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Abstract. A labelled transition system can be understood as a coalge-
bra for a particular endofunctor on the category of sets. Generalizing,
we are led to consider coalgebras for arbitrary endofunctors on arbitrary
categories.

Bisimulation is a crucial notion in the theory of labelled transition
systems. We identify four definitions of bisimulation on general coalge-
bras. The definitions all specialize to the same notion for the special case
of labelled transition systems. We investigate general conditions under
which the four notions coincide.

As an extended example, we consider the semantics of name-passing
process calculi (such as the pi-calculus), and present a new coalgebraic
model for name-passing calculi.

1 Introduction

Notions of bisimulation play a central role in the theory of transition systems. As
different kinds of system are encountered, different notions of bisimulation arise,
but the same questions are posed: Is there a fixed-point characterization for the
maximal bisimulation, bisimilarity? Is there a minimal system, where bisimilar
states are equated? And is there a procedure for constructing a minimal system,
or for verifying bisimilarity?

The theory of coalgebras provides a setting in which different notions of tran-
sition system can be understood at a general level. In this paper we investigate
notions of bisimulation at this general level, and determine how and when these
questions can be answered.

To explain the generalization from transition systems to coalgebras, we begin
with the traditional model of a labelled transition system,

(X, (→X) ⊆ X × L×X)

(for some set L of labels). A labelled transition system can be considered coalge-
braically as a set X of states equipped with a ‘next-state’ function X → P(L×X).
(Here, P is the powerset operator.) Generalizing, we are led to consider an ar-
bitrary category C and an endofunctor B on it; then a coalgebra is an object X
in C of ‘states’, and a ‘next-state’ morphism X → B(X).



Coalgebras in different categories. The generalization to different endofunctors
on different categories has proved appropriate in various settings: concepts from
modal logic have been studied in terms of coalgebras over Stone spaces [2, 6,
30]; basic process calculi with recursion can be described using coalgebras over
categories of domains [29, 37]; stochastic transition systems have been studied
in terms of coalgebras over metric and measurable spaces [8, 12, 44, 45].

In this paper we revisit work [15, 17, 21, 42] on models of name-passing cal-
culi, such as the π-calculus, where it is appropriate to work in a sheaf topos.
Endofunctors that describe transition-system-like behaviour often decompose
as B = P ◦ B′, where B′ is an endofunctor of a particularly simple form, and P
is a powerset functor for a class of small maps, in the sense of algebraic set the-
ory. A contribution of the present work is the introduction of a powerset that is
appropriate for name-passing. It arises by combining the theory of semilattices
with a theory of name-equality testing.

Notions of bisimulation. Once coalgebras are understood as generalized tran-
sition systems, we can consider bisimulation relations for these systems. Recall
that, for labelled transition systems (X,→X) and (Y,→Y ), a relation R ⊆ X×Y
is a (strong) bisimulation if, whenever xR y, then for all l ∈ L:

– For x ∈ X, if x
l−→X x′ then there is y′ ∈ Y such that y

l−→Y y′ and x′ R y′;
– For y ∈ Y , if y

l−→Y y′ then there is x′ ∈ X such that x
l−→X x′ and x′ R y′.

In this article, we identify four notions of bisimulation that have been pro-
posed in the context of coalgebras for endofunctors on arbitrary categories. Aczel
and Mendler [3] introduced two definitions; we also consider a definition due to
Hermida and Jacobs [23]; and lastly a definition that gives an immediate con-
nection with ‘final coalgebra’ semantics.

The four notions coincide for the particular case of labelled transition sys-
tems. We investigate conditions under which the notions are related in the more
general setting of coalgebras.

Relationship with the terminal sequence. Various authors have constructed ter-
minal coalgebras as a limit of a transfinite sequence, beginning

1 !←− B(1)
B(!)←−−− B(B(1))

B(B(!))←−−−−− B(B(B(1)))← · · · ← · · · .

On the other hand, bisimulations can often be characterized as post-fixed points
of a monotone operator Φ on a lattice of relations, so that a maximal bisimulation
(‘bisimilarity’) arises as a limit of a transfinite sequence, beginning

X × Y ⊇ Φ(X × Y ) ⊇ Φ(Φ(X × Y )) ⊇ Φ(Φ(Φ(X × Y ))) ⊇ · · · ⊇· · · .

