
DOMAIN THEORY IN LOGICAL FORM
(To appear in Proceedings of LICS ‘87)

Samson Abramsky

Department of Computing
Imperial College of Science and Technology

November 10, 2006

Abstract

A metalanguage for denotational semantics is given a logical inter-
pretation: types are interpreted as propositional theories; terms (in an
extended typed λ-calculus, denoting elements of types) are embedded
in an endogenous program logic, which characterises their behaviour
in terms of which properties they satisfy; terms (in an extension of
the algebraic metalanguage of cartesian closed categories, denoting
morphisms between types) are embedded in an exogenous logic, which
characterises their behaviour as predicate transformers or modal oper-
ators. This interpretation is related to the standard domain-theoretic
one via the machinery of Stone duality, and an exact correspondence
is obtained. Some applications to logics for specific computational
situations (e.g. concurrency) are mentioned.

1 Introduction

The classic Stone Representation Theorem for Boolean algebras [25] is the
prototype for a wide class of “Stone-type duality theorems” [11]. The general
form of these theorems is to assert an equivalence between a category of
topological spaces and (the opposite of) a category of lattices and lattice-
homomorphisms. In one direction, we pass from a spaceX to a lattice derived

1

from the topology on X; we can think of this as a lattice of properties over X,
since its elements are just subsets of X. In the other direction, starting from
an abstract lattice A, which we can think of as a logical theory of properties
or “observable quantities”, we pass to a space whose points are the consistent,
complete theories over A, i.e. the “point-like” bundles of properties over A.

The importance of Stone Duality for computer science is that it provides

the right framework for understanding the relationship between denotational

semantics and program logic. (As far as I know, this point was first made in
[22], and also in unpublished work of Gordon Plotkin.)

Denotational semantics is always based, more or less explicitly, on a typed
functional metalanguage. The types are interpreted as topological spaces
(usually domains in the sense of Scott [20, 21], but sometimes metric spaces,
as in [3, 16]), while the terms denote elements of or functions between these
spaces. A program logic comprises an assertion language of formulas for
expressing properties of programs, and an interface between these properties
and the programs themselves. Two main types of interface can be identified
[18]:

Endogenous logic In this style, formulas describe properties pertaining to
the “world” of a single program. Notation:

P |= φ

where P is a program and φ is a formula. Examples: temporal logic as
used e.g. in [18]; Hennessy-Milner logic [8]; type inference [5].

Exogenous logic Here, programs are embedded in formulas as modal oper-

ators. Notation:

[P]φ

where P is now a program denoting a function or relation. Exam-
ples: dynamic logic [7], including as special cases Hoare logic [10], since
“Hoare triples” {φ}P{ψ} can be represented by

φ→ [P]ψ,

and Dijkstra’s wlp-calculus [6], since wlp(P, ψ) can be represented as
[P]ψ. (Total correctness assertions can also be catered for; see [7].)

2

Extensionally, formulas denote sets of points in our denotational domains,
i.e. φ is a syntactic description of {x|x satisfies φ}. Then P |= φ can be
interpreted as x ∈ U , where x is the point denoted by P , and U is the set
denoted by φ. Similarly, [M]φ can be interpreted as f−1(U), where f is the
function denoted by M (and elaborations of this when M denotes a relation
or multifunction). In this way, we can give a topological interpretation of
program logic.

But this is not all: duality cuts both ways. We can also use it to give a
logical interpretation of denotational semantics. Rather than starting with
the denotational domains as spaces of points, and then interpreting formulas
as sets of points, we can give an axiomatic presentation of the topologies on
our spaces, viewed as abstract lattices (logical theories), and then reconstruct
the points from the properties they satisfy. In other words, we can present
denotational semantics in axiomatic form, as a logic of programs. This has
a number of attractions:

• It unifies semantics and program logic in a general and systematic set-
ting.

• It extends the scope of program logic to the entire range of denotational
semantics – higher-order functions, recursive types, powerdomains etc.

• The syntactic presentation of recursive types, powerdomains etc. makes
these constructions more “visible” and easier to calculate with.

• The construction of “points”, i.e. denotations of computational pro-
cesses, from the properties they satisfy is very compatible with work
currently being done in a mainly operational setting in concurrency
[8, 26] and elsewhere [4], and offers a promising approach to unification
of this work with denotational semantics.

