last section in order to show that our domain theoretic
solutions are canonical in various respects. Besides this being reassuring, the advantage
of canonical solutions is that we can establish proof rules for showing properties of
them. This is the topic of this section.

5.4.1 Structural induction on terms

This technique is in analogy with universal algebra. While one has no control over
arbitrary algebras of a certain signature, we feel quite comfortable with the initial or
term algebra. There, every element is described by a term and no identifications are
made. The first property carries over to our setting quite easily. For each of the finitary
constructions of Section 3.2, we have introduced a notation for the basis elements of the
constructed domain, to wit, tupléd, e), variants(d: i), one-element constant € I,

and step-function&l \ e). Since our canonical solutions are built as bilimits, starting
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from I, and since every basis element of a bilimit shows up at a finite iteration already,
Theorem 3.3.11, these can be denoted by finite expressions. The proof can then be
based on structural induction on the length of these terms.

Unicity, however, is hard to achieve and this is the fault of the function space. One
has to define normal forms and prove conversion rules. A treatment along these lines,
based on [Abr91b], is given in Chapter 7.3.

5.4.2 Admissible relations

This is a more domain-theoretic formulation of structural induction, based on certain
relations. The subject has recently been expanded and re-organized in an elegant way
by Andrew Pitts [Pit93b, Pit94]. We follow his treatment closely but do not seek the
same generality. We start with admissible relations, which we have met shortly in
Chapter 2 already.

Definition 5.4.1. A relation R C D™ on a pointed domait is calledadmissiblef it
contains the constantly-bottom tuple and if it is closed under supremeacbfins. We
write R" (D) for the set of all admissible-ary relations onD, ordered by inclusion.
Unary relations of this kind are also calleatimissible predicates

This is tailored to applications of the Fixpoint Theorem 2.1.19, whence we pre-
ferred the slightly more inclusive conceptwichain over directed sets. If we are given

a strict continuous functiofi: D = E, then we can apply it to relations pointwise in
the usual way:

fTEl(R) = {<f(x1)7 7f(xn)> | <x17"' 7wn> € R}

Proposition 5.4.2. For dcpo’s D and £ and admissiblex-ary relationsR on D and S
on E the set{f | f*!(R) C S} is an admissible predicate di K E).

We also need to say how admissible relations may be transformed by our locally
continuous functors. This is a matter of definition because there are several — and
equally useful — possibilities.

Definition 5.4.3. Let F': D,,°? x D, — D, be a mixed variant and locally contin-
uous functor on a category of domains and strict functions.admissible action on
(n-ary) relationgfor F is given by a functior#¢! which assigns to each paiD, E)

a mapF&%{E> fromR(D) x R(E) toR(F (D, E)). These maps have to be compatible

with strict morphisms D, as follows: If f: Do N Dy andg: Fy SN E5 and if
Ry € R(D,) etc., such thaf™'(Ry) C Ry andg™!(S;) C Ss, then

F(f.9)" (FI8, g,y (R1,51)) € Ff 5, (B2, Sa).

(Admittedly, this is a bit heavy in terms of notation. But in our concrete examples
it is simply not the case that the behaviourE(fg{E on R andS is the same as — or
in a simple way related to — the result of applying the functoktand S viewed as
dcpo’s.)

Specializingf andg to identity mappings in this definition, we get:
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Proposition 5.4.4. The mapsll?ZglE> are antitone in the first and monotone in the sec-
ond variable.

Theorem 5.4.5.Let D, be a category of domains and |étbe a mixed variant and
locally continuous functor fro®, ,°? x D, to D, together with an admissible action
on relations. Abbreviat€IX(F) by D. Given two admissible relation8, S € R"(D)
such that

unfold"(R) C F™(S,R) and fold"(F"!(R,S)) C S
thenR C S holds.

Proof. We know from the invariance theorem that the identity/ois the least fixpoint

of ¢, whereg(g) = foldo F'(g, g) ounfold. LetP = {f € [D N D] | frl{(R) C S},
which we know is an admissible predicate. We want that the identitypdrelongs
to P and for this it suffices to show thatmapsP into itself. So supposeg € P:

d(g)""(R) = fold™ o F(g,9)" o unfold"'(R) by definition
C fold™ o F(g,g) " (F"®(S,R)) by assumption
C fold™(F"*!(R, S)) becausg € P
c S by assumption
Indeed,¢(g) belongs again t@. O

In order to understand the power of this theorem, we will study two particular
actions in the next subsections. They, too, are taken from [Pit93b].

5.4.3 Induction with admissible relations

Definition 5.4.6. Let ' be a mixed variant functor as before. We call an admissible
action on @-ary) relationslogical, if for all objectsD and £ and R € R"(D) we have
Fif ) (R, E") = F(D, E)".

SpecializingR to be the wholeD in Theorem 5.4.5 and removing the assumption
unfold"® (R) C F"¢!(S, R), which for this choice of? is always satisfied for a logical
action, we get:

Theorem 5.4.7. (Induction) Let D, be a category of domains and I&t: D, ,? x

D,, — D., be a mixed variant and locally continuous functor together with a logical
action on admissible predicates. LBtbe the canonical fixpoint df. If S € R' (D) is

an admissible predicate, for whiche F"¢!(D, S) impliesfold(x) € S, thenS must

be equal taD.

The reader should take the time to recognize in this the principle of structural in-
duction on term algebras.

We exhibit a particular logical action on admissible predicates for functors which
are built from the constructors of Section 3.2 HfS are admissible predicates on the
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pointed domain® and E, then we set

R = uw(R)U{L}CD,,
RxS = {(z,y) e DxE|z€RyeS}
[k —S] = {felD— E][f(R)CS},
R®S = in(R)Uinr(S)CDDE,

and analogously fop and[- N ]. (This is not quite in accordance with our notational
convention. For example, the correct expressionffor— S]is[- — -]ZS7E>(R, S).)
The definition of the action for the function space operator should make it clear why
we chose the adjective ‘logical’ for it.

We get more complicated functors by composing the basic constructors. The
actions also compose in a straightforward way:FIf G;, and G, are mixed vari-
ant functors on a category of domains then we can define a mixed variant composi-
tion H = F o (G1,G2) by settingH (X,Y) = F(G1(Y, X),G2(X,Y)) for objects
and similarly for morphisms. Given admissible actions for eachaf;, andG,, we
can define an action faif by settingH"*! (R, S) = F"!(G7¢(S, R), G5/ (R, S)). It
is an easy exercise to show that this action is logical if all its constituents are.

5.4.4 Co-induction with admissible relations

In this subsection we work with another canonical relation on domains, namely the
order relation. We again require that it is dominant if put in the covariant position.

Definition 5.4.8. Let F' be a mixed variant functor. We call an admissible action on
binary relationsextensional if for all objects D and £ and R € R"(D) we have
F[f,l,m(R, Cr)=Crm,.B)

Theorem 5.4.9. (Co-induction) Let D,, be a category of domains and let
F:D,,°? x D1y — D, be a mixed variant and locally continuous functor together
with an extensional action on binary relations. Ltbe the canonical fixpoint of'.

If R € R*(D) is an admissible relation such that for afl,y) € R we have
(unfold(x), unfold(y)) € F™/(Cp, R), thenR is contained irCp.

If we call an admissible binary relatioR on D a simulation if it satisfies the
hypothesis of this theorem, then we can formulate quite concisely:

Corollary 5.4.10. Two elements of the canonical fixpoint of a mixed variant and lo-
cally continuous functor are in the order relation if and only if they are related by a
simulation.

We still have to show that extensional actions exist. We proceed as in the last
subsection and first give extensional actions for the primitive constructors and then
rely on the fact that these compose. SoRetS be admissible binary relations dn,

82



resp.E. We set:

Ry = {(x,y)€D?|z=_Lor(z,y) € R}

RxS = {{{z,y). (" y) € (Dx E)?|

(r,2") € Rand{y,y’) € S}
[R— 8] = {{f.9) €D — EJ’|Vz € D. (f(x),g(x)) € S}

RS = {(z,y)e (D@ E)?*|xz= Lor
(x =inl(z"),y = inl(y") and(z’,y') € R) or
(z =inr(a’),y = inr(y’) and(a’,y') € 9)}

and similarly for® and[- N -]. We call this family of actions ‘extensional’ because

the definition in the case of the function space is the same as for the extensional order
on functions.

Exercises 5.4.11. 1. Find recursive domain equations which characterize the three
versions of the natural numbers from Figure 2.

2. [Ern85] Find an example which demonstrates that the ideal completion functor
is not locally continuous. Characterize the solutionsic IdI(X, C).

3. [DHR71] Prove that only the one-point poset satisfies [P — P].

4. Verify Beké's rule in the dcpo case. That is, |&t, F' be pointed dcpo’s and let
f:DxE— Dandg: D x E — E be continuous functions. We can solve the
equations

x:f(mvy> y=g(z,y)
directly by taking the simultaneous fixpoiat b) = fix({f, g)). Or we can solve
for one variable at a time by defining

h(y) = fix(A\z.f(z,y))  k(y) = g9(h(y),y)

and setting
d = fix(k) c=h(d).

Verify that(a, b) = (¢, d) holds by using fixpoint induction.

5. Find an example which shows that the Initiality Theorem 5.3.4 may fail for non-
strict algebras.

6. Why does Theorem 5.3.5 hold for arbitrary (non-strict) co-algebras?

7. What are initial algebra and final co-algebra for the functér— I U X on the
category of sets? Show that they are not isomorphic as algebras.

8. (G. Plotkin) LetF" be the functor which map¥ to [X — X], and letD be its
canonical fixpoint. This gives rise to a model of the (lazy) lambda calculus (see
[Bar84, Abr90c, AO93]). Prove that the denotation of ti&ombinator in this
model is the least fixpoint functidix. Proceed as follows:
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(a) Define a multiplication oD by « - y = unfold(x)(y).

(b) The interpretatiorys of Y f is ws - wy wherew; = fold(z — f(z - x)).
Check that this is a fixpoint of. It follows thatfix(f) C y; holds.

(c) Define a subsef of [D — D], by
E = {6 | eCidp ande(wf) CWf C fIX(f)} .

(d) Use Theorem 5.3.7 to show thidp, € E. Theny; T fix(f) is also valid.

9. Given an action on relations for a functor in four variables, contravariant in the
first two, covariant in the last two, define an action for the fundtdr E) —
FIX(F(D,-, E,-)). Prove that the resulting action is logical (extensional) if the
original action was logical (extensional).
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6 Equational theories

In the last chapter we saw how we can build initial algebras over domains. It is a nat-
ural question to ask whether we can also accommodate equations, i.e. construct free
algebras with respect to equational theories. In universal algebra this is done by factor-
ing the initial or term algebra with respect to the congruence generated by the defining
equations, and we will see that we can proceed in a similar fashion for domains. Bases
will play a prominent role in this approach.

The technique of the previous chapter, namely, to generate the desired algebra in
an iterative process, is no longer applicable. A formal proof for this statement may
be found in [AT89], Section 111.3, but the result is quite intuitive: Recall thatFan
algebraa: F(A) — A encodes the algebraic structure drby giving information
about the basic operations @ whereF'(A) is the sum of the input domains for each
basic operation. Call an equatidlat if each of the equated terms contains precisely
one operation symbol. For example, commutativity of a binary operation is expressed
by a flat equation while associativity is not. Flat equations can be incorporated into
the concept off-algebras by including the input, on which the two operations agree,
only once inF'(A). For non-flat equations such a trick is not available. What we need
instead of just the basic operations is a description of all term operationgloUethis
case,F'(A) will have to be the free algebra ovdr, the object we wanted to construct!

Thus F'-algebras are not the appropriate categorical concept to model equational
theories. The correct formalization, rather, is that of monads and Eilenberg-Moore
algebras.

We will show the existence of free algebras for dcpo’s and continuous domains in
the first section of this chapter. For the former, we use the Adjoint Functor Theorem
(see [P0i92], for example), for the latter, we construct the basis of the free algebra as a
quotient of the term algebra.

Equational theories come up in semantics when non-deterministic languages are
studied. They typically contain a commutative, associative, and idempotent binary
operation, standing for the union of two possible branches a program may take. The
associated algebras are known under the name ‘powerdomains’ and they have been the
subject of detailed studies. We shall present some of their theory in the second section.

6.1 General techniques
6.1.1 Free dcpo-algebras

Let us recall the basic concepts of universal algebra so as to fix the notation for this
chapter. A signatur® = (2, «) consists of a se of operation symbols and a map

a:  — N, assigning to each operation symbol a (finite) aritg>Algebrad = (A, I)

is given by a carrier sed and an interpretatioh of the operation symbols, in the sense
that for f € Q, I(f) is a map fromA~(/) to A. We also writef, or evenf for the
interpreted operation symbol and speak of the operatiom A. A homomorphism
between twoX-algebrasA and B is a maph: A — B which commutes with the
operations:

Vf €. h(fA(a17~ .. aa(x(f))) = fB(h(al)a s 7h(aa(f)))
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We denote the term algebra over a 3etvith respect to a signatui® by 7x(X). It

has the universal property that each map franto A, whereA = (A,I) is aX-
algebra, can be extended uniquely to a homomorpliisrifi (X) — A. LetV be

a fixed countable set whose elements we refer to as ‘variables’. Pairs of elements of
Tx (V) are used to encode equations. An equatios 7 is said to hold in an algebra

A= (A, I)ifforeachmaph: V — Awe havei(r;) = h(r2). The pair(h(r1), h(72))

is also called an instance of the equatign= 7. The class of:-algebras in which

each equation from a sétC 75 (V') x Tx (V) holds, is denoted bget(%, £).

Here we are interested iicpo-algebras characterized by the property that the
carrier set is equipped with an order relation such that it becomes a dcpo, and such that
each operation is Scott-continuous. Naturally, we also require the homomorphisms to
be Scott-continuous. Because of the order we also can incorporate inequalities. So
from now on we let a paifr, ) € € C Tx(V) x Tx(V) stand for the inequality
71 £ 79. We use the notatioDCPO(%, €) for the class of all dcpo-algebras over the
signatureX which satisfy the inequalities ii. For these we have:

Proposition 6.1.1. For every signatureX and set & of inequalities, the class
DCPO(ZL, &) with Scott-continuous homomorphisms forms a complete category.

Proof. Itis checked without difficulties th&2CPO(%, €) is closed under products and
equalizers, which both are defined as in the ordinary case. O

This proves that we have one ingredient for the Adjoint Functor Theorem, namely, a
complete categorpCPO(3, €) and a (forgetful) functot/: DCPO(X, £€) — DCPO
which preserves all limits. The other ingredient is the so-called solution set condition.
For this setup it says that each dcpo can generate only set-many non-isomorphic dcpo-
algebras. This is indeed the case: Given a dbpand a continuous map D — A,
whereA is the carrier set of a dcpo-algehda we construct the dcpo-subalgebrasbf
generated by(D) in two stages. In the first we It be the (ordinary) subalgebra of
A which is generated by( D). Its cardinality is bounded by an expression depending
on the cardinality ofD and 2. Then we add taS all suprema of directed subsets
until we get a sub-dcp& of the dcpoA. Because we have required the operations
on A to be Scott-continuous§ remains to be a subalgebra. The crucial step in this
argument now is that the cardinality 8fis bounded by!°| as we asked you to show
in Exercise 2.3.9(33). Allin all, givex, the cardinality ofS has a bound depending
on |D| and so there is only room for a set of different dcpo-algebras. Thus we have
shown:

Theorem 6.1.2. For every signatures and seté of inequalities, the forgetful functor
U: DCPO(X, £) — DCPO has a left adjoint.

Equivalently: For each dcpoD the free dcpo-algebra ove with respect toX
and € exists.

The technique of this subsection is quite robust and has been used in [Nel81] for
proving the existence of free algebras under more general notions of convergence than
that of directed-completeness. This, however, is not the direction we are interested in,
and instead we shall now turn to continuous domains.
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6.1.2 Free continuous domain-algebras

None of the categories of approximated dcpo’s, or domains, we have met so far is
complete. Both infinite products and equalizers may fail to exist. Hence we cannot rely
on the Adjoint Functor Theorem. While this will result in a more technical proof, there
will also be a clear advantage: we will gain explicit information about the basis of the
constructed free algebra, which may help us to find alternative descriptions. In the case
of dcpo’s, such concrete representations are quite complicated, see [Nel81, ANR82].
We denote the category of dcpo-algebras, whose carriers form a continuous do-
main, byCONT (X, £) and speak of (continuoudpmain-algebrasAgain there is the
obvious forgetful functol/: CONT (3, £) — CONT. To keep the notation manage-
able we shall try to suppress mentionlofin particular, we will writeA for U(A) on
objects and make no distinction betwdeandU (/) on morphisms. Let us write down
the condition for adjointness on which we will base our proof:

D

CONT ext(g) ' Jlext(g) CONT(%, €)

h

In words: Suppose a signatureand a set of inequalities has been fixed. Then
given a continuous domail? we must construct a dcpo-algebfd D), whose carrier
set F'(D) is a continuous domain, and a Scott-continuous functiodd — F(D)
such thatF'(D) satisfies the inequalities i& and such that given any such domain-
algebrad and Scott-continuous map: D — A there is a unique Scott-continuous
homomorphismext(g): F(D) — A for whichext(g) on = g. (It may be instructive
to compare this with Definition 3.1.9.)

The idea for solving this problem is to work explicitly with bases (cf. Section 2.2.6).
So assume that we have fixed a badis <) for the continuous domaif. We will
construct an abstract bagig' B, <) for the desired free domain-algebF§ D). The
underlying sef'B is given by the seT.(B) of all terms overB. On F' B we have two
natural order relations. The first, which we denotéhys induced by the defining sét
of inequalities. We can give a precise definition in the form of a deduction scheme:
Axioms:

(Al) tCtforallt € FB.
(A2) s T tifthisis an instance of an inequality frofh
Rules:

(R1) If f € Qis ann-ary function symbol and i, T ¢;,...,s, T ¢, then
f(s15-00y80) T f(t1,... ,tn).

(R2) If s C t andt T u thens T w.
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The relationC is the ‘least substitutive preorder’ in the terminology of [Sto88]. It
is the obvious generalization of the concept of a congruence relation to the preordered
case, and indeedF B, L) is the free preordered algebra over The associated equiv-
alence relation we denote by. The factor sef' B/, is ordered by and this is the
free ordered algebra ovét.

Let us now turn to the second relation 6B, namely, the one which arises from
the order of approximation oB. We sett <* ¢’ if ¢ and¢’ have the same structure and
corresponding constants are relateddyFormally,<* is given through the deduction
scheme:
Axioms:

(A) a=<%bifa<bin B.
Rules:

(R) If f € Q is ann-ary function symbol and ik, <° ty,...,s, <° t, then

f(Sl, cee ,Sn) < f(tl, ce ,tn).
Our first observation is that® satisfies the interpolation axiom:
Proposition 6.1.3. (F B, <®) is an abstract basis.

Proof. Since<* relates only terms of the same structure, it is quite obvious that it
is a transitive relation. For the interpolation axiom assume ¢hat ¢ holds for all
elements; of a finite setM C F'B. For each occurrence of a constarih ¢ let M, be

the set of constants which occur in the same location in one of the teem¥/. Since

M, is finite and sinceV/, < a holds by the definition of<®, we find interpolating
elements:’ betweenM,, anda. Lett’ be the term in which all constants are replaced
by the corresponding interpolating element. This is a term which interpolates between
M andt in the relation<*. O

The question now is how to combirig and <®. As a guideline we take Propo-
sition 2.2.2(2). If the inequalities tell us that should be belows; andss should be
belowt, and if s; approximates, then it should be the case thatapproximates..
Hence we definez, the order of approximation oA B, to be the transitive closure of
L o <* o L. The following, somewhat technical properties will be instrumental for
the free algebra theorem:

Proposition 6.1.4. 1. <® o _ is contained in<® o [ o <°.
2. Foreveryn < m e Nwe havgl o <* o )" C (L o <® 0o )™,

Proof. (1) Assumes <° t C u. LetC C B be the set of all constants which appear in
the derivation of T . For eachc € C let M, be the set of constants which appear
in s at the same place asappears irt. Of coursec may not occur irt at all; in this
caseM . will be empty. If it occurs several times théi,. can contain more than one
element. In any cas@/. is finite andM,. < c holds. Let’ be an interpolating element
betweenM. andc. We now replace each constarin the derivation ot T v by the
corresponding constamrt and we get a valid derivation of a formuta T «’. (The
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catch is that an instance of an inequality is transformed into an instance of the same
inequality.) It is immediate from the construction thak® ¢’ C «’ <*® « holds.
(2) Using (1) and the reflexivity of, we get
Co=<®olC C Eo(<sogo<s) C Co=<*oCoLo=<0l.