These sequences suggest algorithms for minimizing and computing bisimilarity
for arbitrary coalgebras (see e.g. [14]). We investigate conditions under which
the steps of the terminal coalgebra sequence are precisely related with the steps
of this relation refinement sequence.
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Other approaches not considered. In this article we are concerned with (inter-
nal) relations between the carrier objects of two fixed coalgebras: a relation is an
object of the base category. Some authors (e.g. [12]) instead work with an equiv-
alence relation on the class of all coalgebras, setting two coalgebras as ‘bisimilar’
if there is a span of surjective homomorphisms between them. Others work with
relations as bimodules [38, 8]. We will not discuss these approaches here.

Outline. This paper is structured as follows. In Section 2 we recall some examples
of coalgebras for endofunctors. We recall the four notions of bisimulation in
Section 3. In Section 4 we investigate how the different notions of bisimulation
are related. In Section 5 we investigate the connection between the terminal
sequence and the relation refinement sequence. Finally, in Section 6, we provide
a novel analysis of models of name-passing calculi.

Acknowledgements. It has been helpful to discuss the material in this article with
various people, particularly Marcelo Fiore. Benno van den Berg gave some advice
on algebraic set theory. Referees’ comments were helpful, and I am sorry not to
have been able to accommodate all their suggestions at this point. I acknowledge
support from EPSRC grants GR/T22049/01 and EP/E042414/1.

Many of the results in Sections 4 and 5 are well-known where C = Set. In
other cases, some results are probably folklore; I have tried to ascribe credit
where it is due.

2 Coalgebras: definition and examples

Recall the definition of a coalgebra for an endofunctor:

Definition 1. Consider an endofunctor B on a category C. A B-coalgebra is
given by an object X of C together with morphism X → B(X) in C. A homo-
morphism of B-coalgebras, from (X, h) to (Y, k), is a morphism f : X → Y that
respects the coalgebra structure, i.e. such that Bf ◦ h = k ◦ f .

We collect some examples of structures that arise as coalgebras for endofunctors.
For further motivation, see [4, 24, 39].

Streams and coinductive datatypes. Let A be a set, and consider the endofunctor
(A× (−) + 1) on the category Set of sets. Coalgebras for this endofunctor are
a form of stream, of elements of A. Other coinductive datatypes arise from
other ‘polynomial’ endofunctors, built out of constants, sums and products (see
e.g. [39, Sec. 10]).

Labelled transition systems. In the introduction, we discussed how labelled tran-
sition systems correspond to coalgebras for the endofunctor P(L× (−)). Here, P
is the powerset functor, that acts by direct image. For finite non-determinism,
and image-finite transition systems, one can instead consider the endofunctor
Pf(L× (−)) where Pf is the finite powerset functor.
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Axioms for a class S of small maps in a
regular category:

(A1) S is closed under composition, and
all identity morphisms are in S.

(A2) S is stable under pullback: in
dgm. 1, if f ∈ S, then f ′ ∈ S.

A′

_�
//

f ′
��

A

f
��

B′
g

// B
(1)

(A3) In dgm. 1, if f ′ ∈ S and g is a cover
(aka strong epi), then f ∈ S.

(A6) In the following triangle, if f ∈ S
and e is a cover, then g ∈ S.

A
e � ,2

f $$III
III

I A′

g
��

B

(P1) For every object A of C there is
an S-relation (PS(A)← 3B → A)
such that for every S-relation
(I ← R→ A) there is a unique
morphism I → P (A) making the
following diagram a pullback.

R
_���

��

// 3A

��
��

I ×A // PS(A)×A

Additional axioms for an extensive regu-
lar category:

(A4) Maps 0→ 1 and 1+1→ 1 are in S.

(A5) If A → A′ and B → B′ are in S,
then so is (A + B)→ (A′ + B′).

Additional axioms (optional):

(A7) (Collection, assuming (P1)) The
endofunctor PS preserves covers.

(M) All monos in C are in S.

