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8:2 C. Matache et al.

1 Introduction

The central idea of algebraic effects [28] is that impure computation can be built and reasoned about
equationally, using an algebraic theory. Effect handlers [32] are a way of implementing algebraic
effects and provide a method for modularly programming with different effects. More formally, an
effect handler gives a model for an algebraic theory. In this article we develop equational reasoning
for a notion arising from an extension of handlers, called scoped effects, using the framework of
parameterized algebraic theories.

The central idea of scoped effects (Section 2.2) is that certain parts of an impure computation
should be dealt with one way, and other parts another way, inspired by scopes in exception handling.
Compared to algebraic effects, the crucial difference is that the scope on which a scoped effect acts is
delimited. This difference leads to a complex relationship with monadic sequencing (>=). The theory
and practice of scoped effects [5, 25, 43-46] has primarily been studied by extending effect handlers
to deal with not just algebraic operations, but also more complex scoped operations. They form the
basis of the fused-effects and polysemy libraries for Haskell. Aside from exception handling, other
applications include back-tracking in parsing [44] and timing analysis in telemetry [42].

Parameterized algebraic theories (Section 2.3) extend plain algebraic theories with variable binding
operations for an abstract type of parameters. They have been used to study various resources
including logic variables in logic programming [37], channels in the 7z-calculus [38], code point-
ers [10], qubits in quantum programming [40], and urns in probabilistic programming [41].

Contributions. We propose an equational perspective for scoped effects where scopes are resources,
by analogy with other resources like file handles. We develop this perspective using the framework
of parameterized algebraic theories, which provides an algebraic account of effects with resources
and instances. We realize scoped effects by encoding the scopes as resources with open/close
operations, analogous to opening/closing files. This article provides:

—the first syntactic sound and complete equational reasoning system for scoped effects, based
on equational reasoning with parameterized algebraic theories (Propositions 4.3 and 4.6);
—a canonical notion of semantic model for scoped effects supporting four key examples from the
literature: nondeterminism with semi-determinism (Theorem 4.12), catching exceptions (Theo-
rem 4.13), state with local values (Theorem 4.14), and nondeterminism with cut (Theorem 4.16);
and

—a reconstruction of the previous categorical analysis of scoped effects via parameterized
algebraic theories: the constructors (<, >) are shown to be not ad hoc, but rather the crucial
mechanism for arities/coarities in parameterized algebraic theories (Theorem 4.10).

Example: Nondeterminism with Semi-Determinism. We now briefly

illustrate the intuition underlying the connection between scoped ef- ___ gnce

fects and parameterized algebraic theories through an example. (See o‘r
Examples 2.3 and 2.7 for further details.) Let us begin with two alge- .

braic operations: or(x, y), which nondeterministically chooses between | fail P or
continuing as computation x or as computation y, and fail, which fails or or

immediately. We add semi-determinism in the form of a scoped opera-
tion once(x), which chooses the first branch of the computation x that
does not fail. Importantly, the scope that once acts on is delimited. The
left program below returns 1; the right one returns 1 or 2, as the second
or is outside the scope of once.

1 2 3 4
Fig. 1. [llustrating (1).

once(or(or(1,2),0r(3,4))) once(or(1,3)) == Ax.or(x,x + 1).
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Scoped Effects, Scoped Operations, and Parameterized Algebraic Theories 8:3

Now consider a slightly more involved example, which also returns 1 or 2:
once(or(fail, or(1,3))) == Ax.or(x,x + 1) (1)

depicted as a tree in Figure 1 where the red box delimits the scope of once. We give an encoding of
term (1) in a parameterized algebraic theory as follows:

once(a.or(fail, or(close(a; or(1, 2)), close(a; or(3,4))))), (2)

where a is the name of the scope opened by once and closed by the special close operation. By
equational reasoning for scoped effects (Section 3) and the equations for nondeterminism (Figure 4),
we can prove that the term (2) is equivalent to or(1, 2).

Aside. This continuation-passing style notation is natural for algebraic effects viewed as algebraic
theories, but when programming, one often uses equivalent direct-style generic effects [30] such as
unknown : unit — bool, returning a nondeterministic Boolean, where or(x, y) can be recovered by
pattern matching on the result of unknown (). See (8).

Changes from the Conference Version. This article is an extended version of a “fresh perspective”
short paper published at ESOP 2024 [17]. The additions include the following:

—the scoped effect of explicit nondeterminism with cut treated as a parameterized theory (Ex-
ample 3.9) and its free model (Section 4.4.4);

—a discussion about how monads support operations (Definitions 2.11 and 2.12), leading to a
comparison between models of algebraic theories and models of parameterized theories in
Propositions 4.8 and 4.9;

—a new section about constructing a parameterized theory from an arbitrary family of scoped
operations (Section 4.5) and how their models are related (Theorem 4.17);

—proofs of the general theorems about models from Section 4.2, as well as proofs of freeness
for the examples of models from Section 4.4. The proofs of freeness involve exhibiting normal
forms for each parameterized theory;

—an expanded discussion of existing work about the higher-order syntax approach to scoped
effects, in Section 2.2;

—the observation that one of the equations in the parameterized theory on nondeterminism
with once is actually derivable from the others (Example 3.5);

—more details about the alternative definition of catching exceptions as a parameterized the-
ory (Example 3.7); and

—a discussion of future research about combinations of scoped theories in Section 5.

2 Background

In this section we put the present work in context and recall some basic concepts useful for the
technical development in Sections 3 and 4.

First, in Section 2.1 we discuss some features and limitations of Perspective 2.1 (Plotkin and Power
[29]) which identifies a notion of effectful computation with an ordinary (first-order) algebraic
theory. Then, in Section 2.2 we compare some existing perspectives on scoped effects, which are
designed to generalize algebraic effects. In particular we consider Perspective 2.10 (Wu et al. [44]),
which explains scoped operations in terms of the semantics of an ordinary algebraic theory, as
operations which need not commute with monadic sequencing.

Finally, in Section 2.3 we introduce our new Perspective 2.15 which says that scoped operations
are operations that allocate and consume a certain resource: names of scopes. We give some
background on the parameterized algebraic theories which we will use to give our perspective a
formal syntactic framework in Section 3.
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8:4 C. Matache et al.

2.1 Algebraic Effects

Moggi [22, 23] shows that many non-pure features of programming languages, typically referred
to as computational effects, can be modeled uniformly as monads, but the question is—how do we
construct a monad for an effect, or putting it differently, where do the monads modeling effects come
from? A classical result in category theory is that finitary monads over the category of sets are
equivalent to algebraic theories [16, 18]: An algebraic theory gives rise to a finitary monad by the
free-algebra construction, and conversely every finitary monad is presented by a certain algebraic
theory. Motivated by this correspondence, Plotkin and Power [29] show that many monads that
are used for modeling computational effects can be presented by algebraic theories of some basic
effectful operations and some computationally natural equations. This observation led them to
the following influential perspective on computational effects [29], which is nowadays commonly
referred to as algebraic effects.

PERSPECTIVE 2.1 (PLOTKIN AND POWER [29]). An effect is realized by an algebraic theory of its
basic operations, so it determines a monad but is not identified with the monad.

We review the framework of algebraic effects in the simplest form here and refer the reader to
Plotkin and Power [31] and Bauer [2] for more discussion.

Definition 2.2. A (first-order finitary) algebraic signature 3 = (||, ar) consists of a set |2|, whose
elements are referred to as operations, together with a mapping ar : |2| — N, associating a natural
number to each operation, called its arity.

Given a signature X = (|2|, ar), we will write O : n for an operation O € |X| with ar(O) = n. The
terms Tmx(I') in a context I', which is a finite list of variables, are inductively generated by

O:n T'rtifori=1...n
Ix,T'+x T+O(ty,...,t)

®)

Example 2.3. The signature of explicit nondeterminism has two operations:
or:2 fail : 0.
Some small examples of terms of this signature are
F fail x,y,z For(x,or(y, z)) x,y, z + or(or(x, y), fail).
Example 2.4. The signature of mutable state of a single bit has operations:
puto 01 put1 01 get : 2.

The informal intuition for a term T’ + puti(t) is a program that writes the bit i € {0,1} to the
mutable state and then continues as another program ¢, and a term T + get (%, t1) is a program
that reads the state, and continues as ¢; if the state is i. For example, the term x, y + put®(get(x, y))
first writes 0 to the state, then reads 0 from the state, so always continues as x. For simplicity we
consider a single bit, but multiple fixed locations and other storage are possible [29].

Definition 2.5. A (first-order finitary) algebraic theory T = (3, E) is a signature ¥ (Definition 2.2)
and a set E of equations of the signature %, where an equation is a pair of terms I' - Land I' - R
under some context I'. We will usually write an equationasI' + L = R.

Example 2.6. The theory of exception throwing has a signature containing a single operation
throw : 0 and no equations. The intuition for throw is that it throws an exception and the control
flow never comes back, so it is a nullary operation.
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Example 2.7. The theory of explicit nondeterminism has the signature in Example 2.3 and the
following equations saying that fail and or form a monoid:

x For(faillx) =x  xror(x,fail) =x x,y,z+ or(x,or(y,z)) = or(or(x,y),z).

Following Plotkin and Pretnar [32] we refer to this as “explicit” nondeterminism as it does not
include full symmetry laws (that is, or(x, y) = or(y, x)) or idempotence laws (or(x, x) = x).

Example 2.8. The theory of mutable state of a single bit has the signature in Example 2.4 and the
following equations for all i,i" € {0, 1}:

X0, x1 F put’ (get(xp, x1)) = put’ (x;) (4)
x + put’(put” (x)) = put” (x) ()
x F get(put®(x), put (x)) = x. (6)

The conspicuously missing equation for a get after a get

%00, Xo1, X10, X11 F get(get(xo0, X01), get(x10, X11)) = get(xgo, x11)

can be derived in the equational logic of algebraic theories, which will be introduced in a more
general setting later in Section 3, from the equations above:

get(get(xpo, X01), get(x10, X11)) via Equation (6), calling this term by ¢
= get(put®(t), put!(t)) via Equation (4) for put®(t) and put!(t)
= get(put’ (get(xgo, X01)), put’ (get(x10,x11)))  via Equation (4) again
= get(put®(xgo), put! (x11)) via Equation (4) right-to-left
= get(put’ (get(xpo, x11)), put’ (get(x00, x11)))  via Equation (6)
= get(xo00, X11)

Remark 2.9. Every algebraic theory gives rise to a monad on the category Set of sets by the
free-algebra construction, which we will discuss in a more general setting in Section 4.2. The three
examples above respectively give rise to the monads (1 + —), List, and (- x 2)2 which are used to
give semantics to the respective computational effects in programming languages [22, 23].

In this way, the monad for a computational effect is constructed in a remarkably intuitive manner,
and this approach is highly composable: One can take the disjoint union of two algebraic theories
to combine two effects, and possibly add more equations to characterize the interaction between
the two theories [13]. By contrast, coproducts of monads, which correspond to taking the disjoint
union of algebraic theories, are much harder to describe explicitly even when they exist.