2 Domains As Propositional Theories

The setting we take for our work in this paper is SDom, the category of Scott
domains [20, 21], i.e. the consistently complete algebraic cpo’s. (However,
everything should carry over to SFP [17].) Such domains D can also be
viewed as spaces with the Scott topology Ω(D), with sub-basic open sets of

3

the form ↑b ≡ {d ∈ D|b ⊑ d}, b a finite element of D. These spaces are
coherent [11], meaning that they are determined by the distributive lattice
of compact-open subsets (KΩ(D),⊆), i.e. sets of the form ↑X, where X is
a finite set of finite elements of D. The advantage of the coherent case for
our purposes is that we can present our logic in a finitary form. Given a
distributive lattice A, its space of points is constructed as SpecA, the set of
prime filters over A, with topology generated by basic sets

Ua ≡ {x ∈ SpecA|a ∈ x} (a ∈ A).

The domain ordering can be recovered as the specialisation ordering, which
in terms of this representation of Spec A is just inclusion of filters.

Some Trade Secrets of Domains

An algebraic domain is coherent (in the sense of [11]) iff it is “2/3 SFP”
in the terminology of [17]. The topological significance of the “MUB ax-
ioms” [17] is that they ensure that the compact-open sets are closed under
finite intersections, and hence form a distributive lattice which generates the
topology. Moreover, we can recover K(D), the poset of finite elements of
the domain D, from A = KΩ(D) as follows: an element a ∈ A is prime if
a ≤ b ∨ c implies a ≤ b or a ≤ c; and a is consistent if a 6= 0. The sub-poset
of consistent primes is denoted by CPR(A). Now the consistent primes of
KΩ(D) have the form ↑ b, b ∈ K(D). Thus:

K(D) ∼= (CPR(KΩ(D)))op.

Also, there are “enough” primes, in the sense that each U ∈ KΩ(D) can be
written as a disjunction of primes:

↑ X =
⋃
{↑ b|b ∈ X}.

We begin by introducing the first part of a metalanguage for denotational
semantics, the type expressions, with syntax

σ ::= 1 | σ × τ | σ → τ | σ ⊕ τ | (σ)⊥ | Puσ | Plσ | t | rec t.σ

where t ranges over type variables, and σ, τ over type expressions.
The standard way of interpreting these expressions is as objects of SDom

(more generally as cpo’s, but SDom is closed under all the above construc-
tions as a subcategory of CPO). Thus for each type expression σ we define a

4

domain D(σ) = (D(σ),⊑σ) in SDom; σ×τ is interpreted as product, σ → τ
as function space, σ ⊕ τ as coalesced sum, (σ)⊥ as lifting, Puσ and Plσ as
the upper and lower (or Smyth and Hoare) powerdomains, and rec t.σ as the
solution of the domain equation

t = σ(t),

i.e. as the initial fixpoint of an endofunctor over SDom. Other constructions
(e.g. strict function space, smash product) can be added to the list.

So far, all this is standard ([17, 23]). Now we begin our alternative ap-
proach. For each type expression σ, we shall define a propositional theory
L(σ) = (L(σ), ≤σ, =σ), where:

• L(σ) is a set of formulae

• ≤σ, =σ are the relations of logical entailment and equivalence between
formulae.

L(σ) is defined inductively via formation rules, axioms and inference rules
in the usual way. We give selected examples of the definitions.

Formation Rules (selected)

t, f ∈ L(σ)

φ, ψ ∈ L(σ)

φ ∧ ψ, φ ∨ ψ ∈ L(σ)

φ ∈ L(σ), ψ ∈ L(τ)

(φ× ψ) ∈ L(σ × τ), (φ→ ψ) ∈ L(σ → τ)

φ ∈ L(σ), ψ ∈ L(τ)

(φ⊕ ψ) ∈ L(σ ⊕ τ)

φ ∈ L(σ)

2φ ∈ L(Puσ), 3φ ∈ L(Plσ)

φ ∈ L(σ[rec t.σ/t])

φ ∈ L(rec t.σ)

5

We should think of (φ → ψ), 2φ etc. as “constructors” or “generators”,
which build basic formulae at complex types from arbitrary formulae at sim-
pler types. Note that no constructors are introduced for recursive types;
we are taking advantage of the observation, familiar from work on informa-
tion systems [14], that if we work with preorders it is easy to solve domain
equations up to identity.