Fig. 1. Axioms for small maps (see [27]; we do not need representability here.) Recall
that a category is regular if it has finite limits and stable cover-image factorizations
(e.g. [7, Vol. 2, Ch. 2], [26, A1.3]), and that it is extensive if it has finite sums that
are stable under pullback (e.g. [10]). An extensive regular category is sometimes called
positive (e.g. [26, A1.4]).

Powersets and small maps. A general treatment of powersets is suggested by al-
gebraic set theory [27]. A model of algebraic set theory is a category C together
with a class of ‘small’ maps S in C, all subject to certain conditions — see Fig-
ure 1. In such a situation, an S-relation is a jointly-monic span (X ← R→ Y )
of which the projection R → X is in S. Axiom (P1) entails that there is an
endofunctor PS on C that classifies S-relations.

For instance, in the category of sets, we can say that a function f : X → Y
is small if for every y ∈ Y the set {x ∈ X | f(x) = y} is finite. An S-relation is
precisely an image-finite one, and the S-powerset is the finite powerset, Pf .

For more complex examples, see Section 6 and [5].

Continuous-state systems. For systems with continuous state spaces it is appro-
priate to work in a category of topological spaces. For a first example, consider
a Stone space X, and let K(X) be the space of compact subsets of X, with
the finite (aka Vietoris) topology. The endofunctor K on the category of Stone
spaces has attracted interest because of a duality with modal logics (e.g.[2, 30]).

Continuous phenomena also arise in other application areas. For recursively
defined systems, it is reasonable to investigate coalgebras for powerdomain con-
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structions on a category of domains (see e.g. [29, 37, 1]). For continuous stochas-
tic systems, researchers have investigated coalgebras for probability distribution
functors on categories of metric or measurable spaces (see e.g. [8, 12, 44, 45]).

3 Four definitions of bisimulation

We now recall four coalgebraic notions of bisimulation from the literature.

Context. Throughout this section, we consider an endofunctor B on a cate-
gory C. We assume that C has finite limits and images (i.e. (strong-epi/mono)
factorizations; see e.g. [7, Vol. 2, Ch. 2], [26, A1.3]). We fix two B-coalgebras,
h : X → B(X) and k : Y → B(Y ). We write Rel(X, Y ) for the preorder of rela-
tions, viz. jointly-monic spans (X ← R→ Y ).

3.1 The lifting-span bisimulation of Aczel and Mendler

Definition 2 (following [3]). A relation R in Rel(X, Y ) is an AM-bisimulation
if there is a B-coalgebra structure R→ B(R) making the following diagram com-
mute.

X

h ��

Roo //

��

Y

k��
B(X) B(R) //oo B(Y )

3.2 The relation-lifting bisimulation of Hermida and Jacobs

For any relation R in Rel(X, Y ), the ‘relation lifting’ B̄(R) in Rel(B(X),B(Y ))
is the image of the composite morphism B(R)→ B(X × Y )→ B(X)× B(Y ).

Definition 3 (following [23]). A relation R in Rel(X, Y ) is an HJ-bisimulation
if there is a morphism R→ B̄(R) making the left-hand diagram below commute.

X

h ��

Roo //

��

Y

k��
B(X) B̄(R)oo // B(Y )

ΦHJ(R) //
��
��

_�
B̄(R)

��
��

X × Y
h×k

// B(X)× B(Y )

Equivalently: let the right-hand diagram be a pullback; R is an HJ-bisimulation
iff R ≤ ΦHJ(R) in Rel(X, Y ).

Proposition 4. The operator ΦHJ on Rel(X, Y ) is monotone.

For an example, return to the situation where C = Set and B = P(L×−).
For any relation R in Rel(X, Y ), the refined relation ΦHJ(R) is the set of all
pairs (x, y) ∈ X × Y for which

(i) ∀(l, x′) ∈ h(x). ∃y′ ∈ Y . (l, y′) ∈ k(y) and (x′, y′) ∈ R ;
(ii) ∀(l, y′) ∈ k(y). ∃x′ ∈ X. (l, x′) ∈ h(x) and (x′, y′) ∈ R .