The kind of plain algebraic theory encapsulated by Definition 2.5 above is not, however, suffi-
ciently expressive for some programming language applications. In this article we focus on two
problems with plain algebraic theories:

(1) Firstly, monadic bind for the monad generated by an algebraic theory is defined using
simultaneous substitution of terms: Given a term ¢t € Tmy(I') in a context I and a mapping
0 : T — Tmy(I”) from variables in T to terms in some context I'’, the monadic bind t >= o
is defined to be the simultaneous substitution t[c] of ¢ in ¢:

x[o] = o(x) O(t1,....ta)[0] = O(t1[c], ..., talo]).

Monadic bind for a monad is used for interpreting sequential composition of computations.
Therefore, the second clause above implies that every algebraic effect operation must commute
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8:6 C. Matache et al.

with sequential composition. However, in practice not every effectful operation enjoys this
property.

(2) Secondly, it is common to have multiple instances of a computational effect that can be
dynamically created. For example, it is typical in practice to have an effectful operation
openFile that creates a “file descriptor” for a file at a given path, and for each file descriptor
there is a pair of read and write operations that are independent of those for other files.

These two restrictions have been studied separately, and different extensions to algebraic theories
generalizing Definition 2.5 have been proposed for each: scoped algebraic effects for the first problem
above and parameterized algebraic effects for the second. At first glance, the two problems seem
unrelated, but the key insight of this article is that scoped effects can be fruitfully understood as a
non-commutative linear variant of parameterized effects.

2.2 Scoped Effects

The first problem with plain algebraic theories above is that operations must commute with
sequential composition. Therefore an operation O(ay, ..., a,) is “atomic” in the sense that it may
not delimit a fresh scope. Alas, in practice it is not uncommon to have operations that do delimit
scopes. An example is exception catching: catch(p, h) is a binary operation on computations that first
tries the program p and if p throws an exception then 4 is run. The catch operation does not commute
with sequential composition as catch(p, h) == f behaves differently from catch(p == f,h == f).
The former catches only the exceptions in p whereas the latter catches exceptions both in p and in
f. Further examples include nondeterminism with a semi-determinism operator, nondeterminism
with cut, and state with local values, which we explore in detail in Section 3.2.

Operations delimiting scopes are treated as handlers (i.e., models) of algebraic operations by
Plotkin and Pretnar [32], instead of operations in their own right. The following alternative per-
spective was first advocated by Wu et al. [44].

PERSPECTIVE 2.10 (WU ET AL. [44]). Since sequential composition of monads generated from
algebraic theories is substitution, scoped operations are operations that do not commute with
substitution.

Operations that do not commute with substitution arise in contexts other than computational
effects as well, for example, in some presentations of the later modality of guarded recursion [4].

We can use the results of Plotkin and Power [30] to give a precise phrasing of this on the side of
semantics. For simplicity we restrict this definition to the case of monads on Set.

Definition 2.11 (Plotkin and Power [30]). A monad T on Set can be said to support an algebraic
operation O : n if it is equipped with a natural transformation

O4: (TA)" > TA
which moreover satisfies _ _
Ha © OTA = OA o (yA)n. (7)
For example, any free monad T determined by an algebraic theory 7 = (3, E) according to
Remark 2.9 supports all the operations in the signature X. As shown by Plotkin and Power [30],
Equation (7) is another phrasing of commuting with sequential composition, and indeed to give
such a support for a signature ¥ is to simply give a family (O € T(n) | (O : n) € %) of “generic
effects,” for then we can write
Ou(f) =0 >=T. (8)
Hence we can make a precise definition of scoped operations by dropping (7), following Yang and
Wu [46].

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 8. Publication date: June 2025.



Scoped Effects, Scoped Operations, and Parameterized Algebraic Theories 8:7

Definition 2.12 (Yang and Wu [46]). Let T be a monad on Set. A scoped operation on the monad T,
of arity k € N, is a family of functions natural in A:

oa: (TAF > TA.

(Equation (7) is not necessarily satisfied.)

Example 2.13. Under Perspective 2.10, semi-determinism could be modeled by the monad List :
Set — Set for explicit nondeterminism equipped with a scoped operation once of arity 1, given by
the family of functions oncey : List(A) — List(A) where

onces([]) = [1. oncea([x,...]) = [x].

This family of functions is natural in A but does not satisfy (7).

Extensions of effect handlers to natively accommodate scoped operations were first studied by
Wu et al. [44] in Haskell, where the authors proposed two approaches:

(1)

The bracketing approach uses a pair of algebraic operations begin, and end; to encode a
scoped operation s. For example, consider the program s(put®); put!; x, expressed in direct
style, which writes the value 0 in the scope s, then writes the value 1 outside of that scope
and continues with the rest of the program x. This can be encoded formally as

begin, (put’(ends (put' (x)))).

The higher-order syntax approach directly constructs the syntax for programs with algebraic
and scoped operations as an initial algebra of an endofunctor over the category of (finitary)
endofunctors over Set. Concretely, this amounts to adding the following rule, for every
scoped operation S that delimits n scopes, to the rules in (3) generating terms:

S:n Xt .., xmrtifori=1...n F'rkjforj=1...m
TFS(ty,. .ot {ky, .. km}

The intuition is that S(¢1,...,t,){k1, ..., km} is the term applying the scoped operation S
to the terms ty,. .., t, followed by a “substitution” that replaces the m variables in t; with
the terms ki, ..., k,, respectively (c.f. explicit substitution [11] and delayed substitution
[4]). Since substitutions get stuck at scoped operations, they need to be kept in terms, if
we want to have a monad of terms with scoped operations. However, we emphasize that
the “substitution” {ki, ..., kn,} is only an informal intuition (so “substitution” is written in
quotation); formally, it is just a part of the term S(¢4, .. ., ty){k1, . . .,k } rather than applying
the (real) substitution [ky, ..., k]| operation to the term S(t4, ..., t,).

Moreover, to make the “substitution” {ky, ..., k,,} behave like real substitutions, the terms
are further quotiented by (the congruence relation generated by) the following rule: for all
m,m’ € N and functions f : {1...m} — {1...m'},

S:n X1,....xm Ftifori=1...n Frkjforj=1...m
TrS(t,. .o ta)ikpay kgt = S tn[f DAL - K }
where the terms x; ... x, F t;[ f] are obtained by replacing each variable x; in t; with x¢(;),
for 1 < j < m. This rule is motivated as follows: In the left-hand side, every variable x; in

each t; is “replaced” by kf(;) according to the “substitution” {kf1), ..., Kkf(m)}, while in the
right-hand side, x; is first replaced by xy(;) by the real substitution [f], and then “replaced”

3
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8:8 C. Matache et al.

by kr(j) according to the “substitution” {ky, ..., kn }. These two results should be exactly
the same since in the end both replace every x; with kg ;).

Terms in a context I' obtained in this way also form a monad [45].

The higher-order syntax approach was regarded the more principled one since in the first
approach ill bracketed pairs of begin, and end; are possible, such as

end; (put’(begin, (begin, (put!(x))))).

In subsequent work, both of these two approaches received further development [25, 43, 45, 46]
and operational semantics for scoped effects has also been developed [5]. Of particular relevance to
the current article is the work of Pirdg et al. [25], which we briefly review in the rest of this section.

Related Work on Models for Scoped Effects. Pirdg et al. [25] fix the ill-bracketing problem in
the bracketing approach by considering the category Set'' whose objects are sequences X =
(X(0),X(1),...) of sets and morphisms are just sequences of functions. (In other words, this is the
category of functors N — Set and natural transformations between them, where N is the discrete
category whose objects are natural numbers and where all morphisms are identity morphisms.)
Given X € Set!, the idea is that X (n) represents a set of terms at bracketing level n for every n € N.

On this category, there are two functors (»), (<) : Set’ — Set", pronounced “later” and “earlier;”
that shift the bracketing levels:

(>X)(0) =0, (>X)(n+1) =X(n), («X)(n) =X(n+1). )

These two functors are closely related to the bracketing approach (1): a morphism b : <X — X for
a functor X opens a scope, turning a term ¢ at level n+ 1 to the term begin(z) at level n. Conversely,
a morphism e : > X — X closes a scope, turning a term t outside the scope, so at level n — 1, to the
term end(t) at level n.

Every signature ¥ as in Definition 2.2 determines a functor ¥ : Set'' — Set"' given by

(EX)(n) = oeps X (). (10)

Given two signatures X and ¥’ (for algebraic and scoped operations respectively), we use (10) with
each to obtain two functors 3,3’ : Set’ — Set!. Moreover, for every A € Set, let [A € Set! be
given by

(ra)o =4 (1A)Mm+1)=0, (11)

and conversely for every X € Set', let | X € Set be given by
| X = X(0). (12)
These are actually adjoint functors
I Set — Set™ l: Set'’ — Set M ] (13)

Now Proposition 2.14 constructs the syntactic monad for programs with the given algebraic and
scoped operations, without taking into account any equations.

PROPOSITION 2.14 (PIROG ET AL. [25]). The following functor can be extended to a monad that is
isomorphic to the monad obtained by the higher-order syntax approach (2):

Lo (E+ (2 0<)+5) o:Set — Set,

where (—)* is the free monad over an endofunctor.
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Pirég et al. [25] define a model of a scoped effect as an algebra for the monad (£ + (5" 0 <) +»)" on
Set'". This is a notion of handler accommodating both algebraic and scoped effects. In Theorem 4.10
we show that this monad on Set"' arises as a special case of the free monad for a parameterized
algebraic theory. In Theorems 4.12-4.14, we show that three examples of models of Pirdg et al. [25]
are actually free algebras on [ A € Set" for an appropriate set of equations for each example.

2.3 Parameterized Algebraic Theories

Recall that our second problem with plain algebraic theories is that they do not support the dynamic
creation of multiple instances of computational effects. This problem, sometimes known as the
local computational effects problem, was first systematically studied by Power [35] in a purely
categorical setting. A syntactic framework extending that of algebraic theories, called parameterized
algebraic theories, was introduced by Staton [37, 38] and is used to give an axiomatic account of
local computational effects such as restriction [27], local state [29], and the z-calculus [21, 36].

Operations in a parameterized theory are more general than those in an algebraic theory because
they may use and create values in an abstract type of parameters. The parameter type has different
intended meanings for different examples of parameterized theories, typically as some kind of
resource such as memory locations or communication channels. In this article, we propose to
interpret parameters as names of scopes.

PERSPECTIVE 2.15. Scoped operations can be understood as operations allocating and consuming
instances of a resource: the names of scopes.

In the case of local state, the operations of Example 2.4 become get(a; xo, x;) and puti(a;x),
now taking a parameter a which is the location being read or written to. In a sense, each memory
location a represents an instance of the state effect, with its own get and put operations. We also
have a term new’(a.x(a)) which allocates a fresh location named a storing an initial value i, then
continues as x; the computation x might mention location a. The following is a possible equation,
which says that reading immediately after allocating is redundant:

new’ (a.get(a, xo(a), x1(a))) = new'(a.x;(a)).

For the full axiomatization of local state see [38, Section V.E]. A closed term can only mention
locations introduced by new’, meaning that the type of locations is abstract.

To model scoped operations, we think of them as allocating a new scope. For example, the scoped
operation once, which chooses the first non-failing branch of a nondeterministic computation, is
written as once(a.x(a)). It creates a new scope a and proceeds as x. As in Section 1, there is an
explicit operation close(a; x) for closing the scope a and continuing as x.