Auxiliary Predicates

Before proceeding to the axiomatisation proper, we shall define some aux-
iliary predicates on formulas. These will be used as side-conditions on a
number of axioms and rules (e.g. (→ −∨−R) below). Thus it is important
that they are recursive predicates, defined syntactically on formulae. The
main predicates we define are:

• PNF(φ): φ is in prime normal form, defined by the conditions that
disjunctions only occur in φ immediately under 2, and that occurrences
of ⊕ are of one of the forms (φ⊕ f), (f ⊕ ψ).

Then for φ in PNF, we define:

• CON(φ): φ is consistent, i.e. so that we have

CON(φ) ⇔ ¬(φ ≤ f) ⇔ [[φ]] 6= ∅

(where [[]] is the semantics to be introduced below).

• T(φ): φ requires termination, i.e. so that we have

T(φ) ⇔ ¬(t ≤ φ) ⇔ ⊥ 6∈ [[φ]].

Of these, the idea of formal consistency, and its definition for function spaces,
go back to [12], and also play a major role in [20, 21]. The other predicates, as
syntactic conditions on expressions, are apparently new (and in the presence
of the type constructions we are considering, specifically function space and
coalesced sum, the definitions of CON and T are mutually recursive). We
illustrate the definitions of CON and T by giving the clauses for function
types and coalesced sum:

• CON(
∧

i∈I

(φi → ψi) ⇔ ∀J ⊆ I.

6

CON(
∧

j∈J

φj) ⇒ CON(
∧

j∈J

ψj)

• T(φ→ ψ) ⇔ CON(φ) & T(ψ)

• CON(
∧

i∈I

(φi ⊕ f) ∧
∧

j∈J

(f ⊕ ψj)) ⇔

¬(T(
∧

i∈I

φi) & T(
∧

j∈J

ψj))

& CON(
∧

i∈I

φi) & CON(
∧

j∈J

ψj)

• T(φ⊕ f) ⇔ T(f ⊕ φ) ⇔ T(φ).

Once we have defined CON and T, we can introduce a predicate CPR(φ),
which holds if φ is a disjunction of formulae φi in PNF such that for some i
CON(φi) holds.

Now we turn to the axiomatization. The axioms of our logic are all “poly-
morphic” in character, i.e. they arise from the type constructions uniformly
over the types to which the constructions are applied. Thus we omit type
subscripts.

The axioms fall into two main groups.

Logical Axioms (selected)

These give each L(σ) the structure of a distributive lattice.

(≤ −ref) φ ≤ φ

(≤ −trans)
φ ≤ ψ, ψ ≤ χ

φ ≤ χ

(= −I)
φ ≤ ψ, ψ ≤ φ

φ = ψ

(∧− I)
φ ≤ ψ1, φ ≤ ψ2

φ ≤ ψ1 ∧ ψ2

(∧− E − L) φ ∧ ψ ≤ φ

(∧− dist) φ ∧ (ψ ∨ χ) ≤ (φ ∧ ψ) ∨ (ψ ∧ χ)

7

Type-specific Axioms (selected)

These articulate each type construction, by showing how its generators in-
teract with the logical structure.

(→ − ≤)
φ′ ≤ φ, ψ ≤ ψ′

(φ→ ψ) ≤ (φ′ → ψ′)

(→ −∧) (φ→
∧

i∈I

ψi) =
∧

i∈I

(φ→ ψi)

(→ −∨−L) (
∨

i∈I

φi → ψ) =
∧

i∈I

(φi → ψ)

(→ −∨−R) (φ→
∨

i∈I

ψi) =
∨

i∈I

(φ→ ψi) (CPR(φ))

(2− ≤)
φ ≤ ψ

2φ ≤ 2ψ

(2 − ∧) 2
∧

i∈I

φi =
∧

i∈I

2φi

(2 − f) 2f = f

The axiom (2 − f) exemplifies the possibilities for fine-tuning in our
approach. It corresponds exactly to the omission of the empty set from the
upper powerdomain.