Thus ΦHJ is the construction F considered by Milner in [35, Sec. 4].
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3.3 The congruences of Aczel and Mendler

Definition 5 (following [3]). A relation R in Rel(X, Y ) is an AM-precongru-

ence if for every cospan (X i−→ Z
j←− Y ),

X
i
##GGG X

h // B(X) B(i)
''OOO

if R

;;www

##GGG
G Z commutes then so does R

;;www

##GGG
G B(Z)

Y
j

;;wwww
Y

k
// B(Y ) B(j)

77ooo

When C has pushouts, then we let ΦAM(R) be the pullback of the cospan

(X h−→ BX
i−→ B(X +R Y )

j←− BY
k←− Y ). By definition, a relation R is an AM-

precongruence iff R ≤ ΦAM(R).
This definition differs from that of [3] in that we consider relations between

different coalgebras. If (X, h) = (Y, k), then an equivalence relation is an AM-
precongruence exactly when it is a congruence in the sense of [3].

Proposition 6. The operator ΦAM on Rel(X, Y ) is monotone.

(N.B. ΦAM is different from ΦHJ, even when B is the identity functor on Set.)

3.4 Terminal coalgebras and kernel-bisimulations

Suppose for a moment that there is a terminal B-coalgebra, (Z, z : Z → B(Z)).
This induces a relation in Rel(X, Y ) as the pullback of the unique terminal
morphisms (X → Z ← Y ). Many authors have argued that this relation is the
right notion of bisimilarity. We can formulate a related notion of bisimulation
without assuming terminal coalgebras, as follows.

Definition 7. A relation R is a kernel-bisimulation if there is a cospan of
B-coalgebras, (X, h)→ (Z, z)← (Y, k), and R is the pullback of (X → Z ← Y ).

(The term ‘cocongruence’ is sometimes used to refer directly to the cospan in-
volved, e.g. [31].)

4 Relating the notions of bisimulation

In this section we establish when the notions of bisimulation, introduced in the
previous section, are related. As is well known, the four definitions coincide for
the case of labelled transition systems.

4.1 Conditions on endofunctors

We begin by recalling five conditions that might be assumed of our endofunc-
tor B.
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1. We say that B preserves relations, if a jointly-monic span is mapped to a
jointly-monic span.

To introduce the remaining conditions, we consider a cospan (A1 → Z ← A2)
in C, and in particular the mediating morphism m from the image of the pullback
to the pullback of the image:

A1

��@
@@

A1 ×Z A2 �
?

π1
88qqqqq

π2 &&MMMMM Z

A2

??~~~

BA1

''OOOOO

B(A1 ×Z A2)
m //

Bπ1
00

Bπ2 ..

B(A1)×B(Z) B(A2)

55kkkkkkk

))SSSSSS
B(Z)

B(A2)

77ppppp

Here are four conditions on B, listed in order of decreasing strength:

2. B preserves pullbacks if m is always an isomorphism;
3. B preserves weak pullbacks, if m is always split epi (see e.g. [22]);
4. B covers pullbacks if m is always a cover (=strong epi);
5. B preserves pullbacks along monos if m is an iso when A1 → Z is monic.

Tying up with item (1), note that B preserves pullbacks if and only if it preserves
relations and covers pullbacks (e.g. [9, Sec. 4.3]).

4.2 Relevance of the conditions on endofunctors

We now discuss which of the conditions (1–5) are relevant for the endofunctors
considered in Section 2. First, note that polynomial endofunctors on extensive
categories preserve all pullbacks.

Regarding powerset functors, we have the following general result.

Proposition 8. Let C be a regular category with a class S of small maps. Let
PS be an S-powerset.

1. The functor PS preserves pullbacks along monomorphisms.
2. If S contains all monomorphisms (M), then PS preserves weak pullbacks.
3. Let C also be extensive, and let S satisfy Axioms (A1–7), but not necessar-

ily (M). The functor PS preserves covers and covers pullbacks.

Moving to the setting of continuous state spaces, the compact-subspace end-
ofunctor K does not preserve weak pullbacks, but it does cover pullbacks on
the category of Stone spaces [6]; this seems to be an instance of Prop. 8(3).
More sophisticated continuous settings are problematic. Plotkin [37] discusses
problems with coalgebraic bisimulation in categories of domains. The convex
powerdomain does not even preserve monomorphisms. Counterexamples to the
weak-pullback-preservation of probability distributions on measurable spaces are
discussed in [44].
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4.3 Relating notions of bisimulation

Theorem 9. Let B be an endofunctor on a category C with finite limits and
images.