~ ~

The general case follows by induction. O
Lemma 6.1.5. (F'B, <) is an abstract basis.

Proof. Transitivity has been built in, so it remains to look at the interpolation axiom.
Let M < t for a finite setM. From the definition of< we get for eachs €¢ M a
sequence of terms C s' <* s2 C ... C s"(*)=1 <5 s7(s) C ¢, The last two steps
may be replaced by™(*)~1 <s &' C s” <* t as we have shown in the preceding
proposition. The collection of al¥” is finite and we find an interpolating term
between it and according to Proposition 6.1.3. Because of the reflexivity_ofve
haveM < t' < t. O

So we can take as the carrier set of our free algebrabvéie ideal completion of
(FB, <) and from Proposition 2.2.22 we know that this is a continuous domain. The
techniques of Section 2.2.6 also help us to fill in the remaining pieces. The operations
on F(D) are defined pointwise: If,,..., A, are ideals and iff € Q is ann-ary
function symbol then we lefrpy (A, ... , A,) be the ideal which is generated by
{f(t1,... ,tn) | t1 € Ay,... ,t, € A, }. We need to know that this set is directed. It
will follow if the operations onF'B are monotone with respect to. So assume we
are given an operation symbgle Q and pairss; < ty,...,s, < t,. By definition,
each pair translates into a sequencg s! <* s2 C ... <* 5"V C t,. Now we use
Proposition 6.1.4(2) to extend all these sequences to the same tengthen we can
apply f step by step, using Rules (R1) and (R) alternately:

f(sla"'as'rl)gf(s%7"')8i) <S f(S%,...7S$L)E
< S8 ) Bt ).

Using the remark following Proposition 2.2.24 we infer that the operatfans, de-
fined this way are Scott-continuous functions. THUS) is a continuous domain-
algebra. The generating domdhembeds intd?’(D) via the extension of the mono-
tone inclusion ofB into F'B.

Theorem 6.1.6. F(D) is the free continuous domain-algebra overwith respect to
Yand€.

Proof. We must show thaf'(D) satisfies the inequalities i& and that it has the uni-
versal property.

For the inequalities letr;, 2) € € and leth: V — F'(D) be a map. It assigns to
each variable an ideal i B. We must show thak(r;) is a subset ofi(5). As we
have just seen, the ide(r, ) is generated by terms of the forhir; ) wherek is a map
from V to F B, such that for each variablec V, k(x) € h(z). So suppose < k(7y)
for such ak. Thenk(r;) C k(7) is an instance of the inequality in the term algebra
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FB = Tx(B) and so we know that < k(7») also holds. The term(r) belongs to

h(72), again because the operationsB(D) are defined pointwise. So€ h(r) as
desired.

For the universal property assume that we are given a continuoug map— A
for a dcpo-algebral which satisfies the inequalities fron The restriction ofy to the
setB C D has a unique monotone extensipto the preordered algebf&' B, C). We
want to show thag also preserves:®. For an axionu <?® b this is clear becausgis
monotone on B, < ). For the rules (R) we use thatis a homomorphism and that the
operations ol are monotone:

g(f(s1,--s8n)) = fa(g(s1),...,5(sn))
E fA(g(tl)a 7g(tn))
= G(f(t,--. 1)) -

Together this says thgtpreserves the order of approximatienon F'B and therefore

it can be extended to a homomorphisrt(g) on the ideal completio®’ (D). Unique-

ness ofext(g) is obvious. What we have to show is that(g), when restricted td3,
equalsgy, because Proposition 2.2.24 does not give an extension but only a best approxi-
mation. We can nevertheless prove it here becaasese as the restriction of a contin-
uous map orD. An element! of D is represented ii'( D) as the ideak(d) containing
atleast all ofB; = B N |d because of the axioms of our second deductive system. So

we have:ext(g)(n(d)) = [1'g(n(d)) 2 [1"g(Ba) = |I"g9(Ba) = g(d). O

Theorem 6.1.7. For any signatureX and setf of inequalities the forgetful functor
U: CONT(X,€) — CONT has a left adjointF. It is equivalent to the restriction
and corestriction of the left adjoint from Theorem 6.1.Z30NT and CONT (%, £),
respectively.

In other words:Free continuous domain-algebras exist and they are also free with
respect to dcpo-algebras.

The action of the left adjoint functor on morphisms is obtained by assigning to a
continuous functiory: D — E the homomorphism which extengsg o g.

p —"", p(D)
g F(g)
E—", p(p)

We want to show thak’ is locally continuous (Definition 5.2.3). To this end let us
first look at the passage from maps to their extension.

Proposition 6.1.8. The assignmeny — ext(g), as a map from[D — A] to
[F(D) — A]is Scott-continuous.
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Proof. By Proposition 2.2.25 it is sufficient to show this for the restrictiory @b the
basisB of D. Let G be a directed collection of monotone maps fréhio A and let
t € F B be aterm in which the constants, . .. ,a,, € B occur. We calculate:

L' = ¢ |'Gla)/ar,....| |'Glan)/an]
||"tlg(ar)/as,. ,glan)/an]

geG

= |9,

geqG

where we have written[b, /a4, . .. , b, /ay] for the term in which each occurrence of
a; is replaced by,. Restriction followed by homomorphic extension followed by ex-
tension to the ideal completion gives a sequence of continuous fun¢flons> A] —
[B-™ Al — [FB 2 A] — [F(D) — A] which equalgxt. O

Cartesian closed categories can be viewed as categories in whidthéunctor
can be internalized. The preceding proposition formulates a similar closure property
of the free construction: if the free construction can be cut down to a cartesian closed
category then there the associated monad and the natural transformations that come
with it can be internalized. This concept was introduced by Anders Kock [Koc70,
Koc72]. It has recently found much interest under the name ‘computational monads’
through the work of Eugenio Moggi [Mog91].

Theorem 6.1.9. For any signature: and set€ of inequalities the compositialii o F
is a locally continuous functor o 6ONT.

Proof. The action of/ o F' on morphisms is the combination of composition wijth
andext. 0

If e: D — E is an embedding then we can describe the actiod’ ofespec-
tively U o F', quite concretely. A basis element 8f D) is the equivalence class of
some terms. Its image undei¥(e) is the equivalence class of the tegn which we
get froms by replacing all constants inby their image undet.

If we start out with an algebraic domaib then we can choose as its bakigD),
the set of compact elements. The order of approximatioki (@) is the order relation
inherited fromD, in particular, it is reflexive. From this it follows that the constructed
order of approximation< on F'B is also reflexive, whence the ideal completion of
(F'B, <) is an algebraic domain. This gives us:

Theorem 6.1.10.For any signatureX and seté of inequalities the forgetful functor
fromALG (%, £) to ALG has a left adjoint.

Finally, let us look ay;, which maps the generating domdininto the free algebra,
and let us study the question of when itis injective. What we can say is that if injectivity
fails then it fails completely:

Proposition 6.1.11. For any in-equational theory the canonical magrom a dcpoD
into the free algebra’(D) over D is order-reflecting if and only if there exists a dcpo-
algebra A for this theory for which the carrier dcpd is non-trivially ordered.
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Proof. Assume that there exists a dcpo-algeHrarhich contains two elementsc b.
Let D be any dcpo and Z y two distinct elements. We can define a continuous map
from D to A, separating: from y by setting

_foa, TdCy;
9(d) _{ b, otherwise.

Sinceg equalsxt(g) on, whereext(g) is the unique homomorphism frofi(D) to A,
it cannot be thaty(z) C n(y) holds.
The converse is trivial, becaugenust be monotone. O

6.1.3 Least elements and strict algebras

We have come across strict functions several times already. It therefore seems worth-
while to study the problem of free algebras also in this context. But what should a strict
algebra be? There are several possibilities as to what to require of the operations on
such an algebra:

1. An operation which is applied to arguments, one of which is bottom, returns
bottom.

2. An operation applied to the constantly bottom vector returns bottom.

3. An operation of arity greater than 0 applied to the constantly bottom vector re-
turns bottom.

Luckily, we can leave this open as we shall see shortly. All we need is:

Definition 6.1.12. A strict dcpo-algebrés a dcpo-algebra for which the carrier set
contains a least element. gtrict homomorphisnbetween strict algebras is a Scott-
continuous homomorphism which preserves the least element.

For pointed dcpo’s the existence of free strict dcpo-algebras can be established as
before through the Adjoint Functor Theorem. For pointed domains the construction of
the previous subsection can be adapted by adding a further axiom to the first deduction
scheme:

(A3) LC tforallt e FB.

Thus we have:

Theorem 6.1.13.Free strict dcpo- and domain-algebras exist, that is, the forgetful
functors

DCPOL!(E,E’,) E— DCPOl!7
CONT ((%,8) — CONT,,
and ALG ,(3,&8) — ALG

have left adjoints.
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Let us return to the problem of strict operations. The solution is that we can add
a nullary operatiord to the signature and the inequalityC x to € without changing
the free algebras. Because of axiom (A3) we havé_ 0 and because of the new
inequality we have) T L. Therefore the new operation must be interpreted by the
bottom element. The advantage of having bottom explicitly in the signature is that
we can now formulate equations about strictness of operations. For example, the first
possibility mentioned at the beginning can be enforced by addidghie inequality

f(mlw" 7xi71507xi+1>--- ;xa(f)) £o

for all operation symbolg of positive arity and all < ¢ < «(f). The corresponding
free algebras then exist by the general theorem.

More problematic is the situation witlboCPO, (respectively CONT, and
ALG )). The existence of a least element in the generating dcpo does not imply the
existence of a least element in the free algebra (Exercise 6.2.23(2)). Without it, we
cannot make use of local continuity in domain equations. Furthermore, even if the free
algebra has a least element, it need not be the cassg thatrict (Exercise 6.2.23(3)).
The same phenomena appears if we restrict attention to any of the cartesian closed cat-
egories exhibited in Chapter 4. The reason is that we require a special structure of the
objects of our category but allow morphisms which do not preserve this structure. It is
therefore always an interesting fact if the general construction for a particular algebraic
theory can be restricted and corestricted to one of these sub-categories. In the case
that the general construction does not yield the right objects it may be that a different
construction is needed. This has been tried for the Plotkin powerdomain in several
attempts by Karel Hrbacek but a satisfactory solution was obtained only at the cost of
changing the morphisms between continuous algebras, see [Hrb87, Hrb89, Hrb88].

On a more positive note, we can say:

Proposition 6.1.14. If the free functor maps finite pointed posets to finite pointed
posets then it restricts and corestricts to bifinite domains.

6.2 Powerdomains

6.2.1 The convex or Plotkin powerdomain

Definition 6.2.1. The convexor Plotkin powertheoryis defined by a signature with
one binary operatiotd and the equations

1. z Uy = y J x (Commutativity)
2. (xYy)Yz=1xU (yU z) (Associativity)
3. x Yz = z (Idempotence)

The operatiory is calledformal union

A dcpo-algebra with respect to this theory is called@o-semilattice The free
dcpo-semilattice over a dcpb is called thePlotkin powerdomairof D and it is de-
noted byP”(D).
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Every semilattice can be equipped with an order by setting
r<yifzdy=uy.

Formal union then becomes the join in the resulting ordered set. On a dcpo-semilattice
this order has little to do with the domain ordering and it is not in the focus of our
interest.

The free semilattice over a s&tis given by the set of all non-empty finite subsets
of X, where formal union is interpreted as actual union of sets. This gives us the
first half of an alternative description of the Plotkin powerdomain over a continuous
domain D with basisB. Its basisF'B, which we constructed as the term algebra
over B, is partitioned into equivalence classesythe equivalence relation derived
from C, that is, from the defining equations. These equivalence classes are in one-to-
one correspondence with finite subsetdofindeed, given a term fromi' B, we can
re-arrange it because of associativity and commutativity, and because of idempotence
we can make sure that each constant occurs just once.

Remember that we have set up the order of approximation F'B as the transitive
closure ofl, o <® o L. This way we have ensured that an ideaFi® contains only
full equivalence classes with respectto We may therefore replaceB by B ;(B),
the set of finite subsets d#, where we associate with a terme F'B the setf[t] of
constants appearing in

Let us now also transfer the order of approximation to the new basis.

Definition 6.2.2. Two subsets\/ and N of a set equipped with a relatioR are in
the Egli-Milner relation written asM Rgj,s N, if the following two conditions are
satisfied:

Vaoe M dbe N. aRbD

Vbe N dae M. aRD.

Here we are talking about finite subsets 8 <), so we write< g, for the Egli-
Milner relation between finite subsets Bf Let us establish the connection between
<gm onPB(B) and< on FB. Firstly, if s <® ¢ then by definition each constant
in ¢ is matched by a constant inwhich approximates it and vice versa. These are just
the conditions fofs] < gas [t]. Since< g, is transitive, we find that < ¢ implies
[s] <gar [t] in general. Conversely, if two finite subset$ = {ay,... ,a,,} and
N = {b1,...,b,} of B are related by« z,, then we can build terms andt¢, such
that[s] = M, [t] = N, ands <° t hold. This is done as follows. For each € M
let b;(;) be an element ofV such that; < b;(;) and for eactb; € N leta;;) be an
element ofM such thaty; ;) < b;. Then we can set

s=(a1Y...9an) Y (aa)Y...Yam)
andt = (bj(l) g...4d bj(m)) J (bl g...d bn)

We have proved:

Theorem 6.2.3. The Plotkin powerdomain of a continuous domdin with basis
(B, <) is given by the ideal completion 6B (B), < g )-
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An immediate consequence of this characterization is that the Plotkin powerdomain
of a finite pointed poset is again finite and pointed. By Proposition 6.1.14, the Plotkin
powerdomain of a bifinite domain is again bifinite. This is almost the best result we
can obtain. The Plotkin power construction certainly destroys all properties of being
lattice-like, see Exercise 6.2.23(8). It is, on the other hand, not completely haphazard,
in the sense that not every finite poset is a sub-domain of a powerdomain of some other
poset. This was shown in [N892].

The passage from terms to finite sets has reduced the size of the basis for the pow-
erdomain drastically. Yet, it is still possible to get an even leaner representation. We
present this for algebraic domains only. For continuous domains a similar treatment is
possible but itis less intuitive. Remember that abstract bases for algebraic domains are
preordered sets.

Definition 6.2.4. For a subsefl/ of a preordered setB, C) let theconvex hullCx (M)
be defined by
{aeB|3Imne M. mCal n}.

A set which coincides with its convex hull is callszhvex
The following properties are easily checked:
Proposition 6.2.5. Let (B, C) be a preordered set antl/, N be subsets aB.
1. Cx(M) = TM N | M.
. M C Cx(M).
. Cx(Cx(M)) = Cx(M).

2
3
4. M C N = Cx(M) C Cx(N).
5 M =gp Cx(M).

6

. M =gy N ifand only ifCx(M) = Cx(N).

Comment: In (5) and (6) we have used the notatica ;" as an abbreviation for gy, N Jdeas™
it is not the £ M -version of equality as defined in 6.2.2 (which would be nothing more than equality on
the powerset).

While (B4(K(D)), Cgar) is only a preordered set, parts (5) and (6) of the preced-
ing proposition suggests how to replace it with an ordered set. WelSing (K(D))
for the set of finitely generated convex subset& D), we have:

Proposition 6.2.6. The Plotkin powerdomain of an algebraic domdiris isomorphic
to the ideal completion ofBc, ¢ (K(D)), Cgar).

This explains the alternative terminology ‘convex powerdomain’. We will sharpen
this description in 6.2.3 below.

For examples of how the Plotkin powerdomain can be used in semantics, we refer
to [HP79, Abr91a].
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6.2.2 One-sided powerdomains
Definition 6.2.7. If the Plotkin powertheory is augmented by the inequality
zCaxdy

then we obtain théloareor lower powertheory Algebras for this theory are called
inflationary semilatticesThe free inflationary semilattice over a dcpois called the
lower or Hoare powerdomaiof D, and it is denoted b#(D).

Similarly, the terminology concerning the inequality

zJdxYy
is upperor Smyth powerdomairdeflationary semilatticeandP(D).

It is a consequence of the new inequality that the semilattice ordering and the do-
main ordering coincide in the case of the Hoare powertheory. For the Smyth powerthe-
ory the semilattice ordering is the reverse of the domain ordering. This forces these
powerdomains to have additional structure.

Proposition 6.2.8. 1. The Hoare powerdomain of any dcpo is a lattice which has
all non-empty suprema and bounded infima. The sup operation is given by formal
union.

2. The Smyth powerdomain of any dcpo has binary infima. They are given by formal
union.

Unfortunately, the existence of binary infima does not force a domain into one of
the cartesian closed categories of Chapter 4. We take up this question again in the next
subsection.

Let us also study the bases of these powerdomains as derived from a given basis
(B, <) of a continuous domai. The development proceeds along the same lines
as for the Plotkin powertheory. The equivalence relation induced by the equations and
the new inequality has not changed, so we may again repl@tby the set;(B) of
finite subsets oB3. The difference is wholly in the associated preordeforiB).

Proposition 6.2.9. For M and N finite subsets of a bas{$3, <) we have
M T NifandonlyifM C [N

in the case of the Hoare powertheory and
M T NifandonlyifN C 1M

for the Smyth powertheory.

The restricted order of approximatior® is as before given by the Egli-Milner
relation< g,,. As prescribed by the general theory we must combine it with inclusion
(for the lower theory) and with reversed inclusion (for the upper theory), respectively.
Without difficulties one obtains the following connection

s=<pgtifandonlyifVa € [s]| b e [t]. a < b
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and
s <gtifandonlyifvb € [t] Ja € [s]. a < b.

So each of the one-sided theories is characterized by one half of the Egli-Milner order-
ing. Writing < gy and<g for these we can formulate:

Theorem 6.2.10.Let D be a continuous domain with basiB, <).

1. The Hoare powerdomain oD is isomorphic to the ideal completion of
(Br(B), <u)-

2. The Smyth powerdomain dp is isomorphic to the ideal completion of
(PBr(B), <s).

For algebraic domains we can replace the preordef8 diB) by an ordered set in
both cases.

Proposition 6.2.11. For subsets\/ and N of a preordered setB, <) we have
1. M=y |M,
2. M <g Nifandonlyif (M C |N,
and
3. M =51M,
4. M <g NifandonlyiffM D TN.

Writing B, ¢ (B) for the set of finitely generated lower subsetofindPy ;(B)
for the set of finitely generated upper subset&ofve have:

Proposition 6.2.12. Let D be an algebraic domain.

1. The Hoare powerdomaiR’( D) of D is isomorphic to the ideal completion of

PBr,s(K(D)), S)-

2. The Smyth powerdomaR¥(D) of D is isomorphic to the ideal completion of
(Bu.r(K(D)), 2)-

From this description we can infer through Proposition 6.1.14 that the Smyth pow-
erdomain of a bifinite domain is again bifinite. Since a deflationary semilattice has
binary infima anyway, we conclude that the Smyth powerdomain of a bifinite domain
is actually a bc-domain. For a more general statement see Corollary 6.2.15.

6.2.3 Topological representation theorems

The objective of this subsection is to describe the powerdomains we have seen so far
directly as spaces of certain subsets of the given domain, without recourse to bases
and the ideal completion. It will turn out that the characterizations of Proposition 6.2.6
and Proposition 6.2.12 can be extended nicely once we allow ourselves topological
methods.
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Theorem 6.2.13.The Hoare powerdomain of a continuous domairis isomorphic
to the lattice of all non-empty Scott-closed subset® ofFormal union is interpreted
by actual union.

Proof. Let (B, <) be a basis foiD. We establish an isomorphism with the repre-

sentation of Theorem 6.2.10. Given an idéaf finite sets inP(D) we map it to

¢ (I) = CI(UI), the Scott-closure of the union of all these sets. Conversely, for a

non-empty Scott-closed sétwe lety (A) = Pr(lAN B), the set of finite sets of

basis elements approximating some element.inWe first check that) (A) is in-

deed an ideal with respect ta . It is surely non-empty ad was assumed to contain

elements. Given two finite subset$ and NV of | A N B then we can apply the inter-

polation axiom to get finite subseld’ and N’ with M < gy M’ andN gy N'.