To make precise the sense in which this axiomatic presentation is equiv-
alent to the usual denotational construction of domains we define, for each
(closed) type expression σ, an interpretation function

[[]]σ : L(σ) −→ KΩ(D(σ))

by

[[φ ∧ ψ]]σ = [[φ]]σ ∩ [[ψ]]σ

[[t]]σ = D(σ) = 1KΩ(D(σ))

[[(φ→ ψ)]]σ→τ = {f ∈ D(σ → τ)|f([[φ]]σ) ⊆ [[ψ]]τ}

8

[[2φ]]Puσ = {S ∈ D(Puσ)|S ⊆ [[φ]]σ}

[[3φ]]Plσ = {S ∈ D(Plσ)|S ∩ [[φ]]σ 6= ∅}

...

etc. Then for φ, ψ ∈ L(σ), we define

D(σ) |= φ ≤ ψ ≡ [[φ]]σ ⊆ [[ψ]]σ.

Theorem 1 (Soundness and Completeness) For all φ, ψ ∈ L(σ):

L(σ) ⊢ φ ≤ ψ ⇐⇒ D(σ) |= φ ≤ ψ.

Now we define

LA(σ) ≡ (L(σ)/ =σ, ≤σ / =σ),

the Lindenbaum algebra of L(σ).

Theorem 2 (Stone Duality) LA(σ) is the Stone dual of D(σ), i.e.

(i) D(σ) ∼= Spec LA(σ)
(ii) KΩ(D(σ)) ∼= LA(σ).

The proofs of these results are rather long, and will be presented else-
where. They involve the following main steps, for each type construction:

• A Normal Form lemma, to the effect that every formula can be proved
equivalent to a disjunction of consistent primes (in the syntactic sense
of our auxiliary predicates). This is the syntactic counterpart of the
semantic “Trade Secret” mentioned above.

• The auxiliary predicates are proved adequate, i.e. sound and complete
with respect to the semantic interpretation.

• One then proves a prime completeness theorem, using the standard
description of the ordering on finite elements of D(σ) to prove com-
pleteness for syntactically prime formulae. Combined with the normal
form lemma, this easily yields the full Completeness Theorem. This
in turn, combined with the fact that all elements of KΩ(D(σ)) are
definable by formulae in L(σ), yields the Stone Duality theorem.

9

• Finally, to carry these results over to recursive types, we must ensure
that our syntactic type constructions on theories are functorial, and
commute with the corresponding semantic constructions on domains.
Fortunately, this needs to be done only with respect to embeddings
induced by a partial ordering on theories, following ideas of [14].

3 Programs As Elements: Endogenous Logic

We extend our metalanguage for denotational semantics to include typed
terms.

Syntax (selected examples)

We have a set of variables V ar(σ) for each σ.

x ∈ V ar(σ), M : τ

λx.M : σ → τ

M : σ → τ, N : σ

MN : τ

M : σ

{|M |}u : Puσ

M : σ → Puτ

M †
u : Puσ → Puτ

M,N : Puσ

M ⊎u N : Puσ

M : Puσ, N : Puτ

M ⊗u N : Pu(σ × τ)

We write Λ(σ) for the set of terms of type σ. Note that {|.|}, † arise from the
adjunction defining the powerdomain construction; ⊎ is the operation of the
free algebras for this adjunction; while ⊗ is the universal map for the tensor
product with respect to this operation [9].

10

We now introduce an endogenous program logic with assertions of the
form

M,Γ ⊢ φ

where M : σ, φ ∈ L(σ), and Γ ∈
∏

σ{V ar(σ) → L(σ)} gives assumptions on
the free variables of M .

Axiomatisation (Selected Examples)

x,Γ[x 7→ φ] ⊢ φ

M,Γ ⊢ φ L ⊢ φ ≤ ψ

M,Γ ⊢ ψ

M,Γ[x 7→ φ] ⊢ ψ

λx.M,Γ ⊢ (φ→ ψ)

M,Γ ⊢ (φ→ ψ) N,Γ ⊢ φ

MN,Γ ⊢ ψ

M,Γ ⊢ φ

{|M |}u,Γ ⊢ 2φ

M,Γ ⊢ (φ→ 2ψ)

M †
u,Γ ⊢ (2φ→ 2ψ)

M,Γ ⊢ 2φ N,Γ ⊢ 2φ

M ⊎u N,Γ ⊢ 2φ

M,Γ ⊢ 2φ N,Γ ⊢ 2ψ

M ⊗u N,Γ ⊢ 2(φ× ψ)