Well-formed programs close scopes precisely once and in the reverse order to their allocation.
Thus in Section 3 we will discuss a non-commutative linear variation of parameterized algebraic
theories needed to model scoped effects. With our framework we then give axiomatizations for
examples from the scoped effects literature (Theorems 4.12-4.14, 4.16).

Our parameters are linear in the same sense as variables in linear logic and linear lambda
calculi [3, 12], but with an additional non-commutativity restriction. Non-commutative linear
systems are also known as ordered linear systems [24, 33]. A commutative linear version of
parameterized algebraic theories was considered by Staton [40] to give an algebraic theory of
quantum computation; in this case, parameters stand for qubits.

Remark 2.16. Parameterized algebraic theories correspond to a certain class of enriched mon-
ads [37], extending the correspondence between algebraic theories and monads on the category of
sets, and the idea of Plotkin and Power [29] that computational effects give rise to monads (see Sec-
tion 2.1). Thus, the syntactic framework of parameterized theories has a canonical semantic status.
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We can use the monad arising from a parameterized theory to give semantics to a programming
language containing the effects in question.

The framework of parameterized algebraic theories is related to graded theories [14], which
also use presheaf-enrichment; second-order algebra [7-9], which also uses variable binding; and
graphical methods [19], which also connect to presheaf categories.

3 Parameterized Theories of Scoped Effects

In this section we describe scoped effects (Section 2.2) in terms of parameterized algebraic theories
(Section 2.3). To do this, we use a substructural version of parameterized algebraic theories. The
parameters will be used to interpret the names of scopes, and the substructural treatment mirrors
the idea that scopes cannot be implicitly duplicated, reordered, or discarded.

A parameterized algebraic theory consists of a signature (Definition 3.1) and equations (Defini-
tion 3.4) between terms formed from the signature. We show that every scoped signature gives rise
to a parameterized algebraic signature (Section 3.1, Example 3.3). But a parameterized algebraic
theory includes equations as well as operations. In Section 3.2 we propose equational theories for
various scoped effects: exceptions, state, and nondeterminism.

This section is focused on syntactic aspects of parameterized algebraic theories. In Section 4,
we turn to models of the theories. In Section 4.4, we show that the free models of the theories of
exceptions, state, and nondeterminism completely capture earlier notions from the literature.

3.1 Parameterized Algebraic Theories with Non-Commutative Linear Parameters

Definition 3.1. A (parameterized) signature 3 = (|2|, ar) consists of a set of operations |X| and
for each operation O € || a parameterized arity ar(O) = (p | my, ..., mg) consisting of a natural
number p and a list of natural number valences my, ..., my. This means that the operation O takes
in p parameters and k continuations, and it binds m; parameters in the ith continuation.

Example 3.2. The algebraic theory of explicit nondeterminism in Example 2.3 can be extended
with a semi-determinism operator once:

or:(0]0,0) once: (0] 1) fail : (0| -) close : (1]0).

(We write — for an empty list or context.) The arity of or says that or takes no parameters and has
two continuations, each binding no parameters. The operation once also takes no parameters and
has one continuation that opens a new scope by binding a parameter. Inside this scope, only the
first successful branch of or is kept. The operation fail takes zero parameters and no continuations;
close takes one parameter and has one continuation that binds no parameter. We consider the terms
and equations in Example 3.5 and Figure 4.

Example 3.3. Given signatures for algebraic and scoped operations, as in Definition 2.2 and Sec-
tion 2.2, we can translate them to a parameterized signature as follows:

—for each algebraic operation (op : k) of arity k € N, there is a parameterized operation with
arity (0 | 0, ..., 0), where the list 0, ..., 0 has length k;

—for each scoped operation (sc : k) of arity k € N, there is a parameterized operation sc : (0 |
1,..., 1), where the list 1, ..., 1 has length k;

—there is an operation close : (1 | 0), which closes the most recent scope, and which all the
different scoped operations share.

Not every parameterized signature arises from a scoped signature, because in general we may
have operations where the arguments have different valences (e.g., m; # m;). So parameterized
signatures give some more flexibility. We explore this point more in Example 3.7.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 8. Publication date: June 2025.



Scoped Effects, Scoped Operations, and Parameterized Algebraic Theories 8:11

For a given signature, we define the terms-in-context of algebraic theories with non-commutative
linear parameters. Terms contain two kinds of variables: computation variables (x, y, ...), which
each expect a certain number of parameters, and parameter variables (a, b, ...). In the case of scoped
effects, a parameter represents the name of a scope.

A context I' of computation variables is a finite list xy : p1, ..., x, : pn, Where each variable x; is
annotated with the number p; of parameters it consumes. A context A of parameter variables is a
finite list ay, ..., amm. Terms T | A F t are inductively generated as follows:

; (14)
Lx:pT' |ay...,ap F x(ay, ..., ap)
T I A,bl,...,bml F 1 A T | A, b],...,bmk kot O: (p | my, ...,mk) (15)
T I A, (75T ap F O(al, ey ap; bl bml-tl; ey bl bmk.tk)

In the conclusion of the last rule, the parameters ay, ..., a, are consumed by the operation O. The
notation b;... by, .t; indicates that the parameters by, ..., by, are bound in t; and is kept simpler by
writing the list of bound parameters without any delimiters. As usual, we treat all terms up to
renaming of variables.

We make use of several conveniences when writing terms.

«_ »

—In (14), if p = 0 we write “x(—)” simply as “x.

—In (15), if m; = 0 we write “—.t;” simply as “t;”

—In (15), if p = 0 = k, we write “O(—;—)” as O, or

—if only p = 0 we omit “—;” (and if only k = 0 we omit “;-").

Before expanding on the meaning of terms I' | A + ¢ in general, we note how the terms of an
ordinary algebraic theory described in (3) can be interpreted as terms with parameters. We first
define the interpretation (—)° on contexts into computation contexts:

() =~
(F,x)o =T%x:0

by considering each variable of ordinary algebra to be a computation variable that consumes zero
parameters. Then on term judgements we have an interpretation

Tr)’ =T -1

where our shorthand makes t° identical to ¢, but for clarity if we used the full notation we would
have the following:

x0 = x(-)
(op(ty, ..., )" = op(—; —.t?, ...,—.t,(:).

The context I' of computation variables admits the usual structural rules: weakening, contraction,
and exchange; the context A of parameters does not. All parameters in A must be used exactly once,
in the reverse of the order in which they appear. Intuitively, a parameter in A is the name of an
open scope, so the restrictions on A mean that scopes must be closed eventually and in the opposite
order that they were opened, that is, scopes are well-bracketed. We chose the restrictions on A to
model scoped effects in particular, but these restrictions would not be appropriate for modeling
other examples such as file handlers, where files may be closed in any order.

The arguments ¢4, ..., ;. of an operation O are continuations, each corresponding to a differ-
ent branch of the computation, hence they share the parameter context A. Examples where the
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X1 :my, .. xpimy | Ay, .., G, Fxi(ay, ..., am,)
’ ’ ’ ’
r |A>Cl,~-~-scml'_tl r |A~,Cl~,-~-~crn,'_tl

I | Aay, ..., am, v xi(a1a~-~,ami)[t1/x1; . -,tl/xl] = tilai/c1, ..., am; [ Cm,]

X1 :imy, L xpimy | Aay, ., ap - O(ay, . ap; /71.../7,,,1 S, ..., b1 /),,,,}\7..8‘1\-)
’ 4 ’ ’
I" A cqyesem, F 1y I" | A cqyesCmy b 1

I"|AA ay,...,ap F O(ay, ..., ap; bi... b .sl,...,bl...bm;(.sk)[tl/xl,...,tl/xl]

O(al, ...,ap; b1 bm; .S1 [tl/xl, . tl/Xl], e b1 bm;c.Sk [tl/xl, e tl/.X'l])

Fig. 2. Action of substitution on terms. In the first rule, [a1/c1, ..., am;/cm,;] represents the obvious renaming
of free parameters in t;.

continuations ty, ..., t; run in parallel, jointly consuming A, cannot be expressed in our flavor of
parameterized theory.

Compared to the algebra with linear parameters used for describing quantum computation [40],
our syntactic framework has the additional constraint that A cannot be reordered. Given these
constraints, the context A is in fact a stack, so inside a term it is unnecessary to refer to the
variables in A by name. We have chosen to do so anyway in order to make clearer the connection
to non-linear parameterized theories [37, 38].

The syntax admits the following simultaneous substitution rule:

X1:my,..,x;mp | Art I"|Nay,....,am, F i I' | AN ay, ., am F 1y
I | AA ¢ t[(A’,al, s Gmy F 1) /X1 o (N ag, e, ¢ tl)/xl]

(16)

In the conclusion, the notation (A’, ay, ..., am, + t;)/x; emphasizes that the parameters ay, ..., a,, in
t; are replaced by the corresponding parameters that x; consumes in ¢, either bound parameters
or free parameters from A. To ensure that the term in the conclusion is well-formed, we must
substitute a term that depends on A’ for all the computation variables in the context of t. The action
of (well-typed) substitution on terms is defined inductively by the rules in Figure 2.

An important special case of the substitution rule is where we add a number of extra parameter
variables to the beginning of the parameter context, increasing the sort of each computation variable
by the same number. The following example instance of (16), where ar(O) = (1 | 1), illustrates
such a “weakening” by adding two extra parameter variables a;, a; and replacing x : 2 by x’ : 4:

x:2 | ay,ap v O(ay; b.x(ay, b)) x' 141 ay, a5, by, by v x'(ay, a3, by, by)

x' 14| a},ay, a1, az F O(ag; b.x'(a}, ay, a1, b))

Definition 3.4. An algebraic theory T = (3, E) with non-commutative linear parameters is a
parameterized signature ¥ together with a set E of equations. An equation is a pair of terms
I'|ArLandT | AF R inthe same context (I' | A). We write an equationasI' | A+ L =R.

We will omit the qualifier “with non-commutative linear parameters” where convenient and
refer to “parameterized theories” or just “theories”

Given a theory 7 = (3, E), we form an equivalence relation =4 on terms of 7, called the
derivable equality, by closing substitution instances of the equations in E under reflexivity, symmetry,
transitivity, and congruence rules (Figure 3).
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(x1:my,..,x;:m |A+rL=4R) €E I'|ANay,esam b1 oo T A ag, o am F 1
I’ I A,,A FL[tl/xl,...,tl/Xl] =¢R[t1/x1,...,tl/xl]

T[Art T|A+L=sR T|ArL=yR T|ArR=sR
T(Art=gt T[AFR=;L T[AFL=¢ R
I‘|A,b1,...,bm1l—L1=7-R1 F|A,b1,...,bmk|—Lk=7'Rk O:(p|m1,...,mk)€§l
O(al,...,ap; bl...bml.Ll,...,bl...bmk.Lk)
T'|Aay,...,ap =7

O(al, ceey ap; bl bml.Rl, ey bl bmk~Rk)

Fig. 3. The rules for the derivable equality on terms of a parameterized algebraic theory.

x:0,y:0,2:0| —For(or(x,y),z) =or(x,or(y,z)) (17)
x:0]|—+For(x,fail) =x (18)
x:0]|—+or(fail,x) = x (19)

— | = + once(a.fail) = fail (20)

x:1]| -+ once(a.or(x(a), x(a))) = once(a.x(a)) (21)
x:0| -+ once(a.close(a;x)) = x (22)
x:0,y:1]|—F once(a.or(close(a; x), y(a))) = x (23)

Fig. 4. The parameterized theory of explicit nondeterminism (17)-(19) and once (20)-(23).