An upper bound foi\/ and N with respect tox  is then given byM’ U N'. It is also

clear that the Scott closure 9 N B gives A back again because every elementof

is the directed supremum of basis elements. Herfte ) = id. Starting out with an

ideal I, we must show that we get it back frap’ (). So letM € I. By the roundness

of I (see the discussion before Definition 2.2.21) there is another finife'set I with

M <y M'. So for eachu € M there isb € M’ with a < b. Since all elements of

are contained im*’ (I), we have that: belongs to|¢() N B. Conversely, ifa is an

element of ¢() N B thenfa N ¢(I) is not empty and therefore must megtl as

D\ Tais closed. The sdia} is then below some element binder the< ;;-ordering.

Monotonicity of the isomorphisms is trivial and the representation is proved.

Formal union applied to two ideals returns the ideal of unions of the constituting

sets. Under the isomorphism this operation is transformed into union of closed subsets.

O

This theorem holds not just for continuous domains but also for all dcpo’s and even
all Ty-spaces. See [Sch93] for this. We can also get the full complete lattice of all
closed sets if we add to the Hoare powertheory a nullary operatmal the equations

edr=xde=r.

Alternatively, we can take the strict free algebra with respect to the Hoare powertheory.

If the domain has a least element then these adjustments are not necessary, a least
element for the Hoare powerdomain{id.}. Homomorphisms, however, will only
preserve non-empty suprema.

The characterization of the Smyth powerdomain builds on the material laid out in
Section 4.2.3. In particular, recall that a Scott-compact saturated set in a continuous
domain has a Scott-open filter of open neighborhoods and that each Scott-open filter
in op arises in this way.

Theorem 6.2.14.The Smyth powerdomain of a continuous domaiis isomorphic
to the set:p \ {0} of non-empty Scott-compact saturated subsets ordered by reversed
inclusion. Formal union is interpreted as union.

Proof. Let (B, <) be a basis foD. We show that:p \ {#} is isomorphic tP¥(D) =
IdI(Bs(B), <s). Given an ideall we let¢®(I) be(,,;.; TM. This constitutes a
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monotone map fronP“(D) to kp \ {0} by Proposition 4.2.14. In the other direction,
we assign to a compact saturatedAehe set)” (A) of all finite setsM C B such that
A C M. Why is this an ideal? For every open neighborhabdf A we find a finite
setM of basis elements containeddhsuch thatd C TM becaused is compact and
O = Upcons b (Proposition 2.3.6). Then given two finite st and N in ¢ (A)
an upper bound for them is any such finite Betvith A C 1P € 1M N TN. Clearly,
¥® is monotone asp \ {0} is equipped with reversed inclusion.

Let us show that)® o ¢ is the identity orP“(D). ForM < I let M’ € I be above
M in the < g-ordering. Theny®(I) C TM’ C TM and soM belongs ta)® o ¢°(I).
Conversely, every neighborhood ¢f () contains somé M with M < I already as
we saw in Proposition 4.2.14. Safif (I) is contained irf N for some finite selV C B
then there ard/ and M’ in I with M C TN andM < g M’. HenceN < g M’ and
N belongs tal.

The compositiony® o 4° is clearly the identity as we just saw that every neighbor-
hood of a compact set contains a finitely generated one and as every saturated set is the
intersection of its neighborhoods.

The claim about formal union follows because on powersets union and intersection
completely distribute:¢® (1 & J) = Ny nes (M UN) = Nyepnes,(TM U

TN) =Nyer TMUNyes TN = 5 (1) U5 (J). O

For this theorem continuity is indispensable. A characterization of the free defla-
tionary semilattice over an arbitrary dcpo is not known. The interested reader may
consult [Hec90, Hec93a] and [Sch93] for a discussion of this open problem.

Corollary 6.2.15. The Smyth powerdomain of a coherent domain with bottom is a bc-
domain.

Proof. That two compact saturated setsand B are bounded by another ong, sim-
ply meansC' C AN B. In this cased N B is not empty. It is compact saturated by the
very definition of coherence. O

Let us now turn to the Plotkin powerdomain. An iddabf finite sets ordered
by < g will generate ideals with respect to both coarser orders and <. We
can therefore associate witha Scott-closed set’’ (I) = CI(|JI) and a compact
saturated set® (1) = Mazer 1M . However, not every such pair arises in this way; the
Plotkin powerdomain is not simply the product of the two one-sided powerdomains.
We will be able to characterize them in two special cases: for countably based domains
and for coherent domains. The general situation is quite hopeless, as is illustrated
by Exercise 6.2.23(11). In both special cases we do want to show ikdhithfully
represented by the intersectiofl) = ¢ (I) N ¢*(I). In the first case we will need
the following weakening of the Egli-Milner ordering:

Definition 6.2.16. For a dcpoD we letLens(D) be the set of all non-empty subsets

of D which arise as the intersection of a Scott-closed and a compact saturated subset.
The elements dfens(D) we calllenses On Lens(D) we define théopological Egli-
Milner ordering Crgas, by
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Proposition 6.2.17. Let D be a dcpo.
1. Every lens is convex and Scott-compact.
2. A canonical representation for a letisis given byl L N CI(L).
3. The topological Egli-Milner ordering is anti-symmetric bans(D).

Proof. Convexity is clear as every lens is the intersection of a lower and an upper set.
An open covering of a lens = C' N U, whereC'is closed and/ compact saturated,

may be extended to a covering bf by adding the complement @f' to the cover.

This proves compactness. Since all Scott-open sets are upwards closed, compactness
of a setA implies the compactness ®f4. Using convexity, we gel. = 1L N |L C

1L N CI(L) and using boolean algebra we calculafe= 1(CNU) C U = U and
CI(L)=Cl(CnU)CCl(C)=C,sofLNCI(L) CUNC =L. ThenifK =rpgy L

we havel K = 1L andCI(K) = CI(L). Equality of K and L follows. O

Before we can prove the representation theorem we need yet another description of
the lensy(1).

Lemma 6.2.18.Let D be a continuous domain with basisand let] be an ideal in
(B4(B), <pm). Theng(I) = {||TA | A C I directed andA N M =+ ( for all
M eI}

Proof. The elements of the set on the right clearly belong to the Scott-closlirel of
They are also contained i’ (1) becausg | A is above some element it N M for
eachM € I.

Conversely, let: € ¢(I) and leta € A = |2 N B. The setfa is Scott-open and
must therefore meet some € I. From the roundness df we getM’ € I with
M <gy M'. The setM U {a} also approximated/’ and so it is contained it.
Hencea € (JI. Furthermore, given any/ € I, let againM’ € I be such that
M < gy M'. Thenz is above some element 8ff’ as¢(/) C 1M’ and therefore
m < «x holds for somen € M. O

Theorem 6.2.19.Let D be anw-continuous domain. The Plotkin powerdomain
PP(D) is isomorphic to{Lens(D), Cr /). Formal union is interpreted as union fol-
lowed by topological convex closure.

Proof. Let (B, <) be a countable basis dP. We have already defined the map
¢: PP(D) — Lens(D). In the other direction we take the functigrwhich assigns to a
lensK the set)™ (CI(K)) N (1K). Before we can prove that these maps constitute
a pair of isomorphisms, we need the following information about reconstrugfirid)
and® (1) from ¢(I).

1. ¢5(I) = 1¢(I): Since¢®(I) is an upper set which contairg/), only one
inclusion can be in doubt. Let € ¢°(I) andI’ = {M N |x| M € I}. Firstly,
each set inl’ is non-empty and, secondly, we ha¥é N |z <g N N |x whenever
M <gy N. Calculatingg®(I’) in the continuous domain (I) gives us a non-
empty set which is below and contained in the lengT).
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2. ¢ (I) = Cl(¢(I)): Again, only one inclusion needs an argument. We show that
every element of o™ (I) N B belongs ta¢(I). Given a basis elementapproximating
some element op? (1) then we already know that it belongs(tp/. Let M € I be
some set which containg Using countability of the basis we may assume that
extends to a cofinal chain ih (Proposition 2.2.13):M = My <gpm M1 <gm
My <gp --. . Konig's Lemma then tells us that we can find a chain of elements
a=ay K a Kay <K ... wherea, € A,,. The supremum = |_|TnEN a, belongs to
¢(I) and is above.

3. ¢ is monotone: Lefl C I’ be two ideals i (B), <gam). The larger ideal
results in a bigger lower set”? (I') and a smaller upper sef (I'). Using 1 and 2 we
can calculate for the corresponding lenses:

o(I) C ¢"(I) C o™ (I") = Cl(e(1")),

o(I') C ¢%(I') C ¢5(1) = 19(1).

Soo(I) Erpar ¢(I') as desired.

4. The monotonicity off follows by construction and one half of the topological
Egli-Milner ordering: K C TM impliesL C TM if we assumeX Crgys L.

5. ¢ o9 = id: Given alensL. = C N U we clearly havey® (v/(L)) 2 L. Using
the continuity ofD and the compactness 6fwe infer thate® (1/(L)) must equal L.
Every basis element approximating some elemedt o€curs in some set af(L), so
¢ (1(L)) = CI(L) is clear. Proposition 6.2.17 above then implies that/ (L) gives
backL.

6. ¢ o ¢ = id: Given an ideall we know that eacldd € I covers the leng(I)
in the sense of M D ¢(I). So M is contained iny°(¢(I)). By (2), we also have
that M is contained i)™ (Cl(¢(I))). Conversely, iff M O ¢(I) for a finite setM
of basis elements contained ji(7), then for someV € I we havef M D N by the
Hofmann-Mislove Theorem 4.2.14. For thiswe haveM < s N. On the other hand,
each element of M approximates some € ¢(I) and hence belongs to somg € I.

An upper bound forV and all N, in I, therefore, is abov@/ in < g, which shows
that M must belong td.

7. In the representation theorems for the one-sided powerdomains we have shown
that formal union translates to actual union. We combine this for the convex setting:
oI I J) =" I)n¢*(I Y J) = ("(I) U™ (J) N (1) U5(])) =
(Ci(o (1)) U Cl(a())) N (To(I) U T(J)) = Cl(o(1) U p(J)) N T((I) U g(J)). O

Note that we used countability of the basis only for showing #at/) can be
recovered fromp(I). In general, this is wrong. Exercise 6.2.23(11) discusses an ex-
ample.

The substitution of topological closure for downward closure was also necessary,
as the example in Figure 13 shows. There, thedset Ta is a lens but its downward
closure is not Scott-closed,is missing. The setl U {c} is also a lens. Itis belowt
in the topological Egli-Milner order but not in the plain Egli-Milner order. The convex
closure of the union of the two lensé4 } and A is not a lens¢ must be added.

A better representation theorem is obtained if we pass to coherent domains (Sec-
tion 4.2.3). (Note that the example in Figure 13 is not coherent, because the set
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Figure 13: An algebraic domain in which topological Egli-Milner ordering and ordi-
nary Egli-Milner ordering do not coincide.

{c1,a} has infinitely many minimal upper bounds, violating the condition in Proposi-
tion 4.2.17.) We first observe that lenses are always Lawson closed sets. If the domain
is coherent then this implies that they are also Lawson-compact. Compactness will
allow us to use downward closure instead of topological closure.

Lemma 6.2.20. Let L be a Lawson-compact subset of a continuous domaiThen
| L is Scott-closed.

Proof. Let x be an element oD which does not belong tpL. For eachy € L there
existsb, < x such that, Z y. The setD \ 1b, is Lawson-open and contains
By compactness, finitely many such sets colerLet b be an upper bound for the
associated basis elements approximatingThen T is an open neighborhood af
which does not intersedi. Hence| L is closed. O

Corollary 6.2.21. The lenses of a coherent domain are precisely the convex Lawson-
compact subsets. For these, topological Egli-Milner ordering and Egli-Milner ordering
coincide.

Theorem 6.2.22.Let D be a coherent domain. The Plotkin powerdomainbis
isomorphic to(Lens(D),Cgp). Formal union is interpreted as union followed by
convex closure.

Proof. The differences to the proof of Theorem 6.2.19, which are not taken care of
by the preceding corollary, concern part 2. We must show @h@s(1)) = |o(I)
contains all of ¢ (I) N B. In the presence of coherence this can be done through
the Hofmann-Mislove Theorem 4.2.14. The lower g€t(1) is a continuous domain

in itself. For an element of | ¢ (I) N B we look at the filtered collection of upper
setsJ = {fanNTM | M € I}. Each of these is non-empty, becaudzelongs to some

M € I, and compact saturated because of coherence. Hautes non-empty. It is
also contained i (/) and above. O
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6.2.4 Hyperspaces and probabilistic powerdomains

In our presentation of powerdomains we have emphasized the feature that they are free
algebras with respect to certain (in-)equational theories. From the general existence
theorem for such algebras we derived concrete representations as sets of subsets. This
is the approach which in the realm of domain theory was suggested first by Matthew
Hennessy and Gordon Plotkin in [HP79] but it has a rather long tradition in algebraic
semantics (see e.g. [NR85]). However, it is not the only viewpoint one can take. One
may also study certain sets of subsets of domains in their own right. In topology,
this study of ‘hyperspaces’, as they are called, is a long-standing tradition, starting
with Felix Hausdorff [Haul4] and Leopold Vietoris [Vie21, Vie22]. It is also how the
subject started in semantics and, indeed, continues to be developed. A hyperspace can
be interesting even if an equational characterization cannot be found or can be found
only in restricted settings. Recent examples of this are the set-domains introduced by
Peter Buneman [BDW88, Gun92a, Hec90, Puh93, Hec91, Hec93b] in connection with
a general theory of relational databases. While these are quite natural from a domain-
theoretic point of view, their equational characterizations (which do exist for some of
them) are rather bizarre and do not give us much insight. The hyperspace approach is
developed in logical form in Section 7.3.

We should also mention the various attempts to define a probabilistic version of
the powerdomain construction, see [SD80, Mai85, Gra88, JP89, Jon90]. (As an aside,
these cannot be restricted to algebraic domains; the wider concept of continuous do-
main is forced upon us through the necessary use of the unit inférual) They do
have an equational description in some sense but this goes beyond the techniques of
this chapter.

One can then ask abstractly what constitutes a powerdomain construction and build
a theory upon such a definition. This approach was taken in [Hec90, Hec91]. The
most notable feature of this work is that under this perspective, too, many of the known
powerdomains turn out to be canonical in a precise sense. How this (very natural)
formulation of canonicity is connected with concerns in semantics, however, is as yet
unclear.

Exercises 6.2.23. 1. For the proof of Theorem 6.1.6 we can eqii3 also with
the transitive closure ok® o C. Show:
(a) This relation<’ satisfies the interpolation axiom.
(b) In general,<’ is different from<.

(c) The ideal completions dfF' B, <) and (F B, <) are isomorphic. (Use
Exercise 2.3.9(27).)

(d) What is the advantage ef over<’?

2. Describe the free domain algebra for an arbitrary domainand an arbitrary
signatureX. in the case tha€ is empty.

3. Set up an algebraic theory such that all its dcpo-algebras have least elements
but the embeddingsare not strict.
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10.

11.

Figure 14: Part of an algebraic domain where Theorem 6.2.19 fails.

. Let(X, &) be the usual equational theory of groups (or boolean algebras). Show
that any dcpo-algebra with respect to this theory is trivially ordered. Conclude
that the free construction collapses each connected component of the generating
dcpo into a single point.

. Given signature® and X’ and sets of inequalitie§ and &’ we call the pair
(3, &) areductof (X, &) if ¥ C X' and€& C &’. In this case there is an obvious
forgetful functor fromC(X’, £’) to C(X, €), whereC is any of the categories
considered in this chapter. Show that the general techniques of Theorem 6.1.2
and 6.1.7 suffice to prove that this functor has a left adjoint.

. Likewise, show that partial domain algebras can be completed freely.

. Let A be a free domain-algebra over an algebraic domain. Is it true that every
operation, if applied to compact elementsAfreturns a compact element?

. LetD = {L Ca,bC T} be the four-element lattice (Figure 1) and Bt =
DxD. Theset{(L,a),(L,b)} and{{(a, L), (b, L)} are elements of the Plotkin
powerdomain of~. Show that they have two minimal upper bounds. Since
{{T,T)} is a top elemenR?(E) is not an L-domain.

. Is the Plotkin powerdomain closed BB, the category whose objects are bilim-
its of finite (but not necessarily pointed) posets?

Define a natural isomorphism betwefi(D) | —F and[D — E] whereD is
any continuous domaing is a complete lattice, and-- stands for the set of
functions which preserve all suprema (ordered pointwise).

We want to construct an algebraic domdinto which Theorem 6.2.19 cannot
be extended. The compact element® @fre arranged in finite sets already such
that they form a directed collection in the Egli-Milner ordering, generating the
ideal I. We take one finite set for each elemen§Qf(R), the finite powerset
of the reals (or any other uncountable set), and we will hAYe < g Mg if

a C B C R. So we can arrange th&/, in layers according to the cardinality
of a. EachM,, contains one ‘white’ anda|! many ‘black’ elements. & G £
then the white element d¥/,, is below every element df/g. For the order
between black elements look at adjacent layers. Thergzmany subsets gf
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with cardinality | 3| — 1. The|3|! many black elements df/3 we partition into

|3] many classes of cardinality/3| — 1)!. So we can let the black elements of a
lower neighbor ofM 3 be just below the equally many black elements of one of
these classes. (The idea being that no two black elements have an upper bound.)
Figure 14 shows a tiny fraction of the resulting orderediséD). Establish the
following facts about this domain:

(&) Above a black element there are only black, below a white element there
are only white elements.

(b) i. Anideal inK(D) can contain at most one black element from each set.
ii. Anideal can contain at most one black element in each layer.
iii. Anideal can contain at most countably many black elements.

(c) i. Anideal meeting all sets must contain all white elements.

ii. If an ideal contains a black element, then it contains the least black
element.

ii. If an ideal meeting all sets containg then it must contain upper
bounds fora and the uncountably many white elements of the first
layer. These upper bounds must form an uncountable set and consist
solely of black elements.

(d) From the contradiction between b-iii and c-iii conclude that only one ideal
in K meets all sets, the idedl of white elements. Thereforg(l) con-
tains precisely one element, sayShow that b equalsiW U {b} and that it
is Scott-closed. Hence it is far from containing all elementsjdf= K.

(e) Go a step farther and prove that the lensesofire not even directed-
complete by showing that the idefaive started out with does not have an
upper bound.

12. (R. Heckmann) Remove idempotence from the Hoare powertheory and study free
domain algebras with respect to this theory. These are no longer finite if the
generating domain is finite. Show that the free algebra over the four-element
lattice (Figure 1) is neither bifinite nor an L-domain.
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7 Domains and logic

There are at least three ways in which the idea of a function can be formalized. The first
is via algorithms, which is the Computer Science viewpoint. The second is via value
tables or, in more learned words, via graphs. This is the — rather recent — invention of
Mathematics. The third, finally, is via propositions: We can either take propositions
about the function itself or view a function as something which maps arguments which
satisfy ¢ to values which satisfyy. The encoding in the latter case is by the set of alll
such pairg¢,v). The beauty of the subject, then, lies in the interplay between these
notions.

The passage from algorithms (programs) to the extensional description via graphs
is called denotational semantics. It requires sophisticated structures, prelcisglins
in the sense of this text, because of, for example, recursive definitions in programs. The
passage from algorithms to propositions about functions is called program logics. If
we take the computer scientist’s point of view as primary then denotational semantics
and program logics are two different ways of describing the behaviour of programs.
It is the purpose of this chapter to lay out the connection between these two forms of
semantics. As propositions we allow all those formulae whose extensions in the domain
under consideration are (compact) Scott-open sets. This choice is well justified because
it can be argued that such propositions correspond to properties which can be detected
in a finite amount of time [Abr87]. The reader will find lucid explications of this point
in [Smy92] and [Vic89].

Mathematically, then, we have to study the relation between domains and their
complete lattices of Scott-open sets. Stated for general topological spaces, this is the
famous Stone duality. We treat it in Section 7.1. The restriction to domains introduces
several extra features which we discuss in a one by one fashion in Section 7.2. The
actual domain logic, as a syntactical theory, is laid out in Section 7.3.