Following standard ideas, we can give a denotational semantics for this met-
alanguage, in the form of a map

[[]]σ : Λ(σ) −→ Env −→ D(σ)

where Env ≡
∏

σ{V ar(σ) → D(σ)} is the set of environments. We can use
this to give a semantics for assertions:

M,Γ |= φ ≡ ∀ρ ∈ Env. ρ |= Γ ⇒ [[M]]σρ |= φ

11

where

ρ |= Γ ≡ ∀x ∈ V ar. ρx |= Γx

and for d ∈ D(σ), φ ∈ L(σ):

d |= φ ≡ d ∈ [[φ]]σ.

Theorem 3 The Endogenous logic is sound and complete: for all M,Γ, φ:

M,Γ ⊢ φ ⇐⇒ M,Γ |= φ.

We can state this result more sharply in terms of Stone Duality: it says
that

ησ({[φ]=σ
|M,Γ ⊢ φ}) = [[M]]σρ,

where

ησ : Spec LA(σ) ∼= D(σ)

is the component of the natural isomorphism arising from Theorem 2; i.e.
that we recover the point of D(σ) given by the denotational semantics of M
from the properties we can prove to hold of M in our logic.

4 Programs As Morphisms: Exogenous Logic

Now we introduce a second extension of our denotational metalanguage,
which is based on the algebraic metalanguage for cartesian closed categories
[19, 13], just as the language of the previous section is an extended typed
λ-calculus. Terms are sorted on morphism types (σ, τ), with formation rules
exemplified by

f : (σ × τ, υ)

Λ(f) : (σ, τ → υ)

Ap : ((σ → τ) × σ, τ).

We then form a dynamic logic DL, with syntax given by

• L(σ) ⊆ DL(σ)

12

•
f : (σ, τ) ψ ∈ DL(τ)

[f]ψ ∈ DL(σ).

We illustrate the axiomatisation of DL(σ) by two examples:

(φ× ψ) ≤ [f]χ

φ ≤ [Λ(f)](ψ → χ)

(φ→ ψ) × φ ≤ [Ap]ψ

We write the set of (closed) terms of morphism type (σ, τ) as Λ(σ, τ). Once
again, using standard ideas we can define a semantic function

[[]]σ,τ : Λ(σ, τ) −→ SDom(D(σ),D(τ))

which interprets each term as a morphism in the appropriate hom-set. Now
we define

|= φ ≤σ [f]ψ ≡ [[φ]]σ ⊆ ([[f]]σ,τ)
−1([[ψ]]τ).

A Hoare triple in DL(σ) is a formula φ ≤ [f]ψ such that φ and ψ do not
contain any program modalities.

Theorem 4 (Completeness For Hoare Triples) Let φ ≤ [f]ψ be a Hoare

triple. Then

⊢ φ ≤ [f]ψ ⇐⇒ |= φ ≤ [f]ψ.

The restricted form of this Theorem is necessary, since we have

Theorem 5 The validity problem for DL is Π0
2-complete.

5 Applications: The Logic Of A Domain Equa-

tion

A denotational analysis of a computational situation results in the descrip-
tion of a domain which provides an appropriate semantic universe for this
situation. Canonically, domains are specified by type expressions in a meta-
language. We can then use our approach to “turn the handle”, and generate
a logic for this situation in a quite mechanical way. Two substantive case

13

studies of this kind have been carried out, in the areas of concurrency [1] and
the λ-calculus [2].

For example, in [1] we define a domain equation for synchronisation trees,
and generate a logic which can be applied to the whole class of labelled
transition systems. This logic subsumes Hennessy-Milner logic [8], and can
be taken as a rational reconstruction of it. Furthermore, we automatically get
a compositional proof theory for this logic, along the lines indicated above.
Since one can define a denotational semantics for, e.g., SCCS [15] in our
denotational metalanguage, we get a compositional proof system along the
lines of those developed by Stirling and Winskel [24, 27]. Moreover, this
proof system is guaranteed to be in harmony with our semantics.

References

[1] S. Abramsky, A Domain Equation For Bisimulation, unpublished
manuscript, 1986.

[2] S. Abramsky, The Lazy λ-Calculus, unpublished manuscript, 1986.