3.2 Examples of Equations for Scoped Theories via Parameterized Presentations

Example 3.5. We continue Example 3.2, semi-determinism, with or, once, fail, and close. The term
formation rules in Section 3.1 allow the most recently opened scope to be closed using the close
operation by consuming the most recently bound parameter; close has one continuation which
does not depend on any parameters.

Examples of equations, i.e., pairs of terms in the same context, are given in Figure 4. As an
illustration, we note that Equation (22) is derivable from the others:

once(a.close(a; x)) = once(a.or(close(a;x), fail)) via (18)
=x via (23).

Example 3.6. As we mentioned earlier, exception catching is not an ordinary algebraic operation.
The signature for throwing and catching exceptions is the following:

throw : (0 | —) catch: (0] 1,1) close: (1]0).

The throw operation uses no parameters and takes no continuations. The catch operation uses no
parameters and takes two continuations which each open a new scope, by binding a fresh parameter.
Exceptions are caught in the first continuation and are handled using the second continuation.
The close operation uses one parameter and takes one continuation binding no parameters.
The term close(a; x) closes the scope named by a and continues as x. For example, in the term
catch(a.close(a; x), b.y(b)), exceptions in x will not be caught, because the scope of the catch
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operation has already been closed. The equations are

y: 0| — F catch(a.throw, b.close(b;y)) =y (24)
— | =+ catch(a.throw, b.throw) = throw (25)
x:0,y:1]| -t catch(a.close(a; x), b.y(b)) = x. (26)

Example 3.7. The arity of catch from Example 3.6 corresponds to the signature used in [25,
Example 4.5], in which both arguments of catch delimit a scope. In the standard operational
behavior of exception catching catch(a.p, b.h), if an exception is thrown within the scope marked
by a, the control flow transfers to h, and when h closes the scope marked by b by some close(b; y),
the program simply continues as y. Therefore the scope b is in fact unimportant, and it seems
more natural to model exception catching using the arity varcatch : (0 | 1, 0), where the second
argument does not create a new scope. Equations (24)—(26) become then

y: 0| — F varcatch(a.throw, y) =y
x:0,y:0| -+ varcatch(a.close(a, x), y) = x.
We could also encode varcatch in the theory of catch by making the following definition:
varcatch(a.x(a),y) = catch(a.x(a), b.close(b; y))
and deducing the two equations for varcatch from Equations (24) and (26).

Example 3.8 (Mutable State with Local Values). The theory of (Boolean) mutable state with one
memory location (Example 2.4) can be extended with scoped operations local® and local® that write
respectively 0 and 1 to the state. Inside the scope of local, the value of the state just before the local
is not accessible anymore, but when the local is closed the state reverts to this previous value:

local’ : (0] 1) put’ : (0] 0) get: (0 0,0) close : (1] 0).

The equations for the parameterized theory of state with local comprise the usual equations for
state in the literature [20, 29]:

z:0| -+ get(put’(2), put’(2)) = z (27)
z:0 | -+ put'(put/ (2)) = put’ (z) (28)
X0 :0,x1: 0| — F put’(get(xo, x1)) = put’(x;) (29)

together with equations for local/close, and the interaction with state:

x:0| —F local’(a.close(a; x)) = x (30)
x0:1,x1: 1| =+ local’(a.get(xo(a), x1(a))) = local’(a.x;(a)) (31)
z:1| -+ local’(a.put’ (z(a))) = localV (a.z(a)) (32)
z:0 | ar put'(close(a; z)) = close(a; z). (33)

This extension of mutable state is different from the one discussed in Section 2.3, where memory
locations can be dynamically created.

Example 3.9 (Explicit Nondeterminism with Cut). The theory of explicit nondeterminism given
by Equations (17) to (19) can be extended with an operation that prunes the list of possible results,
similar to cut in Prolog:

cut:(01]0) or:(0]0,0) fail : (0| -).
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The cut operation is algebraic and has one continuation; cut(x) intuitively discards the choices
that have not been explored yet, and returns all the possible results of x. The behaviour of cut has
been axiomatized in [26, Section 6]:

x:0,y:0]|—For(cut(x),y) = cut(x) (34)
x:0,y:0]|—F or(x,cut(y)) = cut(or(x,y)) (35)
x: 0| —F cut(cut(x)) = cut(x). (36)

To delimit the scope in which cut discards choices, we add an operation that opens a scope, and
a close operation for closing scopes:

scope: (0] 1) close: (1]0).

We propose the following equations for scope:

— | = + scope(a.fail) = fail (37)
x: 0| — F scope(a.cut(x(a))) = scope(a.x(a)) (38)
x:0,y:1]| -+ scope(a.or(close(a; x), y(a))) = or(x, scope(a.y(a))). (39)

Intuitively, Equation (38) says that when a cut reaches the boundary of a scope, the cut is erased so
it cannot affect choices outside of the scope. The Haskell implementation of the scope function by
Pir6g and Staton [26] has similar behavior.

Equation (39) axiomatizes the interaction between opening and closing a scope. From it, we can
derive the following:

scope(a.close(a; x)) = scope(a.or(close(a; x), fail)) via (18)
= or(x, scope(a.fail)) via (39)
= or(x, fail) via (37)
=x via (18).

Remark 3.10. We can almost encode the theory of once from Example 3.5 into the theory for
cut and scope (Example 3.9), by defining once to be scope, and defining the close(a; x) of the once
theory to be cut(close(a; x)). Then we can recover Equations (20), (22), and (23) from Figure 4, by
using Equations (34) to (39), but we cannot recover Equation (21), which is idempotence of or inside
aonce.

4 Models of Parameterized Theories

In the previous section, we introduced parameterized algebraic theories, showing how scoped sig-
natures induce parameterized signatures (Example 3.3), and giving four examples of parameterized
theories with equations in the scoped setting: nondeterminism with once, catching exceptions,
state, and nondeterminism with cut (Examples 3.5-3.9). The previous section was concerned with
syntactic aspects of parameterized theories. In this section, we look at semantic aspects, via models.

The main results of this section are in Section 4.4, where we connect the free models of the four
examples of parameterized theories with constructions from the literature.

To formulate these main results, we first look at models of parameterized algebraic theories
generally, in Section 4.1. We show that an appropriate setting for models is the category Set",
where the objects are sequences of sets and the morphisms are sequences of functions. The rough
idea is that a model has a carrier for every possible parameter context, i.e., every possible scoping
depth. Models of parameterized algebraic theories have been studied before, but here we use a
substructural variation which has a different notion of model. We then formulate and characterize
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free models in Section 4.2. We show that free models form a strong monad, by analogy with the
first order case.

Although the free models of parameterized algebraic theories naturally live in the category Set™,
under Perspective 2.10 scoped effects are operations on a monad on Set, i.e., without the indexed
family of sets. Moreover, in some previous work on handling scoped effects, the programs of the
domain-specific language being handled form a monad on Set. We make the connection to both of
these in Section 4.3, observing that a parameterized algebraic theory also gives rise to a monad on
Set (with scoped operations), and in particular we show that a previously considered monad for
scoped effects on Set arises in this way (Theorem 4.10).

We connect the free models of the four examples of parameterized theories with constructions
from the literature in Section 4.4. Finally, in Section 4.5, we use the model-based foundation to
construct parameterized algebraic theories for scoped effects in general, beyond the four exam-
ples of Section 3.2. This shows that our new Perspective 2.15 allows for finer distinctions than
Perspective 2.10, since there are multiple possible parameterized algebraic theories consistent
with a given monad and scoped operations, a fact we demonstrate for the List monad and once in
Proposition 4.19.

4.1 Models in Set!

A model of a first-order algebraic theory (e.g., [2]) consists simply of a set together with speci-
fied interpretations of the operations of the signature, validating a (possibly empty) equational
specification. The more complex arities and judgement forms of a parameterized theory require
a correspondingly more complex notion of model. Rather than simply being a set of abstract
computations, a model will now be stratified into a sequence of sets X = (X(0), X(1),...) € Set"
where X (n) represents computations taking n parameters. In Section 2.2 we described the somewhat
different use of Set"' by Pirog et al’s [25]. We connect the two approaches in Theorem 4.10 below.

Intuitively, an object n in the discrete category N can be thought of as a parameter context A with n
parameters. As explained in Section 3.1, parameter contexts do not admit weakening, contraction,
or exchange, making the use of a discrete category appropriate for representing parameter contexts.
Work closely related to ours employs other categories instead of N: In the algebra with linear
parameters of [40] only parameter exchange is allowed, so the category used is Bij, consisting of
natural numbers, regarded as finite sets, and bijections between them. The parameterized theories
of [38] allow all structural rules on parameter contexts, and hence are modeled using the category
of natural numbers (regarded as finite sets) and all functions between them.

At first glance, the interpretation of an operation O : (p | my,...,my) in a semantic model
X € Set!" should be a function X (m;) X ...x X (my) — X(p), since O takes p parameters. However,
the operation O can be used in any context A that has at least p parameters, so the interpretation of
O: (p | my,...,mg) on amodel X € Set" should instead be a family of functions, for every n € N,

X(n+m) X...xX(n+mg) = X(n+p),

interpreting O when it is used in a context with n + p parameters. For example, if a theory includes
the operation close : (1 | 0) then it includes all of the following terms for n € N:

x:n|ay..,an Fclose(ansr;x(ag, ..., an)).

If we think of parameters as scopes, and the set X (n) as the set of computations that close n scopes,
then we see that to model close must actually require a family of functions X(n) — X(n + 1)
indexed by n € N, since close only closes the last of possibly many scopes and then delegates the
closing of any remaining scopes to its continuation.
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Definition 4.1. Let . be a parameterized signature (Definition 3.1). A Z-structure X is an X € Set"'
equipped with, for each O : (p | my, ..., my) and n € N, a function

Oxn:X(m+mp) X...xX(n+mg) > X(n+p).

Given a X-structure X, the interpretation of operations can be extended to all terms (generated
by rules (14) and (15)). The interpretation of a term x; : my, ..., X : m | ay,...,ap + t is a sequence
of functions

[tlxn: X(n+m) X...xX(n+my) — X(n+p)
indexed by n € N defined by structural recursion as follows. A (computation) variable
X1 My, e, Xk Mg | A1, e, G, F XA, e, Gmy)
is interpreted by the sequence of product projections
i X(n+m) X...xX(n+m) X...xX(n+mg) = X(n+m;).