1. Every AM-bisimulation is an HJ-bisimulation.
2. Every HJ-bisimulation is an AM-precongruence.
3. Every AM-precongruence is contained in a kernel bisimulation that is an

AM-precongruence, provided C has pushouts.
4. Every kernel bisimulation is an AM-bisimulation, provided B preserves weak

pullbacks.
5. Every kernel bisimulation is an HJ-bisimulation, provided B covers pullbacks.
6. Every kernel bisimulation is an AM-precongruence, provided B preserves

pullbacks along monos.
7. Every HJ-bisimulation is an AM-bisimulation, provided either B preserves

relations, or every epi in C is split.

In summary:

AM-bisim.
(1) // HJ-bisim.

(2) //
(7)

pres. relns

ff
AM-precong. � � (3) // Kernel bisim.

EDGF
(4) pres. weak p’backs

��

BC@A
(5) cover p’backs

OO
pres. p’backs of monos

(6)mm

The second part of Theorem 9(7) accounts for the following well-known fact:
when C = Set, assuming the axiom of choice, HJ-bisimulation is the same thing
as AM-bisimulation. We can achieve close connections in more constructive set-
tings:

Theorem 10. Let C be a regular category with a class S of small maps, with
an S-powerset, PS . Suppose that B(−) ∼= PS(B′(−)), for some endofunctor B′

that preserves relations. If all monomorphisms are in S (axiom (M)), then every
HJ-bisimulation is an AM-bisimulation.

5 Bisimilarity through transfinite constructions

In this section we consider a procedure for constructing the maximal bisimu-
lation. We relate it with the terminal sequence, which is used for finding final
coalgebras.

Context. In this section we assume that the ambient category C is complete with
images and pushouts. We fix an endofunctor B on C, and fix two B-coalgebras,
h : X → B(X) and k : Y → B(Y ).
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Relation refinement sequences. HJ-bisimulations and AM-precongruences can be
understood as postfixed points of operators ΦHJ and ΦAM respectively. When C
is well-powered, greatest fixed points can be obtained as limits. For the case of
HJ-bisimulations, we define an ordinal-indexed cochain (rβ,α : RHJ

β � RHJ
α )α≤β

in Rel(X, Y ), in the usual way (see e.g. [11]):

– Limiting case: If λ is limiting, RHJ
λ =

⋂
α<λ RHJ

α ; e.g. RHJ
0 = X × Y .

– Inductive case: RHJ
α+1 = ΦHJ(RHJ

α ).

If this sequence is eventually stationary then it achieves the maximal post-fixed
point of ΦHJ, the greatest HJ-bisimulation.

Similarly, we consider a cochain (RAM
β � RAM

α )α≤β for the operator ΦAM.
For the case of the endofunctor P(L× (−)) on Set, the relation refinement

sequences (RHJ
α )α and (RAM

α )α coincide, giving a transfinite extension of Milner’s
sequence ∼0 ⊇ ∼1 ⊇ · · · ⊇ ∼ (c.f. [34, Sec 5.7]).

The terminal sequence. The terminal sequence is an ordinal-indexed cochain
(zβ,α : Zβ → Zα)α≤β that can be used to construct a final coalgebra for an
endofunctor (see e.g. [46]). The cochain commutes and satisfies the following
conditions:

– Limiting case: If λ is limiting, Zλ = lim{zβ,α : Zβ → Zα |α ≤ β < λ}, and
the cone {zλ,α : Zλ → Zα |α < λ} is the limiting one; e.g. Z0 = 1.

– Inductive case: Zα+1 = B(Zα); and zβ+1,α+1 = B(zβ,α) : Zβ+1 → Zα+1.

5.1 Relating the relation and terminal sequences

The coalgebra (X, h), (Y, k) determine two cones over the terminal sequence:
(xα : X → Zα)α and (yα : X → Zα)α. The cone (xα)α is given as follows.

– Limiting case: If λ is a limit ordinal then the morphisms xα : X → Zα for
α < λ form a cocone over the cochain (zβ,α : Zβ → Zα)α≤β<λ, with apex X.
We let xλ : X → Zλ be the unique mediating morphism. For instance, when
λ = 0, then xλ : X → Zλ is the terminal map X → 1.