The whole open-set lattice, however, is too big to be syntactically represented.
We must, on this higher level, once more employ ideas of approximation and bases.
There is a wide range of possibilities here, which can be grouped under the heading
of information systems\e concentrate on one of these, namely, the logic of compact
open subsets. This is well motivated by the general framework of Stone duality and
also gives the richest logic.

7.1 Stone duality
7.1.1 Approximation and distributivity

We start out with a few observations concerning distributivity. So far, this didn’t play a
role due to the poor order theoretic properties of domains. Now, in the context of open
set lattices, it becomes a central theme, because, as we shall see, it is closely related
with the concept of approximation. The earliest account of this connection is probably
[Ran53].

A word on notation: We shall try to keep a clear distinction between spaces, which
in the end will be our domains, and their open-set lattices. We shall emphasize this
by using< for the less-than-or-equal-to relation whenever we speak of lattices, even
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though these do form a special class of domains, too, as you may remember from
Section 4.1.
Recall that a latticd. is said to balistributiveif for all =, y, z € L the equality

xA(yVz)=(xAy)V(zAz)

holds. The dual of this axiom is then satisfied as well. For the infinitary version of
distributivity, we introduce the following notation for choice functions(;);c; is a

family of sets then we writg : T <, J A;if f(¢) takes its value i; for everyi € I.
Complete distributivitan then be expressed by the equation

AVa = VA7

el £ IiuA%ieI

It, too, implies its order dual, see Exercise 7.3.19(1). There is a lot of room for varia-
tions of this and we shall meet a few of them in this section. Here comes the first:

Theorem 7.1.1. A complete latticd. is continuous if and only if

AV = VT A7

el f:I—®>UA,-,1.’EI
holds for all families(A;);c; of directed subsets df.

Proof. The reader should check for himself that the supremum on the right hand side
is indeed over a directed set. Let nawbe an element approximating the left hand
side of the equation. Then for ea¢ke I we haver < \/TA; and so there is; €
A; with z < qa;. Let f be the choice function which selects thege Thenx <
Nicr f(i) andz is below the right hand side as well. Assumihgo be continuous,
this proves/\;.; VTA; < \/Tf. 10,04 Nier f(i). The reverse inequality holds in
every complete lattice. '

For the converse fix an elemente L and let(A4;);c; be the family of all directed
setsA for whichz < \/TA. From the equality, which we now assume to hold, we get
thatx = \/Tf_ 190 N\ f(i). We claim that for each choice functigh 9, U A4,

the corresponding element= /\,_; f(i) is approximating:. Indeed, ifA is a directed
setwithz < \/TA then4 = A;, for somei € I and soy < f(io) € A. O

Let us now look at completely distributive lattices which, by the preceding the-
orem, are guaranteed to be continuous. We can go further and express this stronger
distributivity by an approximation axiom, too.

Definition 7.1.2. For a complete latticd. define a relation on L by
<& yifVACL. (yg\/A:>E|a€A.x§a).

Call L prime-continuousf for everyz € L,z = \/ {y | y << =} holds.
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Note that the relatior is defined in just the same way as the order of approxi-
mation, except that directed sets are replaced by arbitrary subsets. All our fundamental
results about the order of approximation hatautatis mutandisfor < as well. In
particular, we shall make use of Proposition 2.2.10 and Lemma 2.2.15. Adapting the
previous theorem we get George N. Raney’s characterization of complete distributivity
[Ran53].

Theorem 7.1.3. A complete lattice is prime-continuous if and only if it is completely
distributive.

Let us now turn our attention to ‘approximation’ from above. The right concept for
this is:

Definition 7.1.4. A complete latticel is said to beA-generatedy a subset if for
everyr € L,z = \(Tz N A) holds. (Dually, we can speak vfgeneratior)

We will study A-generation by certain elements only, which we now introduce in
somewhat greater generality than actually needed for our purposes.

Definition 7.1.5. An element: of a lattice L is called A-irreducibleif whenever: =
/\ M for a finite setM C L then it must be the case that= m for somem € M.
We sayz is A-primeif x > A M impliesz > m for somem € M, whereM is
again finite. Stating these conditions for arbitraty C L gives rise to the notions
of completelyA-irreducibleand completelyA-prime element. The dual notions are
obtained by exchanging supremum for infimum.

Note that neithen-irreducible norA-prime elements are ever equal to the top ele-
ment of the lattice, because that is the infimum of the empty set.

Proposition 7.1.6. A A-prime element is alsp-irreducible. The converse holds if the
lattice is distributive.

Theorem 7.1.7. A continuous (algebraic) latticé is A-generated by its set of (com-
pletely)A-irreducible elements.

Proof. If z andy are elements of. such thatz is not belowy then there is a Scott-

open filterF which contains: but noty, becauséy is closed and the Scott-topology is
generated by open filters, Lemma 2.3.8. Employing the Axiom of Choice in the form
of Zorn’s Lemma, we find a maximal element abayén the inductive sef \ F. It

is clearlyA-irreducible. In an algebraic lattice we can chods be a principal filter
generated by a compact element. The maximal elements in the complement are then
completelyA-irreducible. O

Theorem 7.1.8.If L is a complete lattice which is-generated by\-prime elements,
then L satisfies the equations

AV = VA fm)

meM £ M-2ua,, MM
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and
\/ /\ M; = /\ \/ f(@)
el f:IAQ»UAJiieI
where the setd/ and M; are finite.
A dual statement holds for lattices which aregenerated by/-prime elements.

Proof. The right hand side is certainly below the left hand side, so assumgithar\-
prime element abov\e/f_ w-2.0a. Nmenr f(m). Surely,pis above), ., f(m) for

everyf: M -9, UA,, and because it is-prime it is abovef (my) for someM; € M.
We claim that the seB of all f(m/) covers at least ond,,,. Assume the contrary.
Then for eachn € M there exists:,,, € A,, \ B and we can define a choice function
fo: m — a,. Thenfy(my,) € B contradicts our construction ¢f. So we know
that for somem € M all elements ofA4,, are belowp and hencep is also above
Amenrr V Am. The proof for the second equation is similar and simpler. O

Note that the two equations are not derivable from each other because of the side
condition on finiteness. The first equation is equivalent to

CC/\\/yi = \/(*L/\yz)
el el
which can be stated without choice functions. In this latter form it is known as the
frame distributivity lawand complete lattices, which satisfy it, are calfeines The
basic operations on a frame are those which appear in this equation, namely, arbitrary
join and finite meet.

7.1.2 From spaces to lattices

Given a topologyr on a setX thenr consists of certain subsets &f. We may think

of 7 as an ordered set where the order relation is set inclusion. This ordered set is a
complete lattice because arbitrary joins exist. Let us also look at continuous functions.
In connection with open-set lattices it seems right to take the inverse image operation
which, for a continuous function, is required to map opens to opens. Set-theoretically,
it preserves all unions and intersections of subsets, and hence all joins and finite meets
of opens. This motivates the following definition.

Definition 7.1.9. Aframe-homomorphistetween complete latticé§ and L is a map
which preserves arbitrary suprema and finite infima.

We letCLat stand for the category of complete lattices and frame-homomorphisms.
We want to relate it tdfop, the category of topological spaces and continuous func-
tions. The first half of this relation is given by the contravariant funétomwhich
assigns to a topological space its lattice of open subsets and to a continuous map the
inverse image function.

For an alternative description I2tbe the two-element chaih < T equipped with
the Scott-topology. The open sets of a spAcare in one-to-one correspondence with
continuous functions fronX to 2, if for each open sab C X we setyo to be the map
which assignsT to an element if and only if x € O. The action of2 on morphisms
can then be expressed 8 f)(xo) = xo o f.
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XF

Figure 15: A ‘point’ in a complete lattice.

7.1.3 From lattices to topological spaces

For motivation, let us look at topological spaces first. An element of a topological
spaceX is naturally equipped with the following three pieces of information. We can
associate with it its filteff,, of open neighborhoods, the complement of its closure, or

a map froml, the one-element topological space Xo Taking the filter, for example,

we observe that it has the additional property that if a union of open sets belongs to it
then so does one of the opens. Also, the closure of a point has the property that it cannot
be contained in a union of closed sets without being contained in one of them already.
The mapl — X, which singles out the point, translates to a frame-homomorphism
from Q(X) to Q(1) = 2. Let us fix this new piece of notation:

Definition 7.1.10. A filter F C L is calledprimeif \/ M € F impliesF N M # 0
for all finite M C L. Allowing M to be an arbitrary subset we arrive at the notion of
completely prime filter Dually, we speak dicompletely) prime ideals

Proposition 7.1.11. Let L be a complete lattice and |t be a subset of.. The fol-
lowing are equivalent:

1. F'is a completely prime filter.

2. FisafilterandL \ F = |x for somez € L.
3. L\ F = |z for aA-prime element € L.

4. xr is a frame-homomorphism fromto 2.

This proposition shows that all three ways of characterizing points through opens
coincide (see also Figure 15). Each of them has its own virtues and we will take
advantage of the coincidence. As our official definition we choose the variant which is
closest to our treatment of topological spaces.
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Definition 7.1.12. Let L. be a complete lattice. Thgoints of L are the completely
prime filters ofL. The collectiorpt(L) of all points is turned into a topological space
by requiring all those subsets pf(L) to be open which are of the form

O,={Fept(L)|ze€F}, z€L.
Proposition 7.1.13. The setd),,, « € L, form a topology ompt(L).

Proof. We have(,,c; Oz,, = On,caren. M finite, because points are filters and
Uicr Oz; = Ov,,«, because they are completely prime. O

Observe the perfect symmetry of our setup. In a topological space an element
belongs to an open sétif € O; in a complete lattice a poinf’ belongs to an open
setQ, if x € F.

By assigning to a complete lattide the topological space of all points, and to a
frame-homomorphism: K — L the mappt(h) which assigns to a poirft' the point
h~=1(F) (which is readily seen to be a completely prime filter), we get a contravariant
functor, also denoted Ipyt, from CLat to Top.

Again, we give the alternative description based on characteristic functions. The
fact is that we can use the same obj2dor this purpose, because it is a complete
lattice as well. One speaks okahizophrenic objedh such a situation. As we saw in
Proposition 7.1.11, a completely prime filtérgives rise to a frame-homomorphism
xr: L — 2. The action of the functopt on morphisms can then be expressed, as
before, bypt(h)(xr) = xF o h.

7.1.4 The basic adjunction

A topological spaceX can be mapped into the space of points of its open set lattice,
simply mapx € X to the completely prime filtef,. of its open neighborhoods. This
assignment, which we denote hy : X — pt(Q(X)), is continuous and open onto its
image: LetU be an open setiX. Then we get by simply unwinding the definitions:
F. €0y < UecF, < =z < U. Italso commutes with continuous functions
fr X =Y pt(Qf) (nx () = Q)1 (Fz) = Ty = ny o f(x). So the family

of all nx constitutes a natural transformation from the identity functastto (2.

The same holds for complete lattices. Wedgt L — Q(pt(L)) be the map
which assigng), to x € L. It is a frame-homomorphism as we have seen in the
proof of Proposition 7.1.13. To see that this, too, is a natural transformation, we
check that it commutes with frame-homomorphisinsk’ — L: Q(pt(h))(ex (z)) =
pt(h) "1 (04) = Op) = €1 © h(x), which is essentially the same calculation asifor
We have all the ingredients to formulate the Stone Duality Theorem:

Theorem 7.1.14.The functors): Top — CLat andpt: CLat — Top are dual ad-
joints of each other. The units areande.
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Proof. It remains to check the triangle equalities

Q(x) —9, py@(x))  and
Q
i (nx)
Q(X)
For the left diagram le© be an open set iX.
Qnx)(eax)(0)) =nx'(00) = {ze X |nx(z) € 0o}

= {zeX|F, €00}
= {2€X|0€F,}
= {z€eX|ze€0}=0.

The calculation for the right diagram is verbatim the same if we excharagele, 2
andpt, X andL, and© andJ. O

While our concrete representation through open sets and completely prime filters,
respectively, allowed us a very concise proof of this theorem, it is nevertheless instruc-
tive to see how the units behave in terms of characteristic functions. Their type is from
X to(X — 2) — 2and fromL to (L — 2) — 2, whereby the right hand sides are
revealed to be second duals. The canonical mapping into a second dual is, of course,
point evaluation:z — ev,, whereev,(x) = x(x). This is indeed what both ande
do.

7.2 Some equivalences
7.2.1 Sober spaces and spatial lattices

In this subsection we look more closely at the upiemde. We will need the following
concept:

Definition 7.2.1. A closed subset of a topological space is calledducibleif it is
non-empty and cannot be written as the union of two closed proper subsets.

Clearly, an irreducible closed set corresponds via complementation te a
irreducible (and hence-prime) element in the lattice of all open sets.

Proposition 7.2.2. Let X be a topological space. Thep,: X — pt(Q2(X)) is injec-
tive if and only if X satisfies thely-separation axiom. It is surjective if and only if
every irreducible closed set is the closure of an elemeni.of

Proof. The first half is just one of the various equivalent definitionggfseparation:
different elements have different sets of open neighborhoods.

For the second statement observe thattherime elements of)(X) are in one-
to-one correspondence with completely prime filters of open sets. The condition then
simply says that every such filter arises as the neighborhood filter of an elemgnt of

O

112



Definition 7.2.3. A topological spaceX is calledsoberif nx is bijective.

Note that ifnx is bijective then it must be a homeomorphism because we know
from Section 7.1.4 that it is always continuous and open onto the image. By the
preceding proposition, a space is sober if and only if ifjjsand every irreducible
closed set is the closure of a point. The intuitive meaning is, of course, that a space is
sober if it can be recovered from its lattice of open sets.

Proposition 7.2.4. For any complete lattic& the unitz;, : L — Q(pt(L)) is surjective
and monotone. Furthermore, the following are equivalent:

1. g1, is injective.

2. The elements df are separated by completely prime filters.

3. L is A-generated by\-prime elements.

4. Ifx £ y then there exists a completely prime fillésuch thatr € F andy € F'.
5. ¢, is order-reflecting.

Proof. We have seen in Proposition 7.1.13 that all open seist@h) are of the form
O, for somex € L. This proves surjectivity. Monotonicity is clear because filters are
upper sets.

Turning to the equivalent conditions for injectivity, we note tbat= O, is equiv-
alenttox € ' < y € F for all completely prime filterd". In other wordsgy,
is injective if and only if the elements df are separated by completely prime filters.
Givenz € L let z’ be the infimum of allA-primes abover. We want to show that
x = z'. If 2’ is strictly abovex then there exists a completely prime filter contain-
ing =’ but notz. Using the equivalence of Proposition 7.1.11, we see that this is the
same as the existence of\aprime element iffz \ 72/, a contradiction. From (3) the
last two statements follow easily. They, in turn, imply injectivity (which, in a general
order-theoretic setting, is strictly weaker than order-reflection). O

Definition 7.2.5. A complete latticd. is calledspatialif ¢, is bijective.

The intuitive meaning in this case is that a spatial lattice can be thought of as a
lattice of open sets for some topological space. A direct consequence of Theorem 7.1.8
is the following:

Theorem 7.2.6. A spatial lattice is a frame. In particular, it is distributive.

Theorem 7.2.7. For any complete latticd. the topological spacet(L) is sober. For
any topological spac& the latticeQ(X) is spatial.

Proof. The space of points of a lattick is certainlyT,, because if we are given dif-
ferent completely prime filters then thereadisc L which belongs to one of them but
not the other. Hence), contains one but not the other. For surjectivityrgf ;. let
A be an irreducible closed set of filters. First of all, the unibof all filters in A is a
non-empty upper set ih which is unreachable by joins. Hence the complemem of
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is a principal ideal z. Also, the complement ofl in pt(L) certainly contain®,.. We
claim thatz must beA-prime. Indeed, ify A z < z thenA is covered by the comple-
ments of0, andO,, whence it is covered by one of them, say the complemefi,of
which means nothing else thgn< z. It follows that.A is contained in the closure of
the pointL \ |z. On the other hand, \ |z belongs to the closed sédtas each of its
open neighborhoods contains an elemend of

The second statement is rather easier to argue fap. dhdO’ are different open
sets then there is an elemenf X contained in one but not the other. Hence the
neighborhood filter of:, which is always completely prime, separatéandO’. O

Corollary 7.2.8. The functors? andpt form a dual equivalence between the category
of sober spaces and the category of spatial lattices.

This result may suggest that a reasonable universe of topological spaces ought to
consist of sober spaces, or, if one prefers the lattice-theoretic side, of spatial lattices.
This is indeed true as far as spaces are concerned. For the lattice side, however, it
has been argued forcefully that the right choice is the larger categdrmés(which
are defined to be those complete lattices which satisfy the frame distributivity law,
Section 7.1.1). The basis of these arguments is the fact that free frames exist, see
[Joh82], Theorem 11.1.2, a property which holds neither for complete lattices nor for
spatial lattices. (More information on this is in [Isb72, Joh82, Joh83].) The choice
of using frames for doing topology has more recently found support from theoretical
computer science, because it is precisely the frame distributivity law which can be
expected to hold for observable properties of processes. Even though this connection
is to a large extent theaison d&trefor this chapter, we must refer to [Abr87, Abr91b,
Vic89, Smy92] for an in-depth discussion.

7.2.2 Properties of sober spaces

Because application git o €2 to a spaceX is an essentially idempotent operation, it

is best to think obt(Q2(X)) as a completion oX. It is commonly called theoberifi-
cationof X. Completeness of this particular kind is also at the heart of the Hofmann-
Mislove Theorem, which we have met in Section 4.2.3 already and which we are now
able to state in its full generality.

Theorem 7.2.9.Let X be a sober space. The sets of open neighborhoods of compact
saturated sets are precisely the Scott-open filtef3(X ).

Proof. It is pretty obvious that the neighborhoods of compact subsets are Scott-open
filters in 2(X). We are interested in the other direction. Given a Scott-open fil-
ter ¥ C Q(X) then the candidate for the corresponding compact séf is (| F.

We must show that each open neighborhooddbelongs taF already. For the sake

of contradiction assume that there exists an open neighborogd¥. By Zorn's
Lemma we may further assume th@tis maximal with this property. Becausgis

a filter, O is A-prime as an element ¢1(X) and this is tantamount to saying that its
complementA is irreducible as a closed set. By sobriety it must be the closure of a
single pointz € X. The open sets which do not contairare precisely those which
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are contained il. Hence every open set from the filtércontainse and sar belongs
to K. This, finally, contradicts our assumption tliais a neighborhood oK. O

This appeared first in [HM81]. Our proof is taken from [KP94]. Note that it relies,
like almost everything else in this chapter, on the Axiom of Choice.

Saturated sets are uniquely determined by their open neighborhoods, so we can
reformulate the preceding theorem as follows:

Corollary 7.2.10. Let X be a sober space. The poset of compact saturated sets or-
dered by inclusion is dually isomorphic to the poset of Scott-open filteé2$.1) (also
ordered by inclusion).

Corollary 7.2.11. Let X be a sober space. The filtered intersection of a family of
(non-empty) compact saturated subsets is compact (and non-empty). If such a filtered
intersection is contained in an open getthen some element of the family belongs to

O already.

Proof. By the Hofmann-Mislove Theorem we can switch freely between compact satu-
rated sets and open filters@{ X ). Clearly, the directed union of open filters is another
such. This proves the first statement. For the intersection of a filtered family to be con-
tained inO means tha belongs to the directed union of the corresponding filters.
ThenO must be contained in one of these already. The claim about the intersection of
non-empty sets follows from this directly because we can €ake 0. O

Every Ty-space can be equipped with an order relation, calledspieeialization
order, by settingz C y if for all open set0, z € O impliesy € O. We may then
compare the given topology with topologies defined on ordered sets. One of these
which plays a role in this context, is thveeak upper topology It is defined as the
coarsest topology for which all sets of the foymare closed.

Proposition 7.2.12. For anT-spaceX the topology onX is finer than the weak upper
topology derived from the specialization order.

Proposition 7.2.13. A sober space is a dcpo in its specialization order and its topology
is coarser than the Scott-topology derived from this order.

Proof. By the equivalence between sober spaces and spatial lattices we may think of
X as the points of a complete lattide It is seen without difficulties that the special-
ization order onX then translates to the inclusion order of completely prime filters.
That a directed union of completely prime filters is again a completely prime filter is
immediate.