AtermT | A ay,...,ap F O(ay, ..., ap; by...bp by, ..., by ... by, Ii) is interpreted by the sequence
of functions
Oxnsial © ([t1]lxms - - - [l xn)-

Let us make a connection between the substitution rule (16) and our modeling of terms as
sequences of functions. For every n € N, from a term

Xy imy, ., Xg i mg | ay, ., ap bt
we can obtain a term
Yy in+my, .Y ndmg | by, byay, . a, F Y (40)

where t' = t[...,(b1,....bn,c1, e scmy; b Yi(b1, ..., bn 1y ooy Cmy)) /x4, ], Teplaces all instances of
xi(di, ..., dm;) by yi(b1, ..., bp, d1, ..., dp,) in t. Informally, ¢’ is the computation ¢ running with n
additional resources, which are passed to the computation variables yy, ..., yx to consume. The
interpretations of t and ¢’ are connected by the formula

[tlﬂX,S = [[t]]/\’,s+n-

Definition 4.2. Let 7 be a parameterized theory over the signature X. A 3-structure X is a model
of 7 if for every equation ' | A+ s =t in 7, and every n € N, we have an equality of functions
[TIAFs]xn=[T|AFt]xn

ProposITION 4.3. The derivable equality =7 (Figure 3) for a parameterized algebraic theory 7" is
sound: If L =g R is derivable, then [L] x = [R] x in any T-model X.

Proor NOTES. The proof goes by induction on the structure of derivations of L =4 R in Figure 3.
The only non-trivial case is the first rule in Figure 3, which follows from the semantic counterpart
to substitution (16):

[t[e/x, . ti/xil]x = [t oy - (0] x. - [a]x)
and this property can be shown by induction on ¢. O

Remark 4.4. A more abstract view on models is based on enriched categories, since parameterized
algebraic theories can be understood in terms of enriched Lawvere theories [15, 34, 37]. This is
potentially useful because, by interpreting algebraic theories in different categories, we can combine
the algebra structure with other structure, such as topological or order structure for recursion [1,
Section 6], or make connections with syntactic categories [39].
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We now outline the general notion of model in this enriched setting. First, recall that the category
Set'' has a “Day convolution” monoidal structure [6]:

X@®Y)(m) = > X(m)xY(m)

my+my=n

making Set"' a monoidal category. Having chosen this monoidal structure for the category Set",
we can consider categories enriched in Set''. We can interpret a parameterized algebraic theory 7~
in any Set''-enriched category C with products, powers, and copowers. A 7-model in C comprises
an object X € C together with, for each O : (p | my ... mg), a morphism

y(p) - ([y(m1), X] x -+ X [y(me), X]) = X,

making a diagram commute for each equation in 7. Here, we write y(m) = N(m,—), and A - X
and [A, X] for the copower and power in C.

The elementary notion of model (Definition 4.2) is recovered when we consider Set" enriched
in itself, because for the symmetric monoidal closed structure on Set'": [y(m), X](n) = X(n + m),
and the copower - is the Day convolution ®. This framework subsumes the one with the functors
(»), (<) from (9) since » X = y(1) ® X and <X = [y(1), X].

4.2 Free Models of Parameterized Algebraic Theories and Induced Monads

Strong monads are a widely used encapsulation of computational effects, starting from Moggi’s
work [23]. First-order algebraic theories have a close correspondence with monads. To go from a
theory to a monad, one notes that the construction assigning the free model T(X) of the theory to
each set X has the structure of a monad. The finitary monads on Set are exactly those that arise in
this way. This is also true in the enriched setting (e.g., [15]). In this subsection we flesh out that
construction in the case of parameterized algebraic theories.

There is an evident notion of homomorphism applicable to 3-structures and 7-models, and thus
we can sensibly discuss Z-structures and 7-models that are free over some collection X € Set'" of
generators, as follows.

Definition 4.5. Consider a 7-model Y with carrier Y € Set' and a morphism 7y : X — Y in
Set''. Then Y is free on X, if for any other model Z and any morphism f : X — Z in Set", there
exists a unique homomorphism of models f : Y — Z, that extends f, meaning f o nx = f in Set'".

In Proposition 4.6 below we will show that a particular construction Fg-X gives the free 7-model
on X. We discuss an abstract description of F+-X below, but for convenience we first describe it con-
cretely. Informally, we can construct F-X € Set" by taking F-X (n) to be the set of =-equivalence
classes of terms with parameter context ay, ..., a, whose m;-ary computation variables come from
X (m;). In more detail, elements of F7-X(n) are represented by triples (T; [¢]; ¢} consisting of

—a computation context I' = xy : my, ..., x¢ : mg,

—an =g—equivalence class of terms [T' | ay, ..., a, F t]=, in computation context I' and parameter
context ay, ..., ap, and

—alist ¢ = cy, ..., cx where ¢; € X(m;).

Then F7X(n) consists of the ~-equivalence classes of these triples,
FeX(n) ={(T =x1 :my,..,xx :mp; [T | ay, oo, an F t]=psc1s i) | € € X(my)}/~, (41)
where ~ is the equivalence relation generated by the following basic cases:
—a-renaming: (T; [¢];E) ~ (I”; [¢'];¢) where I” | d + ¢’ is obtained from T | 4 + ¢ by renaming

the variables in T
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—Permutation: (T; [t];8) ~ (I”; [t'];¢’), where I | @ t’ is the result of a permutation of the
list T, and ¢’ is the result of the same permutation applied to the list ¢.

—Contraction: (T, x : m,y : m; [t];¢,d,dy ~ (T, x : m; [t[x/y]];C, d).

—Weakening: (T; [t];€) ~ (T,x : m;[t];C,d), where d € X(m) and the [¢] on the right is
understood to be in the weakened context.

It is straightforward to make F7X into a 2-structure.

As usual, we can also describe Fs-X abstractly. Let A be the full subcategory of Set'" whose
objects are finite sums of representables. For each context I' = x; : my, ..., Xx : mg, consider the
object Vr € Set" where

Ve(n) ={T | b1, ..., buy F xi(b1, ..., by) }. (42)
So |Vr(n)| = {1 < i < k| m; = n}|.) Then Vf € A, because V¢ = y(my) + ... + y(my), where
as above y(m) is the representable N(m, —). Indeed, every object of A is isomorphic to some Vr.
The morphisms o : Vi — Vv of A correspond to context substitutions from I' to I'" generated by
renamings, permutations, contractions, and weakenings.

Let Ty : A — Set" be a functor where

Tr(V)(n) ={[I' | ay, ..., an + t]=;}

is the set of =g-equivalence classes of terms I | ay, ..., a, F t, and the action of T7 on morphisms is
given by applying context substitutions. (This determines T on all of A up to natural isomorphism.)
Then Fg is the left Kan extension of Ty along the inclusion functor inc : A — Set". As usual, the
left Kan extension has a coend formula:

VeA
FrX(n) = / T7V(n) x Set™ (V, X).

In the case where V = Vi, we have Set™ (Vr, X) = X(my) X ... x X(mg), from which the reader
familiar with coends will be able to recover the concrete presentation (41). As usual, a left Kan
extension along a full and faithful functor restricts back to the original functor, so that

Fr(Vr)(n) = Tr(Vr)(n) = {[T | a1, ...,an  t]=;} (43)
for any context I', as may also be verified from the concrete description.
PROPOSITION 4.6.

(1) FyX is a T-model, and moreover a free T-model over X.

(2) Fr extends to a monad on Set", strong for the Day tensor.

(3) The derivable equality (=) in a parameterized algebraic theory T is complete: If an equation
is valid in every T-model, then it is derivable in =q-.

A monad T on Set" strong for the Day tensor is a monad in the usual sense equipped with a
strength X @ TY — T(X ® Y), where ® is the Day tensor defined in Remark 4.4.

Proor. The first part of (1) is straightforward and standard: The interpretation of operation
symbols is read off from (15). For the second part, we use the variable introduction rule (14) to
define nx : X — FgX by sending ¢ € X(n) to the class of

(x:m[x:n|ay,...,an+x(ay,...,an)]=r; ).

Then, for any 7-model Z with carrier Z and map ¢ : X — Z, we extend ¢ (uniquely) to a
homomorphism F&X — Z by sending an element of F+-X(n) represented by

(1 : My, oo, X s My [ X1 2 My, e, Xk s Mg | @q, oG Bl 01y e, CF)

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 8. Publication date: June 2025.



8:20 C. Matache et al.

to
[X1dvt]zo(dm (1), ... Pm(ck)) € Z(n).

For Claim (3), we use the models F7-(Vr), using the description in (43). For any termT | a; ..., a, +
t, its interpretation in the model F7(Vr) gives function

[t]o - Fr(Vr)(my) X ... X Fr-(Vr)(m) — Fr(Vr)(p).
One can check that applying [t], to the tuple

<[x1(al> L) aml)]=7'7 LR [xk(als cees amk)]=7>

of inclusions of variables gives the =q-equivalence of ¢ as an element of F7(Vr)(p). Thus if u is
another term in the same context and [[¢] = [u] in the model F7-(Vr), then ¢ =5 u is derivable.

For Claim (2), the nx defined above becomes the monadic unit, and bind is defined in terms of
substitution as usual (rule (16)). By the general properties of the Day tensor product, the strength
is determined by a natural transformation

X(p) ® FrY(n) — Fr(X ® Y)(p +n).
This map sends ¢ € X(p) paired with an element represented by
Y1 :my, e Yk s mys [y cmy, oy s myg | by, by F t]osdy L, dy),

where d; € Y(m;) to the class of

(Yr:p+my, ..,y : p+my;
[yr:p+my, .,y p+me | ay, ..., ap, by, . by ]
«p,m1), (e, dr)), ..., ({p, mic), (¢, di))),
where t’' = t[..., (ay, ..., ap, €1, ..., Cm; F Yi (a1, ..., Gp, C1, ..., Cm,) ) Ui, -..] and the ({p, m;), {c, d;)) are

elements of (X®Y)(p+m;) = X, shy=p+m, X (h1) XY (h2) that lie within the X (p) XY (m;) summand.
It is straightforward to check the required laws. O

In Section 4.4 we will consider explicit syntax-free characterizations of the free models for
particular scoped theories.

Remark 4.7. We mention that Fy is part of an equivalence between monads on Set" strong
for the Day tensor and whose functor part preserves sifted colimits, and parameterized algebraic
theories. This result can be proved using similar methods to those employed for parameterized
theories with unrestricted parameters [37, Corollary 1] and linear parameters [40, Section 5]. We
omit the proof as this result will not be used in the rest of this article.

4.3 Set-Monads Induced by Scoped Theories in General

The previous subsection introduced a way of building a monad Fg- from a parameterized algebraic
theory 7, via its free models. We now relate this with earlier work on monads for scoped effects.

Recall from Section 2.2 (13) that the functors | : Set — Set" and | : SetY — Set form an
adjunction. The monad F7 induces a monad F/- on Set:

Fp=loFsol (49)

In this section we analyze this monad F7- on Set in the case where the parameterized algebraic
signature of 7 is induced by a scoped signature, i.e., some (first-order) algebraic operations plus
some scoped operations, according to Example 3.3.

—In Proposition 4.8 we show that the induced monad F/- on Set accommodates the algebraic
and scoped operations from the scoped signature.
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—In Proposition 4.9 we characterize the induced monad F7- on Set in the case where there are
no scoped operations, but where there may be equations. It is the monad induced by models
of the underlying first-order algebraic theory.

—In Theorem 4.10 we characterize the induced monad F/- on Set in the case where there may
be scoped operations but there are no equations. We show that this induced monad FZ- is
isomorphic to the monad of Proposition 2.14 that was introduced by Pirog et al. [25].

Later, in Sections 4.4 and 4.5 we will go beyond this, to consider settings where there are both
scoped operations and equations. The constructions of this section are general, and we return to
examples in Section 4.4.