– Inductive case: Let xα+1 be the composite X
h−→ B(X) Bxα−→ B(Zα) = Zα+1.

The other cone, (yα : X → Zα)α, is defined similarly.

Proposition 11. Consider an ordinal α, and consider the pullback X×Zα Y of
the cospan (X xα−−→ Zα

yα←− Y ).

1. If B preserves pullbacks along monos then X ×Zα Y = RAM
α .

2. If B covers pullbacks, then X ×Zα Y = RHJ
α (= RAM

α ).

The relation refinement sequence may converge before the terminal sequence:

Corollary 12. Suppose that B covers pullbacks. If, for some ordinal α, the mor-
phism zα+1,α : Zα+1 → Zα is monic, then the relation refinement sequence con-
verges at α.

If C is Set and B preserves filtered colimits, then the terminal sequence does not
converge until (ω + ω), but it becomes monic at ω [46].
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6 Models of name-passing process calculi

As a case study, we now investigate models for name-passing process calculi. A
fragment of the π-calculus is given in Figure 2. To simplify the presentation, we
omit restriction (name-generation) for now; we return to this issue in Section 6.4.

It is unreasonable to model name-passing in the category of sets. One alter-
native is the category of nominal substitutions [16, 18], as we now investigate.
We describe an endofunctor, for which coalgebras capture the model-theoretic
properties of the π-calculus, and for which bisimulation is open bisimulation [40].

Throughout this section we fix an infinite set A of channel names.

6.1 Labelled transition systems in nominal substitutions

Definition 13. A nominal substitution is a set X together with a function
sub : A× A×X → X, written {b/a}x = sub(b, a, x), such that

1. {a/a}x = x

2. {c/b}{b/a}x = {c/b}{c/a}x
3. If c 6= b 6= a 6= d then {d/b}{c/a}x = {c/a}{d/b}x.
4. If a 6= b then {c/a}{b/a}x = {b/a}x.
5. For each x ∈ X, the set supp(x) = {a ∈ A | ∃b ∈ A. {b/a}x 6= x} is finite.1

A homomorphism of nominal substitutions, f : (X, sub)→ (Y, sub), is a function
that preserves the structure: f{b/a}x = {b/a}(f(x)). We write NomSub for the
resulting category.

The set A is itself a nominal substitution. Other important examples are
set Tπ of π-calculus terms up-to α-equivalence, and the set Lπ of labels, both
with the evident (capture-avoiding) substitution structure.

The transition relation for the π-calculus, as given in Figure 2, is a subset
(−→) ⊆ Tπ × Lπ × Tπ. Moreover, the relation is a relation in NomSub; that is
to say, (−→) has a nominal substitution structure, and (−→) � Tπ × Lπ × Tπ

preserves the structure. That is, if t
l−→ u, then {b/a}t

{b/a}l−−−→ {b/a}u. (see e.g. [43]).

1 I am grateful to Andy Pitts for pointing out this simplified condition.

Terms (Tπ): p ::= a(b).p | āb.p | p|p | 0
Labels (Lπ): l ::= ab | āb | τ

Structural operational semantics:

a(b).p
ac−→ {c/b}p āb.p

āb−→ p

p
l−→ p′

p|q l−→ p′|q
p

āb−→ p′ q
ab−→ q′

p|q τ−→ p′|q′

Fig. 2. A fragment of the π-calculus [36]. Symmetric versions of rules are elided.
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6.2 Coalgebras and notions of non-determinism

We now investigate how the transition relation for the π-calculus can be viewed
in a coalgebraic way. As a starting point, we note that NomSub is a topos,
and hence to give an substitution-closed transition relation is to give a coalgebra
for P(Lπ × (−)), i.e. a homomorphism X → P(Lπ × X) (writing P for the
power object of NomSub). This approach is not without drawbacks, however:
(i) an explicit description of P is cumbersome; (ii) the functor P is not finitary,
and there is no final coalgebra for cardinality reasons. To remedy this, we now
consider an explicit description of a finitary subfunctor of P.