Let UTiel F; be such a directed union. It belongs to an opertseif and only if
x € F; for somei € I. This shows that eadB,, is Scott-open. O

A dcpo equipped with the Scott-topology, on the other hand, is not necessarily
sober, see Exercise 7.3.19(7). We also record the following fact although we shall not
make use of it.

Theorem 7.2.14.The category of sober spaces is complete and cocomplete. It is also
closed under retracts formed in the ambient catediy.
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For the reader’s convenience we sum up our considerations in a table comparing
concepts in topological spaces to conceptstiil) for L a complete lattice.

space pt(L)
point completely prime filter (c. p. filter)
specialization order  inclusion order
open set c. p. filters containing somes L
saturated set c. p. filters containing some upper set

compact saturated set c. p. filters containing a Scott-open filter

7.2.3 Locally compact spaces and continuous lattices

We already know that sober spaces may be seen as dcpo’s with an order-consistent
topology. We move on to more special kinds of spaces with the aim to characterize our
various kinds of domains through their open-set lattices. Our first step in this direction
is to introduce local compactness. We have:

Lemma 7.2.15. Distributive continuous lattices are spatial.

Proof. We have shown in Theorem 7.1.7 that continuous lattices\agenerated by
A-irreducible elements. In a distributive lattice these are algoime. O

Now recall that a topological space is called locally compact if every element has
a fundamental system of compact neighborhoods. This alone does not imply sobriety,
as the ascending chain of natural numbers, equipped with the weak upper topology,
shows. But in combination with sobriety we get the following beautiful result:

Theorem 7.2.16.The functors(2 and pt restrict to a dual equivalence between the
category of sober locally compact spaces and the category of distributive continuous
lattices.

Proof. We have seen in Section 4.2.3 already that< O’ holds inQ(X) if there
is a compact set betweén andO’. This proves that the open-set lattice of a locally
compact space is continuous.

For the converse, let be a point in an open sét,, that is,x € F'. A completely
prime filter is Scott-open, therefore there is a further elemert F with y < =z.
Lemma 2.3.8 tells us that there is a Scott-open fifiecontained infy which con-
tainsxz. We know by the previous lemma that a distributive continuous lattice can be
thought of as the open-set lattice of its space of points, which, furthermore, is guaran-
teed to be sober. So we can apply the Hofmann-Mislove Theorem 7.2.9 and get that
the setA of points of L, which are supersets ¢, is compact saturated. In summary,
F'is contained ir9,, which is a subset ofl and this is a subset df,. O

From now on, all our spaces are locally compact and sober. The three properties
introduced in the next three subsections, however, are independent of each other.
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7.2.4 Coherence

We have introduced coherence in Section 4.2.3 for the special case of continuous do-
mains. The general definition reads as follows:

Definition 7.2.17. A topological space is calledoherentif it is sober, locally com-
pact, and the intersection of two compact saturated subsets is compact.

Definition 7.2.18. The order of approximation on a complete lattice is caltadlti-
plicativeif x < y andz < zimplyz < y A z. A distributive continuous lattice for
which the order of approximation is multiplicative is calladthmetic

As a generalization of Proposition 4.2.16 we have:

Theorem 7.2.19.The functors(2 and pt restrict to a dual equivalence between the
category of coherent spaces and the category of arithmetic lattices.

Proof. The same arguments as in Proposition 4.2.15 apply, so it is clear that the open-
set lattice of a coherent space is arithmetic. For the converse we may, just as in the
proof of Theorem 7.2.16, invoke the Hofmann-Mislove Theorem. It tells us that com-
pact saturated sets pf(L) are in one-to-one correspondence with Scott-open filters.
Multiplicativity of the order of approximation is just what we need to prove that the
pointwise infimum of two Scott-open filters is again Scott-open. O

7.2.5 Compact-open sets and spectral spaces

By passing from continuous lattices to algebraic ones we get:

Theorem 7.2.20.The functors(2 and pt restrict to a dual equivalence between the
category of sober spaces, in which every element has a fundamental system of compact-
open neighborhoods, and the category of distributive algebraic lattices.

The proof is the same as for distributive continuous lattices, Theorem 7.2.16. We
now combine this with coherence.

Definition 7.2.21. A topological space, which is coherent and in which every element
has a fundamental system of compact-open neighborhoods, is cafsztaal space

Theorem 7.2.22.The functors(2 and pt restrict to a dual equivalence between the
category of spectral spaces and the category of algebraic arithmetic lattices.

Having arrived at this level, we can replace the open-set lattice with the sublattice
of compact-open subsets. Our next task then is to reformulate Stone-duality with bases
of open-set lattices. For objects we have:

Proposition 7.2.23. Let L be an algebraic arithmetic lattice. The completely prime fil-
ters ofL are in one-to-one correspondence with the prime filteis(df). The topology
onpt(L) is generated by the set of &I, wherex is compact inL.
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Proof. Given a completely prime filteF" in L, we letF' N K(L) be the set of compact
elements contained in it. This is clearly an upwards closed sé€tin. It is a filter,
becausd. is arithmetic. Primeness, finally, follows from the fact ti#ats Scott-open
and hence equal t(F' N K(L)). Conversely, a filtet7 in K(L) generates a filtefG
in L. For complete primeness let be a subset of. with join in 1G. L is algebraic.
So we may replacel by B = | AN K(L) and\/ B € 1G will still hold. BecauselG
is Scott-open, there is a finite subsgtof B with \/ M € 1G. Some element of
must be below/ M and primeness then gives us that some elemehf belongs ta&
already.

The statement about the topology i L) follows from the fact that every element
of L is a join of compact elements. O

A frame-homomorphism between algebraic arithmetic lattices need not preserve
compact elements, so in order to represent it through bases we need to resort to re-
lations, as in Section 2.2.6, Definition 2.2.27. Two additional axioms are needed,
however, because frame-homomorphisms are more special than Scott-continuous func-
tions.

Definition 7.2.24. A relation R between lattice$” and IV is calledjoin-approximable
if the following conditions are satisfied:

1 Ve,o' eVVy,y eW. ('’ 22 Ry>y = 2’ Ry');
2. Ve e VYNC,W.(Vye N.x Ry=z R(\/ N));
BVM G, VVyeW. Vee M.z Ry= (AM) Rvy);

4.YM Cy VVz € W. (V M) Rz = 3N C,, W.
(x=VNAVYne NImeM. mRn)).

The following is then easily established:

Proposition 7.2.25. The category of algebraic arithmetic lattices and frame-
homomorphisms is equivalent to the category of distributive lattices and join-
approximable relations.

By Proposition 7.2.23 we can replace the compound funeter Idl by a direct
construction of a topological space out of a distributive lattice. We denote this functor
by spec, standing for thespectrumof a distributive lattice. We also contralsto Q2 to
KQ. Then we can say:

Theorem 7.2.26.The category of spectral spaces and continuous functions is dually
equivalent to the category of distributive lattices and join-approximable relations via
the contravariant functor&<) andspec.

We supplement the table in Section 7.2.2 with the following comparison of con-
cepts in a topological space and concepts in the spectrum of a distributive lattice.

118



space spec(L)

point prime filter
specialization order  inclusion order
compact-open set prime filters containing some L
open set union of compact open sets
saturated set prime filters containing some upper set
compact saturated set  prime filters containing a filter

It has been argued that the category of spectral spaces is the right setting for deno-
tational semantics, precisely because these have a finitary ‘logical’ description through
their distributive lattices of compact-open subsets, see [Smy92], for example. However,
this category is neither cartesian closed, nor does it have fixpoints for endofunctions,
and hence does not provide an adequate universe for the semantics of computation. An
intriguing question arises, of how the kinds of spaces traditionally studied in topology
and analysis can best be reconciled with the computational intuitions reflected in the
very different kinds of spaces which arise in Domain Theory. An interesting recent
development is Abbas Edalat’s use of Domain Theory as the basis for a novel approach
to the theory of integration [Eda93a].

7.2.6 Domains

Let us now see how continuous domains come into the picture. First we note that
sobriety no longer needs to be assumed:

Proposition 7.2.27. Continuous domains eqipped with the Scott-topology are sober
spaces.

Proof. Let A be an irreducible closed set in a continuous donfaiand letB = | A.
We show thatB is directed. Indeed, givem andy in B, then neitherD \ Tz nor
D\ Ty contain all of A. By irreducibility, then, they can't coved. Hence there is
a € Antznty. Butsincefz N1y is Scott-open, there is also some «a in this set.
This gives us the desired upper boundfoandy. It is plain from Proposition 2.2.10
that A is the closure of | B. O

The following result of Jimmie Lawson and Rudolf-Eberhard Hoffmann, [Law79,
Hof81], demonstrates once again the central role played by continuous domains.

Theorem 7.2.28.The functorg? andpt restrict to a dual equivalence betwe€ONT
and the category of completely distributive lattices.

Proof. A Scott-open seD in a continuous domai® is a union of sets of the form
T2 wherez € O. For each of these we hafe << O in op. This proves complete
distributivity, as we have seen in Theorem 7.1.3.

For the converse, ldt be completely distributive. We already know that the points
of L form a dcpo (where the order is given by inclusion of filters) and that the topol-
ogy onpt(L) is contained in the Scott-topology of this dcpo. Now we show that ev-
ery completely prime filte#” has enough approximants. Observe that« F' cer-
tainly holds in all those cases whefeF’ is an element off’ as directed suprema

119



of points are unions of filters. Now given € F we get from prime-continuity
thatz = \/{y | y <« =} and so there must be somec F with y <« z. Suc-
cessively interpolating betweenand = gives us a sequence of elements such that
Yy K ... <Ky, K ... ¥y ¥ z,|ustas in the proof of Lemma 2.3.8. The
set{J,.en Tyn then is a completely prime filter containingwith infimum in F. The
directedness of these approximants is clear becauisefiltered. As a consequence,
we have tha#” < F holds if and only if A\ F’ belongs toF'.

We are not quite finished, though, because we also need to show that we get the
Scott-topology back. To this end I6tbe a Scott-open set of points, thatis2> F’ €
O impliesF € O andUTiEI F; € O implies F; € O for some: € I. Letx be the
supremum of all elements of the forly F', F € O. We claim thatd = O,. First of
all, for eachF € O there isfF’ € O with F/ <« F, which, as we have just seen, is
tantamount tg\ F’ € F, hencer belongs to allFF andO C O, is proved.

Conversely, if a pointz containse then it must contain somg F', F' € O, because
it is completely prime. Hencé&' belongs td0, too, and we have showi, C 0. O

To this we can add coherence and we get a dual equivalence between coherent
domains and completely distributive arithmetic lattices. Or we can add algebraicity and
get a dual equivalence between algebraic domains and algebraic completely distributive
lattices. Adding both properties characterizes what can be called 2/3-bifinite domains
in the light of Proposition 4.2.17. We prefer to speak of coherent algebraic domains.
As these are spectral spaces, we may also ask how they can be characterized through
the lattice of compact open subsets. The answer is rather simple: A compact open set
in an algebraic domai is a finite union of sets of the forrjx: for ¢ € K(D). These,
in turn, are characterized by beingirreducible and alse/-prime.

Theorem 7.2.29.The dual equivalence of Theorem 7.2.26 cuts down to a dual equiv-
alence of coherent algebraic domains and lattices in which every element is the join of
finitely manyv-primes.

Proof. We only need to show that if a lattice satisfies the condition stated in the the-
orem, then its ideal completion is completely distributive. But this is trivial because a
principal ideal generated by\aprime is completely/-prime in the ideal completion
and so the result follows from Theorem 7.1.3. O

All the combined strength of complete distributivity, algebraicity and multiplica-
tivity of the order of approximation, however, does still not restrict the corresponding
spaces far enough so as to bring us into one of our cartesian closed categories of do-
mains. Let us therefore see what we have to add in order to characterize bifinite do-
mains. The only solution in this setting appears to be a translation of mub-closures
into the lattice of compact-open subsets, that is to say, the subsepfnes has the
upside-down finite mub property (Definition 4.2.1). Let us sum up these considerations
in a theorem:

Theorem 7.2.30.A lattice V' is isomorphic to the lattice of compact-open subsets of
an F-B-domain(Definition 4.3.7)if and only if, firstly,} has a least element, secondly,
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each element of is the supremum of finitely manyprimes and, thirdly, for every
finite setM of v-primes there is a finite supersat of vV-primes such that

VA C M 3B C N. /\A:\/B.

The additional requirement that there be a largest element which is\ajsome, char-
acterizes the lattices of compact-open subsets of bifinite domains.

The extra condition about finite mub-closures is not a first-order axiom and cannot
be replaced by one as was shown by Carl Gunter in [Gun86]. The smaller class of
algebraic bc-domains has a rather nicer description:

Theorem 7.2.31.A lattice V' is isomorphic to the lattice of compact-open subsets of
an algebraic bc-domain if and only if it has a least element, each eleménti®the
supremum of finitely many-primes and the set af-primes plus least element is closed
under finite infima.

7.2.7 Summary

We have summarized the results of this section in Figure 16 and Table 1. As labels
we have invented a few mnemonic names for categories. We won't use them outside
this subsection. The filled dots correspond to categories for which there is also a char-
acterization in terms of compact-open subsets (spectral spaces). A similar diagram
appears in [GHK 80] but there not everything, which appears to be an intersection of
categories, really is one.

7.3 The logical viewpoint
This material is based on [Abr91b].

7.3.1 Working with lattices of compact-open subsets

Having established the duality between algebraic domains and their lattices of
compact-open subsets we can now ask to what extent we can do domain theory through
these lattices. We have already indicated that such an approach offers many new in-
sights but for the moment our motivation could simply be that working with lattices is
a lot easier than working with dcpo’s. ‘Doing domain theory’ refers to performing the
domain constructions of Sections 3.2, 3.3, 5 and 6, at least in a first approximation.

Let us try this out. Suppose you knd®f2( D) for some bifinite domairD, how do
you construcKQ(D | ), the lattice of compact-open subsets of the lifted domain? The
answer is simple, just add a new top eleméf® (D) = KQ(D) . Coalesced sum
also works fine:

KQD @ E) = (KQD)\ {D}) x (KQE)\{E})U{D e E}.

We encounter the first problems when we look at the cartesian product. While it is clear
that every compact-open subset/ok F is a finite union of products of compact-open
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TOP
SOB

COH

C-O

CONT

SPEC

C-CONT
ALG
C-ALG

F-B

aBC

Topological spaces. No Stone-dual.
Sober spaces vs. spatial lattices.

Locally-compact sober spaces vs. continuous distributive
lattices.

Coherent spaces (= locally compact, sober, and intersection of
compact saturated is compact) vs. arithmetic lattices (= distribu-
tive, continuous, and order of approximation is multiplicative).

Sober spaces with a base of compact-open sets vs. distributive
algebraic lattices.

Continuous domains with Scott-topology vs. completely dis-
tributive lattices.

Spectral spaces vs. algebraic arithmetic lattices vs. distributive
lattices.

Coherent domains vs. arithmetic completely distributive lattices.
Algebraic domains vs. algebraic completely distributive lattices.

Coherent algebraic domains vs. algebraic arithmetic completely
distributive lattices vs. distributive lattices in which every ele-
ment is the finite join of/-primes.

F-B-domains (Definition 4.3.7) (= bilimits of finite posets).
Stone-dual only described through the basis (or base) of
compact-open subsets, which is a distributive lattice with extra
properties as stated in Theorem 7.2.30.

Bifinite domains. Stone-dual only described through the basis of
compact-open subsets, which is a distributive lattice with extra
properties as stated in Theorem 7.2.30.

Algebraic bounded-complete domains. Stone-dual only de-
scribed through the basis of compact-open subsets, which is
a distributive lattice with extra properties as stated in Theo-
rem 7.2.31.

Table 1: The categories and their Stone-duals.

122



o TOP

o5 SOB

COH o o CONT

SPEC o ALG

Figure 16: An overview of Stone-dualities in domain theory.

subsets in the factors, there seems to be no simple criterion on such unions which would
guarantee unique representation.

The moral then is that we must allow for multiple representations of compact-open
subsets. Instead of lattices we shall study certain preordered structures. At first glance
this may seem as an unwanted complication but we will soon see that it really makes
the whole programme work much more smoothly.

Lattices are determined by either their order structure or their algebraic structure
but this equivalence no longer holds in the preordered case. Instead we must mention
both preorder and lattice operations. We also malggimeness explicit in our axiom-
atization. The reason for this is that we want to keep all our definitions inductive. This
point will become clearer when we discuss the function space construction below.

Definition 7.3.1. A coherent algebraic prelocalé is a preordered algebra with two
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binary operationsv and A, two nullary operation$) and 1, and a unary predicat€
on A, such thata Vv b is a supremum fofa, b}, a A b is an infimum for{a, b}, 0 is a
least, andl is a largest element. The preorder dris denoted bys, the corresponding
equivalence relation by:. The predicate(a) is required to hold if and only i is
v-prime. Finally, every element of must be equivalent to a finite join efprimes.

We will not distinguish between a prelocale and its underlying set. The set
{a € A | C(a)} is abbreviated a€(A).

This is essentially the definition which appears in [Abr91b]. There another pred-
icate is included. We can omit this because we will not look at the coalesced sum
construction. The expressions ‘a supremum’, ‘an infimum’, etc., may seem contra-
dictory but they are exactly appropriate in the preordered universe. It is seen without
difficulties that every coherent algebraic prelocdlgives rise to a latticel /. which
is V-generated by/-primes and hence distributive.

A domain prelocalés gotten by incorporating the two extra conditions from The-
orem 7.2.30:

o Vu G C(A) v G, C(A). uCvand(Vw Cu Iz Cou. Aw=1\ 2);
e C(1).

Definition 7.3.2. Let A and B be domain prelocales. A functieit A — B is called

a pre-isomorphisnif it is surjective, order-preserving and order-reflecting. Afis a
domain prelocale and is a bifinite domain and if further there is a pre-isomorphism
[[1: A — KQ(D) then we say tha#l is alocalic descriptiorof D via [-].

A pre-isomorphism¢: A — B must preserve suprema, infima, and least and
largest element (up to equivalence). Furthermore, it restricts and corestricts to a surjec-
tive mapp?: C(A) — C(B). Let us look more closely at the case of a pre-isomorphism
[]: A — KQ(D). A diagram may be quite helpful:

C(A) A
[1° [

K(D) Zu C(KQD)) > KQ(D)

Remember tha€(KQ(D)) are just those compact-open subsets which are of the
form fc for ¢ € K(D). The inclusion order between such principal filters is dual to the
usual order oK (D).

Let us now lift the pre-isomorphism to the domain level. In the previous chapters,
the natural approach would have been to apply the ideal completion functor to the pre-
isomorphism betweefi(A)°? andK (D). Here we use Stone-duality and apppec
to [-]. This yields an isomorphism betwespec(A) andspec(KQ(D)). Composed

124



with the inverse of the unij it gives us the isomorphism: spec(A) — D.

spec(A)

spec([-)

spec(KQ(D))

It will be good to have a concrete idea of the behaviout-pht least for compact
elements ofpec(A). These are filters inl which are generated by-prime elements.
So letF = Ta with a € C(A). Itis easily checked that(F) equals that compact
elementc of D which is least in the compact-open subBdf’.

Proposition 7.3.3. There exists a map]: A — KQ(D) such that the domain prelo-
cale A is a localic description of the bifinite domaif if and only ifspec(A) and D
are isomorphic.

Proof. We have just described how to derive an isomorphism from a pre-isomorphism.
For the converse observe that the witA — K(Q(spec(A4)) is surjective, order-
preserving and order-reflecting (Proposition 7.2.4). O

For more general functions between domains, we can translate join-approximable
relations into the language of domain prelocales. The following is then just a slight
extension of Theorem 7.2.30.

Theorem 7.3.4. The category of domain prelocales and join-approximable relations
is dually equivalent to the category of bifinite domains and Scott-continuous functions.

Our attempt to mimic the cartesian product construction forced us to pass to pre-
ordered structures but once we have accepted this we can go one step farther and make
the prelocales syntactic objects in which no identifications are made at all. More pre-
cisely, itis no loss of generality to assume that the underlying algebra is a term algebra
with respect to the operationg A, 0, and1. As an example, let us describe the one-
point domairll in this fashion. We take the term algebra on no generators, that is, every
term is a combination df's and1’s. The preorder is the smallest relation compatible
with the requirements in Definition 7.3.1. The effect of this is that there are exactly two
equivalence classes with respectipthe terms equivalent tb and the terms equiva-
lent to0. The former are precisely the-prime terms. We denote the resulting domain
prelocale byl.