[3] J. de Bakker and J. Zucker, Processes and the Denotational Semantics
of Concurrency, Information and Control 54 (1982) 70-120.

[4] G. Berry, P.-L. Curien and J.-J. Levy, Full Abstraction For Sequential
Languages: The State Of The Art, in: M. Nivat and J. Reynolds, eds.,
Algebraic Semantics (Cambridge University Press, 1985).

[5] H. B. Curry and R. Feys, Combinatory Logic, Vol. 1 (North Holland,
Amsterdam, 1958).

[6] E. W. Dijkstra, A Discipline Of Programming (Prentice Hall, New York,
1976).

[7] D. Harel, First Order Dynamic Logic, Lecture Notes in Computer Sci-
ence 68 (Springer, Berlin, 1979).

[8] M. Hennessy and R. Milner, On Observing Non-determinism and Con-
currency, in: J. de Bakker and J. van Leeuwen, eds., Automata, Lan-

guages and Programming. Proceedings 1980, Lecture Notes in Computer
Science 85 (Springer, Berlin, 1980), 299-309.

14

[9] M. Hennessy and G. Plotkin, Full Abstraction for a simple parallel pro-
gramming language, in: J. Becvar, ed., Mathematical Foundations of

Computer Science. Proceedings 1979, Lecture Notes in Computer Sci-
ence 74 (Springer, Berlin, 1979).

[10] C. A. R. Hoare, An Axiomatic Basis For Computer Programming,
Comm. of the ACM 12 (1969) 576-580.

[11] P. Johnstone, Stone Spaces (Cambridge University Press, 1982).

[12] G. Kreisel, Interpretation of analysis by means of functionals of finite
type, in: Constructivity in Mathematics (North Holland, Amsterdam,
1959).

[13] J. Lambek and P. Scott, Introduction to Higher Order Categorical Logic

(Cambridge University Press, 1986).

[14] G. Winskel and K. G. Larsen, Using Information Systems To Solve Re-
cursive Domain Equations Effectively, in: G. Kahn, D. B. MacQueen
and G. Plotkin, eds., Semantics of Data Types, Lecture Notes in Com-
puter Science 173 (Springer, Berlin, 1984).

[15] R. Milner, Calculi for Synchrony and Asynchrony, Theoretical Computer

Science (1983) 267-310.

[16] M. Nivat, Infinite words, infinite trees, infinite computations, in: J. de
Bakker, and J. van Leeuwen, eds., Foundations of Computer Science

III.2, Mathematical Centre Tracts 109 (1979) 3-52.

[17] G. Plotkin, Lecture Notes In Advanced Domain Theory, University of
Edinburgh, 1981.

[18] A. Pnueli, The temporal logic of programs, in: Proceedings of the 19th

Annual Symposium on Foundations of Computer Science (IEEE, New
York, 1977) 46-57.

[19] A. Poigne, On Specifications, Theories and Models with Higher Types,
Information and Control (1986).

[20] D. Scott, Lectures on a Mathematical Theory of Computation, Program-
ming Reseach Group Monograph (Oxford, 1981).

15

[21] D. Scott, Domains for Denotational Semantics, in: M. Nielsen and E.
M. Schmidt, eds., Automata, Languages and Programming. Proceedings

1982, Lecture Notes in Computer Science 140 (Springer, Berlin, 1982).

[22] M. Smyth, Powerdomains and Predicate Transformers: A Topological
View, in: J. Diaz, ed., Automata, Languages and Programming. Proceed-

ings 1983, Lecture Notes in Computer Science 154 (Springer, Berlin,
1983) 662-675.

[23] M. Smyth and G. Plotkin, The Category-Theoretic Solution Of Recur-
sive Domain Equations, SIAM J. On Computing 11, 4 (1982).

[24] C. Stirling, Modal Logics for Communicating Processes, Edinburgh Uni-
versity Computer Science Department Report, 1985.

[25] M. H. Stone, The Theory Of Representations For Boolean Algebras,
Trans. Amer. Math. Soc. 40 (1936) 37-111.

[26] G. Winskel, Events In Computation, Ph.D. Thesis, University of Edin-
burgh 1980.

[27] G. Winskel, A Complete Proof System For SCCS with Modal Assertions,
Cambridge University Computer Laboratory Report, 1985.

16