A theory of equality testing and non-determinism. In Figure 3, we present a
theory of ‘conditional-semilattices’. A conditional-semilattice has enough struc-
ture to describe both nondeterminism and name-equality testing. Conditional-
semilattices form a category CSL, with the evident morphisms, and the forgetful
functor CSL → NomSub is monadic. The free conditional-semilattice, Pcsl(X),
on a nominal substitution X, can be constructed by considering the set of all
well-formed terms built from +, 0, if, and elements of X, quotiented by the
equations in Figure 3. Alternatively, Figure 3 can be understood as a presenta-
tion of an enriched algebraic theory in NomSub, following [28], and a finitary
monad Pcsl arises from the general results there.

Proposition 14. The monad Pcsl classifies homomorphisms f : Y → X in
NomSub for which {y ∈ Y | f(y) = x} is finite, for each x ∈ X. That is:
the following data are equivalent, for all nominal substitutions X and Y .

1. A homomorphism X → Pcsl(Y ).
2. A subset R ⊆ X × Y such that

(a) If x R y then {b/a}x R {b/a}y (“R is substitution closed”); and
(b) For all x ∈ X, the image {y ∈ Y |x R y} is finite.

We write Scsl for the class of morphisms that Pcsl classifies. This class satisfies
all the axioms of Figure 1.

For the curious topos theorist, we record that Pcsl is the free semilattice
generated by the partial map classifier (see also [13, 32]).

A conditional-semilattice is a nominal substitution X together with three homomorphisms

+: X ×X → X 0 : 1→ X if : A× A×X → X

that satisfy the following equations. (We abbreviate if(a, b, x) by [a = b] x.)

x + x = x
x + y = y + x

x + (y + z) = (x + y) + z
x + 0 = x

[a = b]0 = 0
[a = b] (x + y) = ([a = b] x) + ([a = b] y)

[a = b] x + x = x

[a = b] [a = b] x = [a = b] x
[a = b] [c = d] x = [c = d] [a = b] x
[a = b] [b = c] x = [a = b] [a = c] x

[a = a] x = x
[a = b] x = [b = a] x

[a = b] x = [a = b] ({a/b}x)

Fig. 3. Theory of conditional-semilattices (c.f. [40, Sec. 4.1])
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Coalgebraic models of name-passing calculi. Coalgebras for the endofunctor
Pcsl(Lπ × (−)) are the same thing as substitution closed, image-finite relations.
Unfortunately, the transition system for the π-calculus is not image-finite — the
process a(b).0 can input an infinite number of different names. The π-calculus
behaviour is essentially finite, though, in a sense that we now make precise.

For each nominal substitution X, we define a set XA = (A×X)/=α , where =α

is the equivalence relation generated by setting (a, x) =α (b, {b/a}x), for any
name b not in supp(x). This construction extends to an endofunctor on nom-
inal substitutions. We thus have an appropriate endofunctor for name-passing
behaviour: let Bπ = Pcsl(A× (−)A + A× A× (−) + (−)).

Theorem 15. The following data are equivalent.

1. A Bπ-coalgebra.
2. A substitution-closed relation (−→) ⊆ X × Lπ ×X for which

(a) for every x ∈ X, the sets {(a, b, x′) |x āb−→ x′}, {x′ |x τ−→ x′}, are both
finite;

(b) for all x ∈ X there is a name c and a finite subset {(a1, y1), . . . , (an, yn)}
of A×X such that if x

ab−→ x′ then, for some i ≤ n, we have a = ai and
x′ = {b/c}yi;

(c) if x
ab−→ x′ then there is a name c 6∈ supp(x) and x′′ ∈ X such that

x
ac−→ x′′ and {b/c}x′′ = x′.

The transition relation for the π-calculus, given in Figure 2, satisfies the three
conditions of Theorem 15(2), and indeed these conditions essentially exhaust the
model-theoretic properties of this fragment of the π-calculus (see [41, Sec. 1.4.2]).