The syntactic approach also suggests that we look at the following relation between
domain prelocales:

Definition 7.3.5. Let A and B be domain prelocales. We say théis asub-prelocale
of B if the following conditions are satisfied:

1. Ais a subalgebra oB with respect to/, A, 0 and1.

2. The preorder oA is the restriction of the preorder oB to A.
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3. C(A) equalsA N C(B).
We writeA < B if A is a sub-prelocale oB.

Proposition 7.3.6. If A is a sub-prelocale oB then the following defines an embed-
ding projection pair betweespec(A) andspec(B):

e: spec(A) — spec(B),  e(F) = 1,(F);
p: spec(B) — spec(A), p(F)=FnA.

Proof. Itis clear that botle andp are continuous because directed joins of elements in
spec(A), resp.spec(B), are just directed unions of prime filters. We havee = id
because the preorder ahis the restriction of that of3. Fore o p C id we don't need
any special assumptions.

The crucial point is that the two functions are well-defined in the sense that they
indeed produce prime filters. The filter part follows again from the fact that both oper-
ations and preorder oA are the restrictions of those dh For primeness assume that
\V M € 15(F) for some finiteM C B. This means: < \/ M for somex € F. This
element itself is a supremum ofprimes ofA and becausé’ is a prime filter inA we
have somev-prime element:’ below\/ M in F. But we have also required that the
V-prime elements of are precisely those-prime elements o8 which lie in A and
therefore some: € M must be above’.

Primeness o' N A, on the other hand, follows easily because suprema ame
also suprema 3. O

Corollary 7.3.7. Assume thatl is a localic description oD via[-] 4, that B describes
E via[-] g, and thatA < B. Then the following defines an embeddinaf D into E:
If c € K(D), a € C(A), [a]% = T¢, [a]% = 1d, thene(c) = d.

Proof. If we denote by’ the embedding frorapec(A) into spec(B) as defined in the

preceding proposition, then the embeddingD — E is nothing else butp o ¢’ o
-1

Ty - O

Of course, it happens more often thatc(A) is a sub-domain ofpec(B) than
that A is a sub-prelocale oB but the fact is that it will be fully sufficient and even
advantageous to work with the stronger relation when it comes to solving recursive
domain equations.

7.3.2 Constructions: The general technique

Before we demonstrate how function space and Plotkin powerdomain can be con-
structed through prelocales, let us outline the general technique. The overall picture
is in the following diagram. We explain how to get its ingredients step by step below.

C(T(A,A))) — T(A, A)
[1° ['1
K(Fr(D, D)) Zuw CKQEFr(D, D)) <> KQ(Fp(D, D))
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1. The set-up. We want to study a constructidhi on (bifinite) domains. This
could be any one from the table in Section 3.2.6 or a bilimit or one of the powerdomain
constructions from Section 6.2. The diagram illustrates a binary construction. We can
assume that we understand the action of the associated functar bifinite domains.

In particular, we know what the compact element&'sf D, D’) are, how they compare
and how Fr acts on embeddings (Proposition 5.2.6). Thus we should have a clear
understanding of the bottom row of the diagram, in detail:

e Fr(D,D’)is the effect of the functoFr on objectsD andD’.
e K(Fr(D,D’)) are the compact elements Bf-(D, D).

o KQ(Fr(D, D)) are the compact-open subsetsgf(D, D’) and these are pre-
cisely those upper sets which are of the fofmfor a finite setu of compact
elements.

o C(KQ(Fp(D,D"))) are thev-prime elements okQ(Fr(D, D)) and these are
precisely those subsets 6% (D, D) which are of the forni ¢ for ¢ a compact
element. The order is inclusion which is dual to the usual order on compact
elements.

Furthermore, we assume that we are given domain prelodadesl A’ which describe
the bifinite domainsD and D’, respectively. These descriptions are encoded in pre-
isomorphismg-]4: A — KQ(D) and[-] 4 : A" — KQ(D").

2.The goal. We want to define a domain prelocdl& A, A’) which is a localic
description off(D, D). This is achieved in the following series of steps.

3. Definition of T'(A, A’"). This is the creative part of the enterprise. We search
for a description of compact-open subsetsf(D, D) based on our knowledge of
the compact-open subsets Bfand D’. The point is to do this directlypot via the
compact elements d?, D', andFr(D, D'). There will be an immediate payoff, as we
will gain an understanding of the construction in terms of properties rather than points.
Our treatment of the Plotkin powerdomain below illustrates this most convincingly.

The definition of (A, A”) will proceed uniformly in all concrete instances. First
a setGr of generators is defined and th@{ A, A’) is taken to be the term alge-
bra overGr with respect tov, A,0, and1. An interpretation functiorf-]: Gr —
KQ(Fr(D, D)) is defined based on the interpretatidrs, and[-] 4-. It is extended
to all of T'(A, A") as a lattice homomorphisnfiz vV b] = [a] U[b], etc. Finally, axioms
and rules are given which govern the preorder afatfimeness predicate.

Next we have to check that our definitions work. This task is also broken into a
series of steps as follows.

4. Soundness.We check that axioms and rules translate vfainto valid state-
ments about compact-open subsetdf{ D, D’). This is usually quite easy. From
soundness we infer thid] is monotone and can be restricted and corestricted to a map
[[1°: C(T(A, A")) — C(KQ(Fr(D, D"))).

5. Prime generation. Using the axioms and rules, we prove that every element
of T(A, A’) can be transformed (effectively) into an equivalent term which is a finite
supremum of expressions which are asserted to4peime. This is the crucial step
and usually contains the main technical work. It allows us to prove the remaining
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properties of]-] through[-]° and for the latter we can use our knowledge of the basis
of Fr(D, D).

6. Completeness for/-primes. We show thaf-]° is order reflecting.

7. Definability for v-primes. We show thaf/-]° is surjective.

At this point we can fill in the remaining pieces without reference to the concrete
construction under consideration.

8. CompletenessThe interpretation functiofft] itself is order-reflecting.

Proof. Leta,b € T(A, A’) be such thafa] C [b]. By 5 we can replace these ex-
pressions by formal joins of-primes:a ~ a; V ...V a, andb ~ by V ...V by,.
Soundness ensures that the value under the interpretation function remains unchanged
and that eaclia;] (resp.[b;]) is of the formT¢; (resp.7d;) for ¢;, d; compact elements

in Fr(D,D’). The inclusion order oiKQ(Fr(D, D)) translates into the formula

Vi 3j. Te; € 1d; which by the completeness fof-primes can be pulled back into
T(A,A"): Vi 3j. a; S bj. In every preordered lattice it must follow that < b

~

holds. O

9. Definability. The surjectivity off-] is an easy consequence of the surjectivity
of [-]° because we know that compact-open subsets in an algebraic domain are finite
unions of compactly generated principal filters.

10. Well-definedness.Of course KQ(Fr(D, D')) is a domain prelocale and we
have just shown that preorder and primeness predicaf® dnA’) are preserved and
reflected by[-]. This constitutes a semantic proof thatA, A’) satisfies the two extra
conditions for domain prelocales. In other wordsjs a well-defined operation on
domain prelocales.

11. Stone-duality. At this point we have shown thdt] is a pre-isomorphism. As
in the previous subsection we lift it to an isomorphisrhetweerspec(7'(A4, A")) and
Fr(D, D') via Stone duality:

spec(T'(A, A"))

spec([])~*

spec(KQU(Fr(D, D)) Fr(D, D)

So much for the correspondence on the object level. We also want to see how
the constructionl” harmonizes with the sub-prelocale relation, one the one hand,
and the isomorphisnr, on the other hand. Thus we assume that we are given
two more prelocalesB and B’, which are localic descriptions of bifinite domains
E and E’, such thatA < B and A’ < B’ hold. In Corollary 7.3.7 we have seen
how to define from this embeddings D — E ande’: D' — E’. In Proposi-
tion 5.2.6 we have shown how the functors associated with different constructions
act on embeddings, hence we may unambiguously wWijtée, ¢’) for the result of
this action, which is an embedding frofy.(D, D) to Fr(E, E’). Embeddings pre-
serve compact elements $& (e, ¢’) restricts and corestricts to a monotone function
Fr(e,e)?: K(Fp(D,D")) — K(Fr(E, E")). Now for bothT(A, A’) andT(B, B)
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we have a diagram such as depicted at the beginning of this subsection. We connect
the lower left corners of these iy (e, e’)?. This gives rise also to a mapfrom
C(KQ(Fp(D,D"))) to C(KQ(Fr(E,E"))). Our way of definingl’'(A, A") will be
such that it is immediate th&(T'(A, A")) is a subset o€ (T'(B, B’)) and hence there
is an inclusion map connecting the upper left corners. Our next technical step then is
the following.

12. Naturality. We show that the diagram

QT (A,A")) ——— (T(B, B))

[['HOT(A,A/) [[']]OT(B,B/)

C(KQUFr(D, D)) —» C(KUFy(E, E')))

commutes. On the element level this reads: E C(T'(A, A")) and[[a]]OT(AyA,) = Tc
and[a]7. g y = 1d thenFr(e,e)’(c) = d. Now we can again get the remaining
missing information in a general manner.

13. Monotonicity. We show thatl’(A, A’) < T(B, B’). From the form of our
construction it will be clear thdf'(A, A’) is a subset of (B, B’) and the axioms and
rules will be such that whatever can be derivedlif4, A’) can also be derived in
T(B, B’). We must show that in the larger prelocale nothing extra can be proved for
elements of'(A, A"). The argument is a semantic one.

Proof. Leta,a’ € C(T(A, A")) such thatz < o’ holds inT'(B, B’). Let [[a]](%(A’A,) =
Te, HGHOT(B,B/) = 1d and similarly fora’. Correctness says thétd C 1d’ and hence
d 2 d'. By naturality we haveF'r (e, e')(c) = d 3 d' = Fr(e,e')°(¢’). Embeddings
are order reflecting so 3 ¢’ follows. Completeness then allows us to conclude that
a < a' holdsinT(A, A’) as well.

In the same way it is seen that the predidaien7'(A4, A’) is the restriction of that
onT(B,B"). O

14. Least prelocale.lt follows from the correctness of the construction tha{l
T(A, A’) holds.

15. Naturality of 7. Having established the relatidh(A, A’) < T(B, B’) we
can look at the embedding spec(T(A, A")) — spec(T(B, B’)) which we defined in
Proposition 7.3.6. We claim that the following diagram commutes:

spec(T'(A, A"))

spec(T'(B, B"))

TA B

FT(€7 6/)

Fr(D,D") Fr(E,E")

In other words Fr (e, €’) equals the embedding which can be derived ffBfr, A’) <
T(B, B’) in the general manner of Corollary 7.3.7.
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Proof. This is a diagram of bifinite domains and Scott-continuous functions. It there-
fore suffices to check commutativity for compact elements. A compact element in
spec(T'(A, A")) is afilter F generated by a termne C(T'(A, A")). Its image under 4

is the compact elemertwhich generates the compact-open sul@a@%(A’A,). The

filter I(F) is generated by the same teem Applying 75 to it gives us a compact
elementd which is least irﬂa]]%(A’A,). Step 12 ensures thay(e,e’) mapsctod. O

7.3.3 The function space construction

We start out with two preparatory lemmas. The following notation will be helpful. We
write (A = B) for the set of functions which map all ef into B.

Lemma 7.3.8. The Scott-topology on the function spdée — D’] for bifinite do-
mainsD and D’ equals the compact-open topology.

Proof. Let A C D be compact and C D’ be open and let' C [D — D’] be a
directed set of continuous functions for which! ' mapsA into O. For everyr € A
we have(| |TF)(z) € O and because is open, there i, € F with f,(z) € O. The
collection of open sets of the forgf 1 (O), = € A, coversA. By compactness, this
is true for finitely manyf*(O) already. If we letf be an upper bound i for these
fz, thenA C f~1(0) holds which is equivalent tg(A) C O. Hence(A = O) is a
Scott-open set ifiD — D’].

If, on the other handf belongs to a Scott-open open $etC [D — D'] then
this is true also for some approximatigf), o f o g,, with g,, an idempotent deflation
on D, g/, an idempotent deflation of’. For each element in the image ofg,, we
have the setlz = (Tg/, o f o gn(x))). The intersection of all these belongs to the
compact-open topology, contaifisand is contained i®. O

Lemma 7.3.9. Let D and D’ be bifinite and leid C D and A’ € D’ be compact-open.
Then(A = A’) is compact-open ifhD — D'].

Proof. We know that(A = A’) defines an open set by the previous lemma. From
bifiniteness we get idempotent deflatignson D andg,,, on D’ such thatd = 1g,,(A)
andA’ = 1g},(A"). It follows that(4A = A’) = 1G,.m(A = A’) for the idempotent
deflationG,,,,, on[D — D’] which mapsf to g/, o f o gy. O

Now let A and A’ be domain prelocales describing bifinite domaingand D’, as
outlined in the general scheme in the previous subsection. The two lemmas justify
the following choice of generators and interpretation function for our localic function
space construction:

G = {(a—d)|acAdecAl};
[(a—a)] = ([a]a=[a]a)

Note that the elemenis — a’) are just syntactic expressions. Here are axioms
and rules for the preorder ai@dpredicate.
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Axioms.

(==A) (@ = Nierai) = Nicrla — aj).

(==Vv=0 (Viegrai = a) = N\gslai —a).

(dist) aN(bVve)=(anb)V(aAc).

Rules.

(= —=Vv—=r) IfCla)then(a — V,;c;aj) = V,c;(a — aj).

(—-X) If b <aanda’ <V then(a—d') S (b— V).

(— -0 If vielI. (C(a;) and C(a})) and if VK C I 3L CI.
(/\k-eK ap ~ \/leL aqand(Vk € K,l € L. a), < a))) then

CAier(ai — a;)).

A few comments about these formulae are in place. First a convention: we assume
that all index sets are finite, so that the expressjns; a;, etc., do indeed belong to
the term algebra ove¥_,. Observe the use of tiepredicate in the rulé— — v — 7).
Without it, it would be very difficult to express this property. Also note that we enforce
distributivity. This will be a prerequisite to prove prime generation below.

Itis clear that the rules are sound for the given interpretation, in parti¢uiar C)
is the exact mirror image of our definition of joinable families of step functions, Def-
inition 4.2.2. Let us therefore immediately turn to the crucial step 5. We cannot use
Lemma 7.3.9 directly because we have not encoded the idempotent deflations. We
must find the minimal elements of a compact-open subset explicitly. We illustrate the
general technique in an example.

Supposda] 4 is of the formTc U 1d and[a’] 4+ is of the formTc¢’ U 1d’. We get
a minimal element of(Tc U 1d) = (1¢’ U 1d’)) by choosing a valug(c) and a value
f(d) from {¢’,d'}. Then we must look at the intersection N 1d which again is of
the formfe; U ... U Te, by coherence. For eaah we must choose a value from
mub{f(c), f(d)} = {€},... ,el,}. And so on. Bifiniteness of the argument domain
ensures that this process stops after a finite number of iterations and that the result is
a joinable family of pair§z, f(x)). Coherence of the result domain guarantees that
all in all only finitely many choices are possible. (Note that it can happen that a set of
minimal upper bounds in the image domain is empty. In this case we have just been
unlucky with our choices. Ifa’] 4+ is not empty then some minimal function exists.)

We can mimic this procedure in the prelocale as follows. For simplicity and to make
the analogy apparent, we letd stand for terms such théi(c), C(d) anda ~ ¢ V d.
Similarly fora’. We get:

(a—a) ~

~ ((cvd)— (¢ Vvd)) (——-X2)

~ (e— (¢ Vd)A(d— (¢ Vd)) (= —V—1)
~ (c=d)Vie=d)n(d—)V(d—d)) (= —=V—=r)
~ ((c=d)A(d—d))V...(3moreterms) (dist)
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We follow up only the first of these four terms. The trick is to smuggle invtiggime
termsey, . .. , e, whose join equals A d.

(c—=d)ANd—-d)=
(eVerV...Vep) )N ({(dVerV...Vey,) —=d) (——-X)
(c=d)Nd—-d)N((e1V...Vey) — (¢ ANd)) (——=Vv-—=1)
(c—=)Nd—=d)N((e1V...Ve,) = (1 V...VeL))

Q Qo

and now induction may do its job. Eventually we will have transfornjed— a’)

into a disjunction of joinable families. For theseprimeness may be inferred through
rule (— — C). Note that distributivity allows us to replace every term by an equivalent
term of the form\/(A(a; — a})) and for each term of the forrd\(a; — a) the
transformation works as illustrated.

Next we show completeness farprimes. So assumeandb are terms for which
the C-predicate holds and for whicfu] C [b]. It must be the case thatandb are
equivalent to joinable familieg\,;(a; — a;) and A\, ;(b; — b)) as there is no
other way of deriving/-primeness ifA — A’]. The order relation between joinable
families has been characterized in Lemma 4.2.3. Here it $8ys:7 35 € J. ([b;] €
[ai] and[a;] € [b}]). Since we assume completeness for the constituting prelocales
AandA’, we may infervi € I 35 € J. (b; < a; anda; < b}). The relationa < bis
now easily derived fronf— — <).

Definability for v-primes is immediate because we know that all compact functions
arise from joinable families (Lemma 4.2.3 and Proposition 4.2.4).

Properties 8 through 11 follow for all constructions uniformly. We are left with
proving Naturality, Property 12. To this end, let us first see how the embedding
[e — €'] transforms a step functiofu \, a’). We have:[e — ¢]((a \, @) =
(a\ €'(a’))oe*and(a \, €'(a'))oe*(x) = €'(d/) <= aLCe*(x) < e(a)C x.

We get the step functiofe(a) \, ¢’(a’)).

Now leta =~ A,;.,(a; — a;) be an element ofA — A'] for which C(a) holds.

The interpretatiorﬂa]]([)A Y of a is the upper set generated by the joinable family

of step functiongc; \, ¢), where[a;]% = T¢; and[a}]%, = 1c; foralli € I. Ap-
plying the embeddinge — ¢’] to these gives us the step functidasc;) \, ¢'(c}))
as we have just seen. By Corollary 7.3.7 we can rewrite thegé;as, d;), where
[a:]% = 1d; and[a;]% = 1d;. The supremum of the joinable famifyd; \, d.)):c1
is least in[[a]]([JB . BT This was to be proved.

Taking D to bespec(A4) and E to bespec(B) we can express the faithfulness of
our localic construction quite concisely as follows:

Theorem 7.3.10.Let A and B be domain prelocales. Then
[spec(A) — spec(B)] = spec([A — B])

and this isomorphism is natural with respect to the sub-prelocale relation.

7.3.4 The Plotkin powerlocale

Next we want to describe the lattice of compact-open subsets of the Plotkin powerdo-
main of a bifinite domainD. By Theorem 6.2.22 we know th&?(D) is concretely
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represented as the set of lensedlnordered by the Egli-Milner ordering (Defini-
tion 6.2.2). The compact elementsRd’(D) are those lenses which are convex clo-
sures of finite non-empty subsetskfD) (Proposition 6.2.6). Idempotent deflatiohs
on D can be lifted toP?(D) becausé’ is a functor. They map a lensto the convex
closure ofd(L).

The compact-open subsets®f(D), however, are not so readily described. The
problem is that one half of the Egli-Milner ordering refers to closed lower sets rather
than upper sets. We do not follow this up as there is no logical pathway from the order
theory to the axiomatization we are aiming for. It is much more efficient to either
consult the mathematical literature on hyperspaces (see [Vie21, Vie22, Smy83b]) or
to remind ourselves that powerdomains were introduced to model non-deterministic
behaviour. If we think of the compact-open subset®ims observations that can be
made about outcomes of a computation, then it is pretty clear that there are two ways
of using these to make statements about non-deterministic programs: It could be the
case that all runs of the program satisfy the property or it could be that at least one run
satisfies it. Let us check the mathematics:

Lemma 7.3.11.If D is a bifinite domain and) is compact-open iD, then the fol-
lowing are compact-open subsetsifi(D):

A(O) = {Lelens(D)|LCO},

E(O) = {Le€lens(D)|LNO #0},

Furthermore, if we le© range over all compact-open subsetdirthen the collection
of all A(O) andE(O) forms a base for the Scott-topology BA(D).