4.3.1 Algebraic and Scoped Operations on the Induced Set-Monad

PropPOSITION 4.8. Let T = (3, E) be a parameterized algebraic theory where the signature X. arises
from a pair of signatures for algebraic and scoped operations by the construction in Example 3.3.

(1) For each algebraic operation (o : k), the monad F7- supports an algebraic operation of the same
arity, in the sense of Definition 2.11.
(2) For every scoped operation (s : k), the monad F/- supports a scoped operation of the same arity,

in the sense of Definition 2.12, i.e., a natural transformation (F,'i_(—))k — F(-).

ProoF. We have a natural transformation (F7-X)* — FzX given by substituting terms into the
operation o and this is “algebraic” in the sense of commuting with postcomposition by the monadic
multiplication, so (1) follows easily. In general, an operation s : (0 | 1,..., 1) appears as a natural
transformation (< FyX )k — F7X. However, it is easy to show that < preserves 7-models, and in
the setting of (2) we can use close : (1 | 0) to get a map

X 2 prx 1 g x
By the universal property of free models, this induces another map F7X — <FgX. This map
adds a close at the leaves of each syntax tree, as opposed to at the root. Precomposing the scoped
operation (< FrX Y¢ — FoX with k copies of F7X — <FsX, we have a natural transformation
(FrX)* — F7X which restricts to the desired scoped operation on Fr. O

4.3.2  Characterization of the Induced Set-Monad in the Absence of Scoped Operations. Consider
an ordinary algebraic theory 7 = (3, E) with a signature and equations. This ordinary theory
induces a parameterized algebraic theory 73, following Example 3.3, when it is regarded as a scoped
theory without any scoped operations. In Proposition 4.9, we show that these two theories induce
the same monad on Set.

In full detail, the parameterized theory 7; is given as follows. We consider a scoped signature
with the algebraic operations of 7~ and no scoped operations. This scoped signature induces a
parameterized algebraic signature, according to Example 3.3. This parameterized signature has
an operation of arity (0 | 0, ..., 0) for every operation of the ordinary theory, together with an
operation close : (1 | 0). The equations of the ordinary theory t = u can be regarded as equations of
the parameterized algebraic signature, t° = u°, according to the translation (-)° from Section 3.1.
Thus the ordinary algebraic theory 7~ induces a parameterized algebraic theory 7.

As a mild digression, we remark that since there are no scoped operations, it is natural to omit
the close operation. This gives rise to a simpler parameterized algebraic theory, which we call 77,
and which is defined in the same way as 7; but without the close operation. We show that the
induced monads on Set are all the same.
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PROPOSITION 4.9. Let T = (2, E) be an algebraic theory that induces a monad T on Set. Then T is
isomorphic to the Set restriction of the monads induced by the parameterized theory 71 and by the
parameterized theory Ty:

T =F; =F,
with F% and F,’E monads on Set as in (44).

Proor. We will prove a stronger statement about each theory. The basic observation to make
about 77 is that a 77-algebra structure on Y € Set' is equivalent to a 7 -algebra structure on each
Y(n) (with no conditions relating the 7 -algebras for different n). Hence, it is easy to see that
for any X € Set", (FzX)(n) = T(X(n)). Then by definition of the functors 'and | we obtain
Fiﬁ (A) = T(A) for any set A.

For 7;, the basic observation is that a 7;-algebra structure on Y € Set'' is just a 77-algebra
structure (levelwise 7 -algebra) together with a sequence of functions closey , : Y(n) — Y(n+1).
Hence it is routine to check that the free algebra on X € Set'' can be given by the recurrence
F7;(X)(0) = T(X(0)) and Fz;(X)(n + 1) = T(X(n) + Fz(X)(n)). In particular, for a set A, the
free model Fy; (T A) is given by TA = An. T"*' A, with the obvious interpretation of the algebraic
operations in 3, and closer, , : T"*'A — T"™*?A given by the monadic unit a1 4. O

Proposition 4.9 establishes the connection between monads induced by parameterized theories
with monads for ordinary algebraic theories. As we can already see with our two theories 77 and
73, there can be multiple parameterized theories inducing the same ordinary algebraic theory. We
include the theory 77 in the proposition above because it is the more natural way to view 7~ as a
parameterized theory. We can demonstrate its significance further using the abstract situation of
Remark 4.4: We can make Set into an appropriate Set" enriched category by change-of-enrichment
along the diagonal functor Set — Set"', following which it is easy to see that 7;-models in Set
are equivalent to 7-models in Set. Models of 7; in Set are also 7-models, but equipped with an
endomorphism of the carrier coming from the interpretation of close. However, 7; is our starting
point for adding scoped operations to an algebraic theory, as we saw in the examples of Section 3.2
and will return to in Section 4.5.

4.3.3 Characterization of the Induced Set-Monad in the Absence of Equations. We turn now to
the setting of a scoped signature, with no equations. We show that the monad F7- on Set is the
same as the monad of Proposition 2.14 given by Pirdg et al. [25]. We do this by characterizing Fy
when 7 has no equations, as follows.

THEOREM 4.10. Consider signatures for algebraic Y. and scoped Y’ effects with no equations, inducing
a parameterized algebraic theory 7 (via Example 3.3). We have an isomorphism of monads

Fyr= (2+(i'o<)+>)*,
Here <> are endofunctors on Set" as in (9), and 5 and 3’ are the endofunctors on Set" corresponding

to the signatures %,%’, as given in (10).

Proor. Denote by G the functor (£ + (£ o <) +>). We can think of the elements of G*(X)(n)
as trees with nodes being operations from X, ¥’, or close and leaves from X at an appropriate
index. Consider the description of F+-X(n) from Equation (41) in terms of equivalence classes. A
representative of an equivalence class has the form:

(T'=xy:my,...,xx :mg; T ay,...,ap b t; Cpy ..y Ci),
where each ¢; € X(m;). We define a natural transformation

¥ : FrX — G*(X)
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by induction on terms T | ay, ..., a, + . The tuple (T; x;(ay, ..., am,;); ) is mapped to the leaf ¢;. If ¢
starts with a scoped operation from ¥, meaning t = sc(an41.t1, ..., Gn+1.Lar(sc) ), We use the trees

Une1(T; T | a1, ..., Gn, Gnat F tj; €) € <G (X)(n) =G (X)(n+1)

as children to construct a tree with root sc. Recall that the functor < increases the indexing by 1,
and > decreases it. If ¢ is an algebraic operation from ¥, then ¢ is defined similarly (without using
<). If t = close(ay; '), then ¢, 1(T; T | a1, ..., an-1 + t’; ¢) € G*(X)(n — 1) becomes the child of
the root labeled close. It is easy to check that i respects the equivalence relation generated by
a-renaming, permutation, weakening, and contraction of I, using the fact that these operations
have the corresponding effect on ¢ and therefore on the trees in the image of .

To check that ¢ is an isomorphism, we can use the obvious candidate inverse, mapping trees
from G*(X) to terms with free computation variables from X. The action of G* on ¢ : X — Y is
to apply ¢ to the leaves of the tree, while F7(¢) replaces ¢ in a tuple with ¢y, (¢1), ..., Py ().
Therefore ¢ is natural in X.

To show ¢ is an isomorphism of monads, we also need to show ¢ o = 5, which is true because
n:X — Fy(X) maps ¢ € X(m) to the tuple (T = x : m; T | ay,...,am + x(ay, ..., am); c), and
n: X — G*(X) maps c to the leaf c. We also need to show ) o g = o yG* o Fqi, which follows
if we observe that multiplication for Fs is given by simultaneous term substitution, while for G*
multiplication replaces the leaves of a tree with trees. O

4.4 Reconstructing Models for Scoped Effects via Parameterized Theories: Examples

In this section we revisit the examples of parameterized algebraic theories from Section 3.2:
nondeterminism with once, catching exceptions, state, and nondeterminism with cut. We show
that the free models in the sense of Section 4.2 correspond exactly with the earlier scoped models
of Pirég et al. [25].

To characterize them as certain free models of parameterized algebraic theories, we need the
following notion.

Definition 4.11. X € Set'" is truncated if X(n+1) = @ for all n € N.

Equivalently, X is truncated if X = [ (X(0)). The free model on a truncated X corresponds to the
case where computation variables can only denote programs with no open scopes. This is the case
in the development of Pirdg et al. [25], where if the programmer opens a scope, a matching closing
of the scope is implicitly part of the program.

4.4.1 Nondeterminism with once. Recall the parameterized theory for nondeterminism with
once (signature in Example 3.2 and equations in Figure 4). It follows from Proposition 4.6 that this
theory has a free model on each X in Set!, with carrier denoted by T,(X) € Set''. For X truncated,
the free model on X has an elegant description:

T,(X)(n) = List™ (X(0)).

Here List(A) is the set of lists over A, so the n-layer nested lists List"*' (X (0)) can be thought of as
the set of balanced trees of depth exactly n + 1 but with arbitrary degree, and leaves labeled by
X (0), where we distinguish between nodes with zero degree and leaf nodes.

In this case the interpretation of once chooses the first element of a list and closing a scope wraps
its continuation as a singleton list. Choice is interpreted as list concatenation (+), and failure as
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the empty list []:

once, : Ty (X)(n+1) » To(X)(n) once,([]) =[], once,([x,...]) =x
close, : Ty (X)(n) = To(X)(n+1) close, (x) = [x]

ory : To(X)(n) X To(X)(n) = To(X)(n) ory (x1,X2) = X1 # X2

fail,, : 1 — To(X)(n) fail,() = [].

In fact the model T, (X) we just described is the same as the model for nondeterminism of Pir6g
et al. [25, Example 4.2].

THEOREM 4.12. For a truncated X € Set", T, (X) is the free model of the parameterized theory of
nondeterminism with once (Example 3.5 and Figure 4). Moreover, the model for nondeterminism with
once from [25, Example 4.2], starting from a set A, is the free model on ' A € Set".

PROOF NOTEs. It is easy to show that the operations on T,(X) defined in this section satisfy the
equations in Figure 4, and therefore T, (X) is a model. Denote by F,(X) the free model in the sense
of Proposition 4.6. We apply the definition of freeness to the map X — T,(X) that sends each
¢ € X(0) to the singleton list [c], to obtain a homomorphism of models p : F,(X) — T,(X). To
show T,(X) is free, we show that p has an inverse o : T,(X) — Fo(X).

Recall from Equation (41) that F,(X)(n) contains equivalence classes of terms in context, with
computation variables taken from X. For simplicity, assume that X (0) is finite. Then we define o
using representatives of the equivalence classes where the context I’y contains a variable (x : 0)
for each element of X (0). We define o by induction:

on([]) =Ix | ay, ..., a, + fail
oo(x it xs) =Tx | = F or(x, og(xs))
On1(x %) =Tx | a1, ..., Gnar or(close(an+1; 0 (X)), Ot (XS)).
If X(0) is infinite, o,,(xs) is defined similarly, but I’y only contains variables corresponding to the
elements of X (0) that actually appear in xs. The terms in the image of ¢ are essentially normal
forms for the parameterized theory, when computation variables only have arity 0.
We show that ¢ is a homomorphism of models, meaning it commutes with the operations in the
theory, using the equations in Figure 4. The case for once also requires an induction on lists.
To show p o ¢ = id7, (x), we use induction on n € N, followed by induction on lists, and the fact
that p is a homomorphism. To show o o p = idf, (x), we use induction on the term formation rules,
and use the fact that ¢ is a homomorphism. O

4.4.2  Exceptions. Recall the parameterized theory of throwing and catching exceptions in
Example 3.6 and (24)-(26). For truncated X € Set", the free model of the theory of exceptions has
carrier:

Te(X)(n) = X(0) +{eo, . .., en},
where e,,_; corresponds to the term (in normal form) that closes i scopes then throws.