For instance, in the ‘next state’ coalgebra Tπ → Bπ(Tπ) for the π-calculus,
the process (a(c).x | b̄d.y) maps to the equivalence class in Bπ(Tπ) that represents
the following element. We specify the input and output transitions, and, although
the process cannot perform a τ action, we must record that it could, if a and b
were equal.

inj1(a, [c, (x | b̄d.y)]=α
) + inj2(b, d, (a(c).x | y)) + if(a, b, inj3(({d/c}x) | y)). (2)

Free semilattices aren’t enough. In (2), we see that the operator ‘if’ in the theory
of conditional-semilattices is essential for modelling name-passing. To emphasise
this, consider the free semilattice monad Psl on NomSub: Psl(X) is the set of
finite subsets S of X, with the pointwise substitution structure. To understand
why this is inadequate for name-passing, consider the following result:

Proposition 16. Consider nominal substitutions X and Y. The following data
are equivalent.

1. A homomorphism X → Psl(Y ).
2. A substitution-closed subset R ⊆ X × Y such that for all x ∈ X, the image
{y ∈ Y |x R y} is finite, and such that if {b/a}x R y then there is y′ ∈ Y
such that {b/a}y′ = y and x R y′.
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6.3 Bisimulation for name-passing calculi

HJ-bisimulations for Bπ are essentially open bisimulations [40, Sec. 3.3]:

Proposition 17. Let (X, h) and (Y, k) be Bπ-coalgebras, corresponding to tran-
sition systems (X,→X) and (Y,→Y ). A substitution-closed relation R ⊆ X × Y
is an HJ-bisimulation if and only if it is a bisimulation between the transition
systems in the classical sense.

The class Scsl contains all monomorphisms, so, by the results in Section 4, an
HJ-bisimulation is the same thing as an AM-bisimulation, and the greatest such
bisimulation is the greatest AM-precongruence and the kernel of the final map.

6.4 Remarks on functor categories and other models of
name-passing

The category of nominal substitutions is equivalent to the category [Fne,Set] of
set-valued functors, where Fne is the category of non-empty finite subsets of A
and all functions between them2. Via Prop. 14 and the Yoneda lemma, we have
an explicit description of Pcsl.

In some circumstances it is appropriate to work in the category [I,Set],
where I is the category of all finite subsets of A and injections between them.
The free semilattice monad Psl on [I,Set] has a simple description: for F in
[I,Set] and A ⊆f A, the set (PslF )(A) is the set of finite subsets of F (A). Unlike
the situation in NomSub, the monad Psl on [I,Set] is an appropriate monad
for non-determinism in the semantics of name-passing languages [15, 17].

In any topos, the free semilattice monad Psl classifies the morphisms that are
Kuratowski-finite. By Prop. 8, Psl covers pullbacks, and if the topos is Boolean,
then it also preserves weak pullbacks: note that monos are Kuratowski-finite if
and only if they are complemented (see also [25]). Indeed, the example of [25]
can be adapted to show that Psl does not preserve weak pullbacks in [I,Set]
(correcting oversights in [17, 21, 42]). In spite of this, HJ-bisimulations can still
be related with AM-bisimulations:

Proposition 18 (c.f. [42, Sec. 3.3.3]). Let B′ be an endofunctor on [I,Set]
that preserves complemented relations, and consider the composite endofunc-
tor Psl ◦ B′. The ¬¬-closure of an HJ-bisimulation is an AM-bisimulation.

The situation simplifies if we restrict attention to the category of ¬¬-sheaves.
The sheaves can be understood as ‘nominal sets’ [19, 42] or as ‘named-sets with
symmetry’, giving a connection with ‘history dependent automata’ [14, 15, 20].

Modelling restriction. To simplify the presentation, we have so-far ignored the
restriction operator in the π-calculus, which introduces the facility of name gen-
eration. To properly handle name generation, the category NomSub is inade-
quate. Instead, following [21, 33], one can work in the category [D,Set] of set-
valued functors, where D is the category of finite irreflexive undirected graphs
2 I am grateful to Alexander Kurz for pointing this out.
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and homomorphisms between them. The idea is to keep track of which names
are known to be different, described by an edge in a graph.

The free semilattice monad on [D,Set] is not a sufficient notion of non-
determinism, for the reasons discussed above (correcting an oversight in [21]).
Instead, one can work with the theory in Figure 3, with an additional axiom
saying that when names a and b are distinct then [a = b]x = 0 (c.f. [40, Sec. 6,
Ax. P]). The resulting monad corresponds to a class of small maps, but not all
monos are small. It would be interesting to find a generalization of Prop. 18 that
applies to this situation.
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