Proof. Let O be compact-open. Thef is the upper set of finitely many compact
elements and we find an idempotent deflatiosuch thatO = 1d(O). Itis clear that
for d = PF(d) we have botlA(O) = 1d(A(O)) andE(O) = 1d(E(O)). Hence these
sets are compact-open, too.

Let K be a compact lens, that is, of the foftr(u) for u Cy, K(D). The upper set
of K in P¥(D) can be written aé\(Tu) N, E(T¢). O

The following definition then comes as no surprise:

Definition 7.3.12. Let A be a domain prelocale which is a localic description of the
bifinite domainD. We define thelotkin powerlocalé®’( A) over A as the term algebra
over the generators

Gp={0a|a€ AU {Ca|a € A}
with the interpretation functioff-]: PY(A4) — KQ(P¥(D)) defined by
[Oa] = A(fal),  [©a] = E([a])

on the generators and extendedf( A) as a lattice homomorphism.
Preorder andC-predicate are defined as follows
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Axioms.

(O=A) OAjrai) = /\ze[ Uas,

(0OD—-0) B0=0,

(©=V) O(Viesai) = Vies Cai

(©-1) <1=1,

(O—-vV) O(aVbd) <OaVOb,

(G =A) OanCbSOland),

(dist) anN(dVe)x=(aAb)V(aAc).

Rules.

(P-X) Ifa<bthenOa < ObandCa < O,

(P —C) If C(a;) holds for alli € I and I is non-empty, then
CEWNVier ai) A Nigp ©ai)-

Note that we again require distributivity explicitly. The derivation scheme is almost
minimal (in combination with the res{d — 0) and (¢ — 1) are equivalent). The
following derived axioms are more useful thein — v) and(<& — A):

(D1) O(aVb)=0OaV (O(aVb)Ab),
(D2) OaACba~OaAO(aAb).

We leave it to the interested reader to check soundness and pass straight on to the
central Step 5, which is generation fayprime elements.

Proof. Given an expression iR¥(A) we first transform it into a disjunction of con-
junctions by using the distributivity axiom. Thus it suffices to represent a term of the

form

/\ Dai A /\ <>b]

iel jed
as a disjunction of/-primes. But we can simplify further. Usin@ — A) we can pack
all O-generators into a single terfz and by (D2) we can assume that for egoh J
we haveb; < a. We represent eadl) as a disjunction of/-primes ofA and applying

(¢ — V) and distributivity again we arrive at a disjunction of terms of the form

Oa N 7\ <>dj
j=1

where eachi; € C(A). Now we writea as a disjunction of/-primesc;. Since eacld;
is belowa, it doesn’t hurt to add these, too. We get:

m
O(e1V...Ven Vdi V... Vdpy) A /\<>dj.
j=1
As yet we can not apply the/-primeness rule(P — C) because the two sets
{c1,... ,en,d1,... ,dpn} and{dy,... ,d,} may fail to coincide. Looking at the se-
mantics for a moment, we see that in the compact-open subset thus described the min-
imal lenses are (the convex closures of) the least elements fronjéd€hplus some
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of the generators of thir;]%. We therefore take our term further apart so as to have
a V-prime expression for each subset{af;, ... ,c,}. For this we use (D1). One
application (plus some distributivity) yields

(O(c2 V... Ven VL V... Vdy) A\ ©dj) v
j=1

m
(O(cr V. Ven Vi V.. V) AOer A J\ Ody)
j=1

and the picture becomes obvious. O
Next we check thaf-]° is order-reflecting.

Proof. Assume[O(V,;c; ai) A \jcr ©ai]® C [O(V,ier05) A Njes Ob1° and let
¢; andd; be the least compact elements[in]%, respectively[b;]%. Then we have
{dj ‘j S J} Cem {Ci | 1€ I}, that is,

Viel3djed 1c¢Cldj,
VieJ3iel ¢ C1d;.

Since we assume thi{" is order-reflecting, we get from the first equatig. ; a; <
Ve bj and from the seconfl,_; Ca; < Ajc; Cb;. O

The definability forv-primes was shown in Lemma 7.3.11 already. Hence we are
left with checking Naturality, which is Step 12.

Proof. Lett = O(V,c;ai) A ;e ©a; be av-prime element inP?(A4) and letA
be a sub-prelocale dB. Let e be the associated embedding frdmto E. The least
element in[[tﬂgp(A) is the convex closure of the set of minimal element® [a;]9.

Applying P(e) to it gives the convex closure dk(c;) | i € I}, as we have argued
in the remark following Theorem 6.1.9. Corollary 7.3.7 tells us that this is the least
i 0
element m[[t]}PP(B). O
As in the case of the function space construction we summarize:

Theorem 7.3.13.Let A be a domain prelocale. Then
P(spec(A)) = spec(P"(4))
and this isomorphism is natural with respect to the sub-prelocale relation.

The prelocales for Hoare and Smyth powerdomain are much easier to describe. All
we have to do is to elide all generators and rules which refer, t@spectively.
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7.3.5 Recursive domain equations

In this subsection we will treat bilimits in the same fashion as we have studied finitary
constructions. We assume that we are given domain prelodales A; < A, < ...

such that each,, describes some bifinite domain,,. Corollary 7.3.7 states how the
sub-prelocale relation betweeh, and A,,,, for n < m, translates into an embedding
€mn : Dy, — Dy, Itis seen easily tha( D,,) nen, (€mn)n<m) iS an expanding system,

that is, forn < m < k, ex,, = €rm © emyn holds. We claim that the directed union

A = U, ey An is @ domain prelocale which describBs= bilimD,,. The first claim

is fairly obvious as all requirements about prelocales refer to finitely many elements
only and hence a property of can be inferred from its validity in som&,,. For the
second claim we need to specify the interpretation function. To this erigl le¢ the
embedding ofD,,, into the bilimit (as defined in Theorem 3.3.7). Then we can set
[a] = lm([a] 4,,) wherem € N is such that: is contained inA,,,. The exact choice

of m does not matter; if. < k then by Corollary 7.3.7 we havéu] 4, = erm([a] ,,)

and applyingl, to this yieldsiy([a] 4,) = Ik © exm([a]a,,) = ln([a]a,,). Thein-
terpretation function is well-defined because embeddings preserve the order of approx-
imation (Proposition 3.1.14), hence compact elements and compact-open subsets are
also preserved.

In order to see thdk] is a pre-isomorphism we proceed as before, checking Steps
4,5,6,7,and 12. ltis, actually, rather simple. Soundness holds becausg &ne
monotone and map compact elements to compact elements. Prime generation holds
because it holds in each,,. Since thd,, are also order-reflecting we get completeness
from the completeness of tHe] 4, . Definability follows from Theorem 3.3.11; the
only compact elements ifv are the images (undéy,) of compact elements in the
approximatingD,,. If we are given a second sequenBg < B; < By < ... of
prelocales (describingy, E1, .. .) such that for each € N we haveA,, < B, then
itis clear thatA < B = J,,.y B, holds, too. For Naturality (Step 12) we must relate
this to the embedding from D to £ = bilimFE,,. The exact form of the latter can be
extracted from Theorem 3.3.¢:= | |, kn © e, 0 [}, Wherek,, is the embedding of
E, into F ande,,: D,, — FE, is the embedding derived from,, < B,,. Now leta be
V-prime in A. We have

e([[a]]%) = (UknoenOIZ)(lm([[a]]%m))

neN

= |_| knoen(ﬂaﬂ%m)

n>m

= |_| ko, ( [aﬂ OBm )

n>m
0
= [[a]]B )
and our proof is complete.

Theorem 7.3.14.1f Ay < A; < A <.... is a chain of domain prelocales, then

spec( U Ay) 2 bilim(spec(Ap))nen -
neN
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Observe how simple the limit operation for prelocales is if compared with a bilimit.
This comes to full flower if we look at recursive domain equationd. i§ a construc-
tion built from those which can be treated localically (we have seen function space,
Plotkin powerdomain, and bilimit, but all the others from Section 3.2 can also be in-
cluded) then we can find the initial fixpoint of the functBy on the localic side by
simply taking the union ot < 7'(1) < T(7'(1)) < ... . Why does this work and why
does the result describe the canonical fixpoinE'e® First of all, we havd < T'(1) by
Step 14. Successively applyifigto this relation gives ug™ (1) < 7"*1(1) by Mono-
tonicity (Step 13). Hence we do have a chaig T'(1) < T(7T(1)) < ... as stated and
we can form its uniord. It obviously is a fixpoint of the constructidh and therefore
the domainD described by it is a fixpoint of the functdf;. But notice that we have
T(A) = A rather than merel{f’(A) = A. This is not so surprising as it may seem at
first sight. Domain prelocales are only representations of domains and what we are ex-
ploiting here is the simple idea that we canetepresent bott and £ (D) via two
differentinterpretation functions. Let us now address the question about canonicity. It
suffices to check that the embedding correspondiriy(ig < 7%(1) is equal toF'r(e)
wheree: T — Fr(I) corresponds td < 7(1). This is precisely the naturality af
which we listed as Step 15. It follows that the bilimit is the same as the one constructed
in Chapter 5.

7.3.6 Languages for types, properties, and points
We define a formal language tfpeexpressions by the following grammar:
o = 1|X|(0—0)]|(ox0)]| (c®0o) | (¢)L | PP(0) | recX.0

where X ranges over a s€tV of type variables. More constructions can be added to
this list, of course, such as strict function space, smash product, Hoare powerdomain,
and Smyth powerdomain. On the other hand, we do not include expressions for basic
types, such as integers and booleans, as these can be encoded in our language by simple
formulae.

We have seen two ways to interpret type expressions. The first interpretation takes
values directly irB, the category of bifinite domains, and is based on the constructions
in Sections 3.2, 3.3, 5.1, and 6.2. Since a type expression may contain free variables,
the interpretation can be defined only relative teeamironmenpp : TV — B, which
assigns to each type variable a bifinite domain. The semantic clauses corresponding to
the individual rules of the grammar are as follows:

Ip(Lpp) =
Ip(X;pp) = pp(X);
Ip((c = 7)ipp) = [Ip(o;pp) — Ip(7;pD))i
etc.
Jp(recX.o;pp) = FIX(Fr),

whereFr(D) = Jp(o; pp[X — D]).

The expressiopp[X — D] denotes the environment which mafisto D and coin-
cides withpp at all other variables .
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Our work in the preceding subsections suggests that we can also interpret type
expressions in the categopomPrelocof domain prelocales. Call the corresponding
mappingsy;, andpr. The semantic clauses for this localic interpretation are:

I(Lpr) = L
I(Xspr) = po(X);
Jolle —=7)pr) = [Orloipr) = Io(rspL)l
etc.
Jr(recX.o;pr) = UT"(l)

whereT'(A) = JL(o; pr[X — A]).
The preceding subsections were meant to convince the reader of the following:

Theorem 7.3.15.1f p;, and pp are environments such that for each € TV the
domain prelocaley;, (X) is a localic description opp (X), then for every type expres-
siono it holds thatJ, (o; p1,) is a localic description o 5 (o; pp). As a formula:

spec(Jr(opL)) = Ip(o;pp) -

The next step is to define for each type expressianformal languaget(s) of
(computational or observationgdjoperties This is done through the following induc-
tive definition:

= true,false € £(0);
oY €L(o) = oA,V E Lo);
pello),pel(r) = (p—¢) € Llo—T),
peLlo)elr) = (dpxv) € L(oxT);
pe o) = (¢pDfalse) € L(o®T);
e L(r) = (false®y)) € L(oPT);
pello) = (d)r€L((o)r);
peLlo) = 0O ¢ L(PH0));
¢ € L(olrecX.0/X]) = ¢ € L(o).

Here we have used the expressign/X]| to denote the substitution of for X
in 0. The usuakaveatabout capture of free variables applies but let us not dwell on
this. The rules exhibited above will generate for eache carrier set of a (syntactical)
domain prelocale in the style of the previous subsections. Note that we don't need
special properties for a recursively defined type as these are just the properties of the
approximating domains bundled together (Theorem 7.3.14).

On eachg(c) we define a preordeg and predicate€ andT (the latter is needed
for the coalesced sum construction) through yet another inductive definition. For exam-
ple, the following axioms and rules enforce that ed¢h) is a preordered distributive
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lattice.

¢S 9

¢S X;

¢ < true;

¢ S 1 A ha;

PNY S

PN S s

false < ¢;

¢V P2 S

¢S OV

VS oV

PNV X)S(OAY)V(dAX);

We have seen some type specific axioms and rules in the definition of the function
space prelocale and the Plotkin powerlocale. For the full list we refer to [Abr91b],

p. 49ff. If o is a closed type expression then the domain prelog¢édg describes the
intended bifinite domain:

¢ SY, Y Sx

¢S Y10 S Y2

¢ S Y, P2 S

Frreiiibrell

Theorem 7.3.16.If ¢ is a closed type expression then
spec(£(0)) = TIp(o) .

(Note that this is a special case of Theorem 7.3.15.)

The whole scheme for deriving, C, and T is designed carefully so as to have
finite positive information in the premise of each rule only. Hence the whole system
can be seen as a monotone inductive definition (in the technical sense of e.g. [Acz77]).
Furthermore, we have already established close connections between the syntactical
rules and properties of the described domains. This is the basis of the following result.

Theorem 7.3.17.The language of properties is decidable.

Proof. The statement is trivial for the domain prelocaleecause only combinations

of true andfalse occur in£(1). For composite types we rely on the general develop-
ment in Section 7.3.2, which at least for three concrete instances we have verified in
Sections 7.3.3-5. First of all, every expressioiLim) can be effectively transformed

into a finite disjunction ofv-primes (i.e. expressions satisfying tGepredicate); this

is Step 5, ‘prime generation’. Soundness and completeness ensure that the expressions
satisfying theC-predicate are precisely the-primes in the preordered lattic&c).

Hence we can decide the preorder between arbitrary expressions if we can decide the
preorder betweer-primes. For the latter we note that our constructions accomplish
more than we have stated so far. Aftprimes, which are produced by the transfor-
mation algorithms, are of the explicit form occuring in the rules for deriving@he
predicate; rather than merely expressions which happen to be equivaleqtrimes.

The preorder between these expligiprimes is (for each construction) easily charac-
terized through the semantic interpretation funcfjdf. The task of establishing the
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preorder between these primes is then reduced to establishing some formula defined by
structural induction on the type. Since every expression (o) is derived fromtrue
andfalse in finitely many steps, we will eventually have reduced our task to checking
the preorder between certain expressions(ih). O

Finally, we introduce a formal language to speak about points of domains. So far,
we have done this in a rather roundabout way, trusting in the reader’s experience with
sets and functions. Doing it formally will allow us to establish a precise relationship
between (expressions for) points and (expressions for) properties.

We assume that for each (closed) type expressiare have a denumerable set
V(o) = {z°,y%,2%,...} of typed variables. The terms are defined as follows (where
M : o stands for M is a term of typer’):

= kg .0,
= 27 :0;
M:1 = X°M:(o—7);
M:(c—71),N:o = (MN):;
M:o,N:7 = (M,N): (oxT);
M:(oxT),N:v = letM be (z°,y").N:v;
M:o = inl(M): (c®7)andinr(M): (t&0);
M :(o®7),N1:v,Ny:v = cases M of inl(z?).Ny else inr(y").Na : v;
M:o = up(M):(o)i;
M:(o),,N:7 = lift Mtoup(z?).N:T;
M:o = {M][:P"o);
M :PPo),N:PP(r) = over M extend {lz°[}.N : P(r);
M :PHo),N:PFo) = MUN:PHo);
M :PPo),N:Pf(r) = M&N:PPox1);
M :ofrecX.0/X] = fold(M) : recX.o;
M :recX.c = unfold(M): o[recX.c/X];
M:0 = ux°M:o.

In the same fashion as for type expressions we have two alternatives for interpreting
a termM of typeos. We can either give a direct denotational semantics in the bifinite
domainJp (o) or we can specify a prime filter in the corresponding domain prelo-
cale£(o). The denotational semantics suffers from the fact that in order to single out
a particular element in a domain we use a mathematical language which looks embar-
rassingly similar to the formal language we intend to interpret. Some of the semantic
clauses to follow will therefore appear to be circular.

Again we need environments to deal with free variables. They are maps

p: U, V(e) = U, Ip(o) which we assume to respect the typing. In the following
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clauses we will also suppress the type information.

[*-]p = L, theleastelementifip(o);
[zlp = p(2);
[AeM]p = (d— [M]plz—d]);
[(MN)]p = [M]p([N]p);
[[<M7N>]]p = <[[M]]p,[[N]]p>;
[let M be (z,y).N]p = [N]plz—d,y—el,
where d = m([M]p),
e = m([M]p);
in(M)]p = inl([M]p);
in(M)]p = inr([M]p);
[Ni]plz—d], [M]p = (d: 1);
[cases M of inl(x).N; else inr(y).N2Jp = [Nao]ply—e]l, [M]p = (e: 2);
1, [[MHPZJ—;
[up(M)]p = up([M]p);
[lift M to up(z”).N]p = {[E\,[Hp[x%]’ %%%Zi”ﬁ(d);
{MEle = {[M]p};
[over M extend {|z°[}.N]p = 1XnNCI(X),
whereX = | J{[Nlplzd] | d € [M]p};
[MYN]p = [M]pS [N]p;
[M®N]p = {(d.e)|de[M]p,ee[N]p}
[fold(M)]p = fold([M]p);
[unfold(M)]p = unfold([M]p);
[ne.Mlp = fix(f),
wheref(d) = [M]plz—d].

Now let us give the localic, or, as we are now justified in saylagical interpre-
tation. We use a sequent calculus style of presentingditrisain logic The problem
of free variables is dealt with this time by including a finite lisbf assumptions on
variables. We write them in the form—¢ and assume thdt contains at most one of
these for each variable A sequent then takes the fodi- M : ¢ and should be read
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as ‘M satisfiesp under the assumptions Iri.

{TEM:¢it,e; = THM: o

¢ <SSV,
(T z—¢ = M :9)

{T,x—¢i b M :4p} g

THM:y

I'Ne—ob M9

'tM: (¢—v);TFN:¢
I'-M:¢;TEN: 9

IE M : (¢xu),

I x—o,y—y - N : x
'EM:o¢

I'tM:¢

I'F M : (pofalse), T(9),
I'x—ot Nyt

I M : (false®¢), T(¢),
Iy—¢ - Ny : 9

'EM:o¢
'M:(¢);T,x—¢pE N1
'EM:¢

'EM:o¢
I'M:0¢;T, x—¢F N :OY
TEFM: 00T, x—¢p N : Ot
I'-M:0¢p;TF N :0Op
L'EM: O

T'EN:Co
'EM:0¢p;TFN: Oy
'EM:0¢TFN: Oy
'EM:o¢

I'tM:¢

I'tpxM:¢;T, 2—0p b= M: 9

A few comments may help in reading these clauses. The first two rules guarantee

R R

I

I

FLreeriiredily
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I,z—¢' M : vy

F7$D—>\/¢i|—M21/J;
el

Ix—o b+ M:

r—¢ -z P

T'F X e. M : (p—);

' (MN):

L' (M,N): (¢ xv);

[ let M be (z,y).N : x;
T'Finl(M) : (¢pBfalse);
T'Finr(M) : (false®o);

'+ cases M of inl(z).Ny
else inr(y).Na : ¢;

I' F cases M of inl(x).Ny
else inr(y).Na : 9;
I up(M) : ()
[+ lift M to up(z?).N :
I+ M : 06
T {M[ : O¢;
I' - over M extend {z?[}.N : Og;
I' - over M extend {|z?[}.N : O,
' MUN :Og;
I'EFMUYN:O¢;
I'EMUN: O
T M®N : O(pxa));
' M®N : O(px);
I'fold(M) : ¢;
I' F unfold(M) : ¢;
'k px.M 9.



that the set of properties which can be deduced for a tefnfiorms a filter in the
domain prelocale. The third rule expresses the fact that every particwidr satisfy
properties from a prime filter. In particular, it entails tiatr—false - M : ¢ is always

true. The fourth rule (which is the last of the structural rules) is ordinary weakening.
We need it to get started in a derivation. In the two rules fordhses-construct the
predicateT shows up. Instead of(¢) we could have writtery % false but as we

said before, we want to keep the whole logic positive, that is to say, we want to use
inductive definitions only. The two rules fdold and unfold may seem a bit boring,

but it is precisely at this point where we take advantage of the fact that in the world
of domain prelocales we solve domain equation up to equality. The last rule, finally,
has to be applied finitely many times, starting from pa.M : true, in order to yield
something interesting. Here we may note with regret that our whole system is based on
the logic of observable properties. A standard proof principle such as fixpoint induction
for admissible predicates, Lemma 2.1.20, does not fit into the framework. On the other
hand, it is hopefully apparent how canonical the whole approach is. For applications,
see [Abr90c, Abr91a, Bou9l, Hen93, Ong93, Jen91, Jen92].