To define the operations catch, and close, we pattern match on the elements of T.(X)(n + 1)
using the isomorphism T (X)(n+1) = T.(X)(n) + {en+1 } and elide the coproduct injections. Below,
x is an element of T.(X)(n), standing for a computation in normal form:

catch, : T.(X)(n+1) X T.(X)(n+ 1) — T.(X)(n)
catch,(x, ) = x, catch,(ent1, X) = x, catchy,(en+1, €ns1) = €y

close, : T.(X)(n) = T.(X)(n+1) close,(x) =x
throw,, : 1 — T.(X)(n) throw, () = ey.
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The cases in the definition of catch,, correspond to Equations (24)-(26), respectively. In the third
case, an exception inside n + 1 scopes in the second argument of catch becomes an exception inside
n scopes.

THEOREM 4.13. For a truncated X € Set", T,(X) is the free model for the parameterized theory of
exceptions (24)—(26). The model for exception catching from [25, Example 4.5], which starts from a set
A, is the free model on [ A € Set!.

Proor NOTES. We follow the same outline as for the proof of Theorem 4.12. Consider the map
X — T.(X) that maps each element of X (0) to itself. This has a unique extension to a map out of
the free model on X, p : F.(X) — T.(X). We define a candidate inverse o : T.(X) — F.(X) to p. It
suffices to check being inverse as morphisms in Set', since then o is automatically a homomorphism.
Using the intuition of normal forms and the isomorphism T.(X)(n) = X(0) + {eo, ..., en}:

on(x)=x:0]a,..,a, + close(ay; ... close(as; x) ...)
on(en—i) = —1| ay,...,a, + close(auys; ... close(a,—it1; throw) ...), foreach0 <i < n.
If we consider an element z € T.(X)(n), and the isomorphism T.(X)(n+ 1) = T.(X)(n) + {en+1},
the following equation holds:
ont1(2) = Is,(2) | a1, ..., any1 + close(api1; 0n(2)). (45)

To show p o o = id,(x) we use that p is a homomorphism. For o o p = idg,(x), we proceed by
induction on the term formation rules. We use Equation (45), and in the catch case we also use the
Equations (24) to (26) from the parameterized theory. )

4.4.3 State with Local Values. Recall the parameterized theory of mutable state with local values
in Example 3.8 and its Equations (27)—(33). The free model, in the sense of Proposition 4.6, on a
truncated X € Set' has carrier:

L(X)(0) = (2 = X(0) x 2) K(X)(n+1) = (2 = T(X)(n).
The operations on this model are
locall, : Ti(X)(n +1) = Ti(X)(n) locali,(f) = (£ )
close, : i(X)(n) —» H(X)(n+1) close,(f) = As. f
puty, : Ti(X) (n) — Ti(X)(n) put,,(f) = As. f i Fs s=0
get, : i(X)(n)* = Ti(X)(n) gety(fo9) = As. {g . otherwise”

Notice that the continuation of local’ uses the new state i, whereas close discards the state s which
comes from the scope that is being closed.

If we only consider Equations (27)-(32), omitting (33), the carrier of the free model on a truncated
X € Set' is.

T/ (X)(0) = (2 = X(0) X 2) = Ti(X)(0) T (X)(n+1) = (2= T/ (X)(n) x2). (46)
In fact, T} (X) is the model of state with local proposed in [25, Section 7.1].

THEOREM 4.14. Given a truncated X € Set", Tj(X) is the free model of the parameterized theory of
state with local values, Equations (27) to (33). Moreover, T/ (X) is the free model for Equations (27)
to (32).

Consider the example of state with local variables from Pirdg et al. [25, Section 7.1], specialized
to one memory location storing one bit, reading the return type (written ‘a” in [25]) as a set A.
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The model proposed in [25, Section 7.1] is the free model on ' A for the parameterized theory with
Equations (27)—(32).

ProoF NOTEs. We show that Tj(X) is the free model following the same proof outline as for The-
orems 4.12 and 4.13. It is easy to equip T} (X) with operations and do a similar proof of freeness.

Consider the map X — Tj(X) that sends each x € X(0) to the function As. (x,s), and let
p : A(X) — Ti(X) be its unique extension out of the free model. We define a candidate inverse for
p using the intuition of normal forms, o : Tj(X) — F(X):

o0(f) =Tx | = + get(put™ ) (m (£ 0)), put™ ) (m (£ 1))

on+1(f) =Tx | a1, ..., ans1 F get(close(ans1; 0, (f0)), close(anii; on(f1))).
where we identify the elements of X(0) with the variables in I'y. Like in the proof on Theorem 4.12,
this definition of I'y works when X (0) is finite; otherwise a finite I can be recovered from f.

We can show that ¢ is a homomorphism using Equations (27) to (33) from the parameterized
theory. To show p o ¢ = idy(x), we proceed by induction on n € N and use the fact that p is
a homomorphism. For o o p = idp(x), we use induction on terms and that both p and o are
homomorphisms. For the variable case, we use Equation (27). O

The interpretations in 7j(X) and T} (X), i.e., that of Pirég et al. [25], of programs with no open
scopes agree.

ProproSITION 4.15. Consider a fixed context of computation variablesT = (x; : 0,...,x, : 0) and a
truncated X € Set". For any term T | — v t, the following two interpretations coincide at index 0:

[t]70.0 = [tl7y (x0.0 : Ti(X)(0)" — Ti(X)(0),
under the identification Tj(X)(0) = T/ (X)(0).

Proor. The local operation binds parameters so we use a logical relation indexed by the length
of the parameter context p € N. The relation has type

RP C (TX(0)" — TiX(p)) x (TX(0)" — T X(p))
and is defined as
R’ ={(f.f) | f: TiX(0)" = TX(0)}
R = {(f,9) | ¥s € 2. (A(x1, oo, Xn). F(1, eers Xn) (8), A(X1, oors Xn). T1G(X1, oo, X ) (5)) € RPY,
where (x1, ..., x,) € T1X(0)", and ; is the projection 1 X(p) X 2 — T1X(p), c.f. (46).
The fundamental property for this logical relation says that for all terms I' | ay, ..., a, + t, the

two interpretations are related: ([t]7(x)0, [t]77(x)0) € RP.If p = 0, this is enough to deduce the
interpretations are equal. The fundamental property is proved by induction on ¢. O

The restriction of I' in Proposition 4.15 to computation variables that do not depend on parameters
and of A to be empty are reasonable because in the framework of Pirog et al. [25], only programs
with no open scopes are well-formed. Therefore, only such programs can be substituted in t,
justifying the restriction of [t[7(x) to index 0.

4.4.4 Nondeterminism with cut. Recall the parameterized theory of explicit nondeterminism
with cut from Example 3.9. According to Proposition 4.6, this theory has a free model for each
X € Set!, denoted by T (X).

Define a functor on sets |dem:

Idem(A) = AW {a" | a € A}.
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Here in the notation a*, the = is just a flag. It is a semantic counterpart of cut, meaning “discard the
yet uninspected choices and continue with a,” following [26, Section 6]. (It is not the Kleene star of
Proposition 2.14.)

If X is truncated, the carrier of the free model on X is

Tos(X)(n) = (Idem o List)™ (X (0)).

(So these can be thought of as balanced binary trees, depth n + 1, leaves labeled by X (0), and where
each non-leaf node is optionally flagged with *.)
When writing the interpretation of operations, we use the isomorphism

Tes(X)(0) = Idem(List(X(0))) Tes(X)(n+ 1) = ldem(List(Tes(X) (n)))

so an element of Tes(X)(n) is either a list xs or a starred list xs*.
The interpretation of cut and or in the free model is the following:

cut, : Tes(X)(n) » Ts(X)(n)  cuty(xs) =xs*,  cuty(xs”) = xs*

ory : Tes (X)) (n) X Tes(X) (n) — Tes(X)(n)
or,(xs,ys) = xs+vys, ory(xs,ys") = (xs+ys)", orp,(xs*,—)=xs"

The cut operation marks a list with a star; the second clause in the definition of cut corresponds
to the idempotence Equation (36). Similarly to Section 4.4.1, or performs list concatenation, but
now stars need to be taken into account as well. The second clause in definition of or corresponds
to Equation (35), and the third clause to Equation (34).

The operation of opening a scope is interpreted as

scope,, : ’I;:S(X)(n + 1) - Tcs(X)(n)
scope, (xs*) = scope,(xs), scope,([]) =[], scope,(x :: xs) = or,(x,scope,(xs)).

The first clause corresponds to erasing cuts as in Equation (38). The second clause corresponds
to Equation (37). The third clause uses the interpretation of or to concatenate lists while taking into
account cuts; it corresponds to Equation (39).

The close and fail operations have the same interpretation as in the nondeterminism with once
example from Section 4.4.1:

close, : Tes(X) (n) = Tes(X)(n+ 1) close, (x) = [x]
fail,, : 1 — Tes(X)(n) fail, () = [].

THEOREM 4.16. IfX € Set' is truncated, then Tos(X) is the free model of the parameterized theory
of nondeterminism with cut, defined in Example 3.9.

Proor. We explained in this subsection why Ts(X) together with its interpretation of operations
respects the equations of the parameterized theory. Therefore, T.s(X) is a model of the theory, in
the sense of Definition 4.2.

Denote by Fes(X) the free model on X for nondeterminism with cut, in the sense of Propo-
sition 4.6. Consider the map X — T.(X) that sends each element of X(0) to the singleton list
containing that element. By freeness (Definition 4.5), this map has a unique extension to a homo-
morphism of models p : Fes(X) — Tes(X). To show Tes(X) is free, it is enough to show that p has
an inverse.

Recall that T (X) (n) is isomorphic to (IdemoList)™*1(X(0)), and Fes(X) (n) contains equivalence
classes of terms in context, where the computation variables come from X. We define a candidate
inverse o : Ts(X) — F5(X) by induction on n € N and on lists. For simplicity, we assume X (0) is
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finite and use representatives of equivalence classes from Fes(X)(n) where the context I'x contains
one variable x; : 0 for each ¢; € X(0), so we identify x; and ¢; in the definition below:

oo(xs*) =Tx | — F cut(op(xs)) where xs € List(X(0))
O'()([]) = FX | - fail
oo(x ::xs) =Tx | — F or(x, o9(xs))

On+1(xs*) =TIx | ay, ..., Gneq F cut(one1(xs))
O'n+1([]) = rX | aty ..., py1 B fall
Ons1(x 1 x8) =Tx | a1, ..., Gps1 F Or(close(ans1; 07 (X)), Tne1(x)).

If X(0) is infinite, I’y can be defined to contain only the elements of X (0) that appear in the term o
is constructing. The terms in the image of o can be seen as the normal forms for the parameterized
theory, defined recursively.