Let us now compare denotational and logical semantics. We need to say how en-
vironmentsp and assumptions fit together. First of all, we assume thamaps each
variablez? into spec(£(c)). Secondly, we want thai(x) belongs to the compact-
open subset described by the corresponding entty. ilBut since environments are
functions defined on the whole set of variables while assumptions are finite lists, the
following definition is a bit delicate. We writg E T if for all entriesz—¢ in T" we
havep(z) € [¢]. Using this convention, we can formulate validity for assertions about
terms:

I'EM:¢ifandonlyifvp.(p ET = [M]p € [¢]) .

The final tie-up between the two interpretations of type expressions and terms then is
the following:

Theorem 7.3.18.The domain logic is sound and complete. As a formula:
VM,T,¢. THM:¢ ifandonlyif TEM : ¢.

Exercises 7.3.19. 1. Prove that a completely distributive lattice also satisfies the
dual distributivity axiom:\/,.; A 4; = /\f' 190, Vier F(@).

2. [Ran60] Prove that a complete lattideis completely distributive if and only if
the following holds for allz € L:

m:\/ /\b.

aZxr b¥&a
(Hint: Use Theorem 7.1.3.)

3. Show that a topological space is sober if and only if every irreducible closed set
is the closure of a unigue point.

4. Find a complete latticé for whichpt(L) is empty.
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10.
11.

. Show that every Hausdorff space is sober. Firif} sspace which is not sober.

The converse, a sober space, which is’hgtought to be easy to find.

. Find a dcpo which is not sober in the Scott-topology. (Reference: [Joh81]. For

an example which is a complete lattice, see [Isb82]. There is no known example
which is a distributive lattice.)

. Describe the topological spage(L) in terms ofA-prime elements of the com-

plete latticeL.

. LetD be a continuous domain. Identify with the set ofA-prime elements in

Q(D). Prove that the Lawson-topology dp is the restriction of the Lawson-
topology on2(D) to D.

. Suppos¢: V — W is a lattice homomorphism. Show thatdefined by Ry if

y < f(x)is ajoin-approximable relation. Characterize the continuous functions
between spectral spaces which arise from these particular join-approximable
relations.

Extend Lemma 7.3.8 to other classes of domains.

Try to give a localic description of the coalesced sum construction.
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8 Further directions

Our coverage of Domain Theory is by no means comprehensive. Twenty-five years
after its inception, the field remains extremely active and vital. We shall try in this
Section to give a map of the parts of the subject we have not covered.

8.1 Further topics in “Classical Domain Theory”

We mention four topics which the reader is likely to encounter elsewhere in the litera-
ture.

8.1.1 Effectively given domains

As we mentioned in the Introduction, domain-theoretic continuity provides a qualita-
tive substitute for explicit computability considerations. In order to evaluate this claim
rigorously, one should give an effective version of Domain Theory, and check that the
key constructions on domains such as product, function space, least fixpoints, and solu-
tions of recursive domain equations, all “lift” to this effective setting. For this purpose,
the use of abstract bases becomes quite crucial; we say (simplifying a little for this
thumbnail sketch) that an-continuous domain isffectively giverif it has an abstract
basis(B, <) which is numbered a® = {b,, }»c, in such a way thak is recursive

in the indices. Similarly, a continuous functigh D — E between effectively given
domains is effective if the corresponding approximable mapping is recursively enumer-
able. We refer to [Smy77, Kan79, WD80] and the chapter on Effective Structures in
this Handbook for developments of effective domain theory on these lines.

There have also been some more sophisticated approaches which aim at making
effectivity “intrinsic” by working inside a constructive universe for set theory based
on recursive realizability [McC84, Ros86, Pho91]. We shall return to this idea in sub-
section 8.5.

8.1.2 Universal Domains

Let C be a cartesian closed category of domains,@rddomain inC. We say that/ is
universalfor C if, for every D in C, there is an embedding D — U. Thus universal-
ity means that we can, in effect, replace the cate@bby the single domai®/. More
precisely, we can regard the domdinas represented by the idempotept = ¢ o p,
wherep is the projection corresponding to Sinceep: U — U, and[U — U] is
again inC and hence embeddablelih we can ultimately identifyD with anelement
up € U, which we can think of as a “code” fab. Moreover, constructions such as
product and function space induce continuous functions

fun,prod : U? — U

which act on these codes, so that e.g.

fun(up,ug) = Up — E] -
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In this way, the whole functorial level of Domain Theory which we developed as a
basis for the solution of recursive domain equations in Section 5 can be eliminated,
and we can solve domain equatiansto equality on the coddsy finding fixpoints of
continuous functions ovey.

This approach was introduced by Scott in [Sco76], and followed in the first text-
book on denotational semantics [Sto77]. However, it must be said that, as regards appli-
cations, universal domains have almost fallen into disuse. The main reason is probably
that the coding involved in the transition from to u is confusing and unappealing;
while more attractive ways of simplifying the treatment of domain equations, based on
information systems, have been found (see 8.1.4). However, there have been two recent
developments of interest. Firstly, a general approach to the construction of universal
domains, using tools from Model Theory, has been developed by Gunter and Jung and
Droste and @bel, and used to construct universal domains for many categories, and to
prove their non-existence in some cases [GJ88, DG90, DG91, DG93].

Secondly, there is one application where universal domains do play an important
rble: to provide models for type theories with a type of all types. Again, the original
idea goes back to [Sco76]. We say that a univeral dortiaadmits a universal type
if the subdomainy” of all up for D in C is itself a domain inC—and hence admits
a representationy € U. We can think ofuy as a code for the type of all types. In
[Sco76], Scott studied the powergg{w) as a univeral domain for two categories: the
category ofw-continuous lattices (for which domains are taken to be represented by
idempotents of3(w)), and the category af-algebraic lattices (for which domains are
represented by closures). Ershov [Ers75] and Hosono and Sato [HS77] independently
proved thatl3(w) does not admit a universe for the former category; Hancock and
Martin-Lof proved that it does for the latter (reported in [Sco76]). For recent examples
of the use of universal domains to model a type of all types see [Tay87, Coq89, Ber91].

8.1.3 Domain-theoretic semantics of polymorphism

We have seen the use of continuity in Domain Theory to circumvent cardinality prob-
lems in finding solutions to domain equations such as

D%[D—>D}

A much more recent development makes equally impressive use of continuity to give
a finitary semantics for impredicative polymorphism, as in the second-ardérda-
calculus (Girard’s “System F”) [Gir86, CGW87, Coq89]. This semantics makes essen-
tial use of the functorial aspects of Domain Theory. There have also been semantics
for implicit polymorphism based on ideals [MPS86] and partial equivalence relations
[AP90] over domains. We refer to the chapter in this volume of the Handbook on
Semantics of Types for comprehensive coverage and references.

8.1.4 Information Systems

Scott introduced information systems for bounded-complestgebraic dcpo’s (“Scott
domains”) in [Sco82]. The idea is, roughly, to represent a category of domains by
a category of abstract bases and approximable mappings as in Theorems 2.2.28 and
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2.2.29. One can then define constructions on domains in terms of the bases, as in
Propositions 3.2.4 and 4.2.4. This gives a natural setting for effective domain theory
as in 8.1.1 above. Moreover, bilimits are given by unions of information systems, and
domain equations solved up to equality, much as in 7.3.5. More generally, information
systems correspond to presenting just the coprime elements from the domain prelocales
of 7.3. Information system representations of various categories of domains can be
found in [Win88, Zha91, Cur93]. A general theory of information systems applicable

to a wide class of topological and metric structures can be found in [ES93].

8.2 Stability and Sequentiality

Recall thee-¢ style definition of continuity given in Proposition 2.2.11: givene

C} ) it providesd € B, with f(d) C e. However, there is noanonicalchoice ofd

from e. In an order-theoretic setting, it is natural to ask for there to lemstsuchd.

This leads to the idea of thmodulus of stability M (f, x, e), wheref(z) 3 e, is the
least suchi, if it exists. We say that a continuous functionsigbleif the modulus
always exists, and define tstable orderingon such functions by

fEsg <= [fEg A Vree€eCpy. M(f,x,e)=M(g,z,e)

We can think of the modulus as specifying the minimum information actually required
of a given inputz in order that the functiory yields a given informatiory on the
output; the stable ordering refines the usual pointwise order by taking this intensional
information into account.

It turns out that these definitions are equivalent to elegant algebraic notions in the
setting of the lattice-like domains introduced (for completely different purposes!) in
Section 4.1. LetD, E be domains irL. Then a continuous functiofi: D — FE is
stable iff it preserves bounded non-empty infima (which always exist f. Propo-
sition 4.1.2), andf C, g iffforall  C y, f(z) = f(y) M g(x). This is the first step in
an extensive development of “Stable Domain Theory” in which stable functions under
the stable ordering take the place which continuous functions play in standard Domain
Theory. Stable Domain theory was introduced by Berry [Ber78, Ber79]. Some more
recent references are [Gir86, CGW87, Tay90, Ehr93].

Berry’s motivation in introducing stable functions was actually to try to capture the
notion of sequentially computable function at higher types. For the theory of sequential
functions on concrete domains, we refer to [KP93, Cur93].

8.3 Reformulations of Domain Theory

At various points in our development of Domain Theory (see e.g. Section 3.2), we
have referred to the need to switch between different verdiyrs |, C,, of some
category of domains, depending on whether bottom elements are required, and if so
whether functions are required to preserve them. In some $ems®&lC,, are the
mathematically natural categories, since what the morphisms must preserve matches
the structure that the objects are required to have; wWhilds the preferred category

for semantics, since endomorphisgis D — D need not have fixpoints at all i@,

while least fixpoints irC , are necessarily trivial.
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All this suggests that something is lacking from the mathematical framework in or-
der to get a really satisfactory tie-up with the applications. We shall describe a number
of attempts to make good this deficiency. While no definitive solution has yet emerged,
these proposals have contributed important insights to Domain Theory and its applica-
tions.

8.3.1 Predomains and partial functions

The first proposal is due to Gordon Plotkin [Plo85]. The idea is to uselextsof
C (“predomains”, i.e. domains without any requirement of bottom elements), but to
change the notion of morphism faartial continuous functionwhere we say that a
partial functionf: D — FE' is continuous if its domain of definition is a Scott-open
subset ofD, and its restriction to this subset is a (total) continuous function. The
resulting category is denoted By. This switch to partial continuous functions carries
with it a change in the type structure we can expect to have in our categories of domains:
they should beartial cartesian closed categories, as defined e.g. in [RR88, Ros86].
One advantage of this approach is that it brings the usage of Domain Theory closer
to that of recursion theory. For example, the hierarchy of (strict) partial continuous
functionals over the natural numbers will be given by

N,[N— N [[N—=N]—=NJ,...
rather than
N[N 25 NG (NG 25 NG 25N

This avoidance of bottom elements also leads to a simpler presentation of product and
sum types. For example, there is just one notion of sum, the disjoint unian £,
which is indeed the coproduct @y.

An important point is that there is a good correspondence between the operational
behaviour of functions with a call-by-value parameter-passing mechanism and the par-
tial function type[. — ]. For example, there is a good fit betwelen—~ ] and the
function type constructor in Standard ML [MT91, MTH90].

To balance these advantages, we have the complication of dealing with partially de-
fined expressions and partial cartesian closure; and also a less straightforward treatment
of fixpoints. It is not the case that an arbitrary partial continuous fungtio® — D
has a well-defined least fixpoint. However,[if itself is a partial function type, e.g.

D = [E — E], thenf does have a well-defined least fixpoint. This is in accord with
computational intuition for call-by-value programming languages, but not so pleasant
mathematically.

As a final remark, note that in fa@, is equivalent toC ! Thus, in a sense,
this approach brings nothing new. However, there is a distinct conceptual difference,
and alsoCy is more amenable to constructive proof and categorical axiomatization
[Ros86].
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8.3.2 Computational Monads

Computational monads have been proposed by Eugenio Moggi as a general structuring
mechanism for denotational semantics [Mog91]. A computational monad on a carte-
sian category is a monad T, n, 1) together with a “tensorial strength”, i.e. a natural
transformation

tap:AxTB —T(AxB)

satisfying some equational axioms. The import of the strength is that the monad can be
internalised along the lines mentioned after Proposition 6.1.8. NoW let a category

of (pre)domains and total continuous functions. Moggi’s proposal is to make a distinc-
tion betweervaluesand (denotations ofjomputationsAn element ofA is a value, an
element ofl" A is a computation. A (call-by-value) procedure will denote a morphism

A — T B which accepts an input value of typeand produces a computation over
Composition of such morphisms is by Kleisli extensionf ifA — TB,g: B — TC,

then composition is defined by

AL BT e 22 O

with identities given by the unij, : A — T A.

In particular, partiality can be captured in this way using liteng monad, for
which see 3.2.5. Note that this particular example is really just another way of present-
ing the categore, of the previous subsection; there is a natural isomorphism

[D— B~ [D—E].

The value of the monadic approach lies in its generality and in the type distinction it
introduces between values and computations. To illustrate the first point, note that the
various powerdomain constructions presented in Section 7.2 all have a natural structure
as strong monads, with the monad unit and multiplication given by suitable versions of
the singleton and big union operations. For the second point, we refer to the elegant
axiomatization of general recursion in terms of fixpoint objects given by Crole and Pitts
[CP92], which makes strong use of the monadic approach. This work really belongs to
Axiomatic Domain Theory, to which we will return in subsection 4 below.

8.3.3 Linear Types

Another proposal by Gordon Plotkin is to use Linear Types (in the sense of Linear
Logic [Gir87]) as a metalanguage for Domain Theory [Plo93]. This is based on the
following observation. Consider a categd®y,, of domains with bottom elements

and strict continuous functions. This category has products and coproducts, given by
cartesian products and coalesced sums. It also has a monoidal closed structure given
by smash product and strict function space, as mentioned in 3.2.4. Now lifting, which

is a monad orC by virtue of the adjunction mentioned in 3.2.5, is duallganonad
onC,; and the co-Kelisli category for this comonadds .
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Indeed, Linear Logic has broader connections with Domain Theory. A key idea of
Linear Logic is the linear decomposition of the function space:

[A— B]~[lA — B].

One of the cardinal principles of Domain Theory, as we have seen, is to look for carte-
sian closed categories of domains as convenient universes for the semantics of com-
putation. Linear Logic leads us to look for linear decompositions of these cartesian
closed structures. For example, the cartesian closed category of complete lattices and
continuous maps has a linear decomposition via the category of complete lattices and
sup-lattice homomorphisms—i.e. maps presenatigoins, with ! = PH(L), the

Hoare powerdomain af. There are many other examples [Ho092, Ehr93, Hut94].

8.4 Axiomatic Domain Theory

We began our account of Domain Theory with requirements to interpret certain forms
of recursive definitions, and to abstract some key structural features of computable par-
tial functions. We then introduced some quite specific structures for convergence and
approximation. The elaboration of the resulting theory showed that these structures do
indeedwork; they meet the requirements with which we began. The question remains
whether another class of structures might have served as well or better. To address
this question, we should try to axiomatize the key features of a category of domains
which make it suitable to serve as a universe for the semantics of computation. Such
an exercise may be expected to yield the following benefits:

e By making it clearer what the essential structure is, it should lead to an improved
meta-language and logic, a refinement of Scott’s Logic of Computable Functions
[Sco93].

e Having a clear axiomatization might lead to the discovery of different models,
which might perhaps be more convenient for certain purposes, or suggest new
applications. On the other hand, it might lead to a representation theorem, to the
effect that every model of our axioms for a “category of domains” can in fact
be embedded in one of the concrete categories we have been studying in this
Chapter.

Thus far, only a limited amount of progress has been made on this programme. One
step that can be made relatively cheaply is to generalize from concrete categories of do-
mains to categories enriched over some suitable subcategy&O. Much of the

force of Domain Theory carries over directly to this more general setting [SP82, Fre92].
Moreover, this additional generality is not spurious. A recent development in the se-
mantics of computation has been towards a refinement of the traditional denotational
paradigm, to reflect more intensional aspects of computational behaviour. This has
led to considering as semantic universes certain categories in which the morphisms
are not functions but sequential algorithms [Cur93], information flows [AJ94b], game-
theoretic strategies [AJ94a], or concurrent processes [Abr94]. These are quite different
from the “concrete” categories of domains we have been considering, in which the mor-
phisms are always functions. Nevertheless, they have many of the relevant properties
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of categories of domains, notably the existence of fixpoints and of canonical solutions
of recursive domain equations. The promise of axiomatic domain theory is to allow the
rich theory we have developed in this Chapter to be transposed to such settings with a
minimum of effort.

The most impressive step towards Axiomatic Domain Theory to date has been Peter
Freyd's work on algebraically compact categories [Fre91, Fre92]. This goes consider-
ably beyond what we covered in Section 5. The work by Crole and Pitts on FIX-
categories should also be mentioned [CP92].

In another direction, there are limitative results which show that certain kinds of
structuresannotserve as categories of domains. One such result appeared as Exercise
5.4.11(3). For another, see [HM93].

8.5 Synthetic Domain Theory

A more radical conceptual step is to try to absorb all the structure of convergence and
approximation, indeed of computability itself, into the ambient universe of sets, by
working inside a suitable constructive set theory or topos. The slogan is: “Domains
are Sets”. This leads to a programme of “Synthetic Domain Theory”, by analogy with
Synthetic Differential Geometry [Koc81], in which smoothness rather than effectivity
is the structure absorbed into the ambient topos.

The programme of Synthetic Domain Theory was first adumbrated by Dana Scott
around 1980. First substantial steps on this programme were taken by Rosolini
[Ros86], and subsequently by Phoa [Pho91], and Freyd, Mulry, Rosolini and Scott
[FMRS90]. Axioms for Synthetic Domain Theory have been investigated by Hyland
[Hyl91] and Taylor [Tay91], and the subject is currently under active development.
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9 Guide to the literature

As mentioned in the Introduction, there is no book on Domain Theory. For systematic
accounts by the two leading contributors to the subject, we refer to the lecture notes of
Scott [Sco81] and Plotkin [Plo81]. There is also an introductory exposition by Gunter
and Scott in [GS90]. An exhaustive account of the theory of continuous lattices can
be found in [GHK"80]; a superb account of Stone duality, with a good chapter on
continuous lattices, is given in [Joh82]; while [DP90] is an excellent and quite gentle
introduction to the theory of partial orders.

Some further reading on the material covered in this Chapter:

Section 2: [DP90, Joh82];

Section 3: [Plo81, Gun92h, Win93];

Section 4: [Jun89, Jun90];

Section 5: [SP82, Fre91, Fre92, Pit93b, Pit93a];

Section 6: [Plo76, Smy78, Win83, Hec91, Sch93];

Section 7: [Abr90c, Abr91a, AO93, Ong93, Hen93, Bou94, Jen92, Jen91, Smy83h].

Applications of Domain Theory

There is by now an enormous literature on the semantics of programming languages,
much of it using substantial amounts of Domain Theory. We will simply list a number
of useful textbooks: [Sch86, Ten91, Gun92b, Win93].

In addition, a number of other applications of Domain Theory have arisen: in Ab-
stract Interpretation and static program analysis [Abr90a, BHA86, AJ91] (see also the
article on Abstract Interpretation in this Handbook); databases [BDW88, BJO91]; com-
putational linguistics [PS84, PM90]; artificial intelligence [RZ94]; fractal image gen-
eration [Eda93b]; and foundations of analysis [Eda93a].

Finally, the central importance of Domain Theory is well indicated by the num-
ber of other chapters of this Handbook which make substantial reference to Domain-
theoretic ideas: Topology, Algebraic Semantics, Semantics of Types, Correspondence
between Operational and Denotational Semantics, Abstract Interpretation, Effective
Structures.
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