To show that o is a section, p o o = idr, (x), we use induction on n € N. For both the base case
and the induction step, we first consider the case where the input is a list xs and use induction on
lists. We use this intermediate result to prove the case of a starred list xs*. Throughout, we use the
fact that p is a homomorphism.

To show o o p = idf,,, we fist show ¢ is a homomorphism of models, i.e., that it commutes with
all the operations. The or and scope cases require induction on lists. Most importantly, we make
use of equations from the parameterized theory of cut (Example 3.9). We then show by induction
on the term formation rules that

on(pn(Tx | a1y, an b 1)) =cs (Tx | a1y, an F 1),

where the equality =¢ is in the theory of cut. We use the equations in the theory and the fact that
o is a homomorphism. The scope case also requires an induction on lists. O

4.5 A General Construction of a Parameterized Theory from Scoped Operations

The results of Section 4.4 can be understood as investigating particular instances of the following
general problem. Given a monad T : Set — Set equipped with a set of scoped operations, find a
parameterized algebraic theory 7 such that 7~ induces, via the construction (44), the original monad
T together with its associated scoped operations described in Proposition 4.8. In each example in
Section 4.4, the given parameterized algebraic theories 7 have only finitely many equations, which
together capture our computational intuitions for the scoped operations.

In this section we will give a solution to this problem in a more general case. Starting from
any finitary monad T : Set — Set (i.e., those T which can be presented by an (ordinary) algebraic
theory) and a set of scoped operations on T, we will find a parameterized algebraic theory 7param
which generates by Proposition 4.8 a monad isomorphic to T and for which the associated scoped
operations agree (Theorem 4.17).

Unlike the examples considered in Section 4.4, Tparam Will typically have infinitely many equations
and there is no reason to expect the equational theory to fully capture the computational intuition
behind the scoped operations. Indeed, in Proposition 4.19 we show that the 7param construction
does not fully recover the handcrafted parameterized theory of semi-determinism given in Figure 4.
In particular, this shows that a given finitary monad equipped with scoped operations can be
compatible with multiple inequivalent parameterized theories.

We now present the construction of 7param. Let T : Set — Set be a monad generated by an
(ordinary) algebraic theory 7~ = (X, E), and let {o; : TX — T};cs be a set of scoped operations on
T indexed by some set I, where k; € N.
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—The signature of 7param is constructed by applying Example 3.3 to the signature X extended
with scoped operation sc; : (0 | 1,...,1) for all i € I, where the list 1, ..., 1 has length k;.

—The equations of 7param come in two kinds. First, each equation in E gives an equation
in Jparam in the evident way. Second, for each i € I and n € N and each k;-tuple of >-
terms (x1, ..., X, F 11, ..., tx,), the 7 -equality class of those terms gives an argument tuple for
oin : T(M* — T(n), and 0;,([t1],. .., [tx,]) = [t'] for some xy,...,x, + t’. For each such
argument tuple and each representative ¢’ of the output, 7yaram gets an equation:

X1:0,...,%, : 0| — F sci(a.ty[close(a, x;) /xi]1<i<ns - - ., a-tx, [close(a, x;) [xi]1<i<n) = . (47)

One could slightly decrease the number of equations of the second kind in 7param by making a
single choice of representative t" of T-equality class 0;,([t1],..., [tk]), since if ¢’ is another
representative then ¢’ = t” is already a consequence just of equations of the first kind.

param

THEOREM 4.17. Let T = (X, E) be an algebraic theory inducing a monad T on Set, equipped with
scoped operations {0;}ie1 for some set I, each of arity k;. With Tyaram constructed as above, we have
the following isomorphism:

T2Fy =)o Fpum ol

Moreover, the scoped operations on F_ , as constructed in Proposition 4.8, agree with the operations o;.
param

Proor. Note that 7param extends the theory 7; considered in Proposition 4.9 by operations sc;
and equations of the form (47). In fact, we will show that the free model Fr, ., on a truncated object
I A, for a set A, is carried by TA = Am. T™ A, the same as the free model of 7; from the proof of
Proposition 4.9. We first note that for each i € I, TA supports an interpretation of s¢; : (0 | 1,..., 1)

with k; arguments by the following morphism:

((TA) (m+ D) = (T2 (a)) L, ey K0, med ) = (T4) (m+0),

We keep the same interpretation of close : (1 | 0), namely as the monadic unit
— Nrm+1
(TA)(m +0) = T™(A) —5 T™2(A) = (TA)(m +1).

Since we saw in Proposition 4.9 that TA models 73, in order to check that TA is a model of Tparam
we only need to see that all instances of (47) are validated. For terms x1 : 0, ...,x, : 0 | — F ¢j and
each1 < j < k;,

[t; [close(a, x1) /xi]1<icnlm = (T Ayr JEZIm 2Ol iz g Wkt sz
The interpretation of the left-hand side of (47) is then
(T™1 A)" Dm0 (pmer )™ hsjsi; (T™2 Ak T A mez 4 BT w4
whereas the right-hand side is
(T Ay 220, [£']m Mg

Translating this into a statement about the ordinary algebraic theory 7~ and Set-monad T, it suffices
to show the following equation:

([t 1rBN<jsk;
1By 2, (T7B)yr —ENE )k ZIE, prp KB, TR
= (48)
(TB)" —=> ls TB

for any set B.
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For any algebraic operation O : T" — T supported by the monad T a short calculation shows
that, for any set C and any function ¢ : n — C, we have an equation

1iC” (TC)”—>TC = 1—>Tnﬂ>TC

where the bar denotes currying and o is the generic effect associated with O, given by
Mn On
15 Tn = 1”—>(Tn)"—>Tn.
Hence, for any 5 i1 - (TB)”,

([tilrBi<jsk;

1% (rpyr 22, (rrpyn o (T =5 1T 51
_ 1L (Tm)* == (TTB)" % TTB % T3

_ y LDy 2 1y 29 g 22, 7

_ 1 1 1 19, R 12, 1

_ 14 (TB)" i, . “ 1T 2 7B

_ 14 (rpyn 22, (TTB)" 5, (rpyr L2 7

= A (TB)" s, 1p

and since E is arbitrary this proves Equation (48). This completes the proof that TA is a model of
7;aram- ~

Since TA is free on [ A for the theory 7; of Proposition 4.9, which omits {sc;};c; and Equa-
tion (47), we only need to show that a 7;-homomorphism TA — Y into a Tparam-model is
always a Jparam-homomorphism, i.e., that it commutes with every sc;. But every element of
TA(m+1) = T(TA(m)) is in the image of [[t] 541 © [close], for some Z-term x;, ..., x, + t, thus this
amounts to the hypothesis that Y validates all instances of Equation (47). O

Remark 4.18. Whereas in Section 3.2 we constructed scoped theories out of particular algebraic
theories whose monads support a scoped operation, the recipe for 7param constructs a scoped
theory in the general case. However, the presentation of 7param typically includes infinitely many
equations whereas the theories in Section 3.2 are given finite presentations. For example, in the case
of once (Figure 4), Equations (21) and (23) are not part of 7,aram but infinitely many substitution
instances of them are. The free models of 7param and that in Section 4.4.1 agree on truncated X
(since the free model of the algebraic theory of explicit nondeterminism is List), which shows
that the theory of once admits derivations of all equations of the corresponding Taram. However,
as we show below, Equations (21) and (23) are not derivable in Jparam. The issue is that (47) only
governs the behavior of scoped operations when applied to arguments definable using the algebraic
operations of 7. We argue that the full behavior of once is captured by the theory in Figure 4,
rather than by 7param.

PROPOSITION 4.19. Equations (21) and (23) are not derivable in the Tparam of the monad List : Set —
Set equipped with the scoped operation once : List — List from Example 2.13, where oncex ([]) = []
and oncex([x,...]) = [x].

Proor NoTEs. We give a model of Tparam in which the equations do not hold, by taking a simple
variation of the free Tparam-model. For any fixed set X, define A € Set'' by

A(0) = List(X + {%o}) A(n+1) = List(A(n) + {%ns1)).
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This is a levelwise model of explicit nondeterminism in the obvious way. For the rest of the structure
we define closeq , : A(n) — A(n+ 1) by closeq,(x) = [x] and once, : A(n+ 1) — A(n) by

oncea,([]) =[], onceg n([x0, X1, ..., xm]) = x0 if all x; € A(n),
oncea n([%0, X1, .- .s Xm]) = cn(x0) + ... 4 cn(xy) if sOme x; = *p41,

where ¢, (x) = x if x € A(n) and ¢, (*p+1) = [*n]. Now each instance of Equation (47) holds in A,
roughly because in the left-hand side once, ,, only gets applied to a list of elements in the image of
closes , (so no *,41°s). To see that (21) and (23) do not hold in A, observe the following:

[once(a.or(x(a), x(a)))]a0([*1]) = [*o0,*o] # [*o] = [once(a.x(a))[ao([*1])
[once(a.or(close(a; x), y(a)))]ao([*o]. [*1]) = [*0. %] # [*o] = [x]ao([*o]. [*1]). O

5 Summary and Research Directions

We have provided a fresh perspective on scoped effects in terms of the formalism of parameterized
algebraic theories, using the idea that scopes are resources (Example 3.3). As parameterized algebraic
theories have a sound and complete algebraic theory (Propositions. 4.3, and 4.6), this carries over to
a sound and complete equational theory for scoped effects. We showed that our approach recovers
the earlier models for scoped nondeterminism, exceptions, and state (Theorems 4.12—4.14, and 4.16).

Here we have focused on equational theories for effects alone. But as is standard with algebraic
effects, it is easy to add function types, inductive types, and so on, together with standard beta/eta
theories (e.g., [30], [40, Section 5]). This can be shown sound by the simple models considered here,
as indeed the canonical model Set' is closed and has limits and colimits.

Combinations of Theories. A more concrete research direction is to define combinations of pa-
rameterized theories, and hence of scoped effects, using sum and tensor, generalizing combinations
of algebraic effects [13]. Informally, the tensor corresponds to all the operations from one theory
commuting with the operations from the other. But in the case of parameterized theories in Set',
defining what it means for operations to commute is delicate because the substitution rule (16) is
more complex than in the algebraic case (but see [38, Definition 2]).

For example, consider the commuting combination of explicit nondeterminism with once (Fig-
ure 4) and global state (Example 2.8). In the resulting theory, the state is rolled back when a
computation fails. For example, the fact that put® commutes with fail means we can prove:

put’ (or(put’(fail), get(xo, x1))) = put (or(fail, get(xo, x1)))
= put’ (get(xo, x1))
= put’ (x1)

using commutativity of put® and fail for the first step. The fact that put and get commute with once
and close means the state operations are independent of scopes.

Our work opens up new directions for scoped effects, in theory and in practice. By varying the
substructural laws of parameterized algebraic theories, we can recover foundations for scoped
effects where scopes (as resources) can be reordered or discarded, i.e., where they are not well-
bracketed, already considered briefly in the literature [25]. For example, the parameterized algebraic
theory of qubits [40] might be regarded as a scoped effect, where we open a scope when a qubit
is allocated and close the scope when it is discarded; this generalizes traditional scoped effects as
multi-qubit operations affect multiple scopes.
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