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Abstract. Containers are a semantic way to talk about strictly positive
types. In previous work it was shown that containers are closed under
various constructions including products, coproducts, initial algebras and
terminal coalgebras. In the present paper we show that, surprisingly, the
category of containers is cartesian closed, giving rise to a full cartesian
closed subcategory of endofunctors. The result has interesting applica-
tions in generic programming and representation of higher order abstract
syntax. We also show that the category of containers has finite limits,
but it is not locally cartesian closed.

1 Introduction

Containers are a representation of datatypes, using a set of shapes S and a family
of positions P indexed over shapes. The associated datatype is given by a choice
of shape and an assignment of data to positions over that shape, clearly this is an
endofunctor of Set. In previous work [2, 1] it was shown that all strictly positive
datatypes give rise to containers. To include nested inductive and coinductive
definitions it was necessary to introduce n-ary containers, corresponding to n-
ary functors. This can be generalized further to indexed containers [5] to modell
dependent families.

Containers can be used to analyze generic constructions on datatypes without
having to do induction over the syntax of datatypes. E.g. in [4] containers are
used to study the notion of a derivative of a datatype.

Other applications of containers are related to container morphisms which are
a concrete and complete representations of polymorphic functions, i.e. natural
transformations, between datatypes. In [15] this is exploited to derive theorems
about polymorphic functions on lists.

The previous results can be stated in terms of properties of the category of
containers: it is closed under products, coproducts and exponentiation with a
set and the extension functor into sets is full and faithful. Recent work by the
3rd author [17] on using higher order representations in generalized structured
operational semantics raised the question wether the category of containers is
cartesian closed. In the present paper we can answer this question positively.
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As a simple example consider the functor Λ ∈ Set → Set which assigns to
any set of variables the set of untyped lambda terms over this set. This functor
can be specified as the inital solution to the following equation in the category
of endofunctors

Λ ' Id + Λ2 + Id→ Λ

Here Id is the identity functor, and → refers to the exponential of endofunctors
(which may or may not exist). It turns out that this higher order equation is
equivalent to

Λ ' Id + Λ2 + Λ ◦Maybe

where MaybeX = 1 +X. Indeed, this leads directly to the well-known represen-
tation of λ-terms as a nested datatype in Haskell

data Lam a = Var a | App (Lam a) (Lam a) | Lam (Maybe a)

which has been studied in [6, 7].
The category of containers can be defined wrt. any locally cartesian closed

category with coproducts. We are going to use the language of Type Theory
to develop our results, which is the internal language of locally cartesian closed
categories. Hence the constructions presented here can be intuitively understood
as taking place in a naive set theory.

A natural question is whether the category of containers itself is a model of
Type Theory, i.e. locally cartesian closed. We are able to construct pullbacks if
we assume that the ambient category has quotient types, corresponding to exact
coequalizers. However, we show that the right adjoint to pullbacks don’t exist
in general.

2 Preliminaries

We work in an extensional Type Theory [12] as the internal langauge of locally
cartesian closed categories with disjoint coproducts.

Set We use Set to denote our universe of small types we identfy families with
functions into Set.

0, 1 An empty type 0 ∈ Set and a unit type 1 ∈ Set. Categorically, those
correspond to initial and terminal objects. We write () ∈ 1 for the unique
inhabitant of 1 and !A ∈ A→ 1 with !A a = () for the unique map into 1.

Σ- and Π-types Given A ∈ Set and B ∈ Set given that x ∈ A then Σx ∈
A.B,Πx ∈ A,B ∈ Set. Elements of Σ-types are pairs, if a ∈ A and b ∈
B[x := a] then (a, b) ∈ Σx ∈ A.B, while elements of Π-types are functions:
given b ∈ B assuming x ∈ A then λx.b ∈ Πx ∈ A.B.

Equality types Given a, b ∈ A ∈ Set we write a = b ∈ Set for the equality
type. The constructor for equality is reflexivity refl a ∈ a = a if a ∈ A.

2 A type of Booleans 0, 1 ∈ 2 ∈ Set, which is disjoint, i.e. we have that
(0 = 1)→ 0 is inhabited.



We omit a detailed treatment of eliminators and use functional programming
notation as present in Agda [14] and Epigram [13]. All our definitions can be
translated into using the standard eliminators at the price of readability. To avoid
clutter we adopt the usual type-theoretic device of allowing hidden arguments,
if they are inferable from the use. We indicate hidden arguments by subscripting
the type, i.e. writing Πx∈AB and Σx∈AB instead Πx ∈ A.B and Σx ∈ A.B.

While finite products arise as non-dependent Σ-types, finite coproducts can
be represented as

A0 +A1 = Σb ∈ 2.if b thenA1 elseA0

We use the injections ini ∈ Ai → A0 +A1 with ini a = (i, a) for i ∈ 2.
Σ-types can also be used to encode set-comprehension. If the family B ∈ Set

(given a ∈ A) is propositional, i.e. there is at most one element in B for any
a ∈ A, we write {a ∈ A | B} for Σa ∈ A.B.

We are going to use type-theoretic representations of categorical concepts.
Given a bifunctor F : Setop → Set → Set we define its end as a subset of the
polymorphic functions:∫

X

F X X ∈ Type∫
X

F X X = {f ∈ ΠX ∈ Set.F X X

| ∀A,B ∈ Set, g ∈ A→ B.F g B (f B) = F Ag (f A)}

This just internalizes the categorical definition of an end as a universal wedge.
Dually, coends can be defined as quotients of largeΣ-types (i.e. abstract datatypes),
but we shall not need this here.

Using this notation, the type of natural transformations between two end-
ofunctors F,G ∈ Set → Set arises as

∫
X
F X → GX. The Yoneda lemma

becomes:
F X '

∫
Y

(X → Y )→ F Y Yoneda

As it is well known the category of endofunctors has products which can be
calculated pointwise:

(F ×G)X = F X ×GX

If we assume that the exponential of two endofunctors F → G exists then it must
have a certain form reminiscent of the Kripke interpretation of implication:

(F → G)X

'
∫
Y

(X → Y )→ (F → G)Y Yoneda

'
∫
Y

(X → Y )× F Y → GY adjoint

'
∫
Y

(X → Y )→ F Y → GY curry

(1)



However, for size reasons F → G doesn’t always exist. E.g. in the category
of classical sets, which after all is a model of Type Theory, we have that the
collection of

∫
X
P X → P (PX), where P is the covariant powerset functor, is

not a set. Indeed, there is a natural transformation ακ ∈
∫
X
P X → P (PX) for

every cardinal κ, where ακX S = {T ⊆ S | cardT < κ} for every set X and
S ⊆ X.

3 Containers

A container is given by a set of shapes S ∈ Set and a family of positions indexed
over shapes P ∈ S → Set - we write S C P . We shall also use C as a binder,
writing s ∈ S C P for S C λs.P . A container represents an endofunctor

JS C P K ∈ Set→ Set

JS C P KX = Σs ∈ S.P s→ X

Given containers S C P and T CQ a morphism f C r is given by

f ∈ S → T

r ∈ Πs∈SQ (f s)→ P s

This constitutes the category of containers Cont with the obvious definitions of
identity and composition. J−K extends to a functor J−K ∈ Cont→ (Set→ Set)
assigning natural transformations to container morphisms:

Jf C rK ∈
∫
X

JS C P KX → JT CQKX

Jf C rKX (s, p) = (f s, p ◦ r)

Indeed Cont gives rise to a full subcategory of the category of endofunctors as
shown in [2]:

Proposition 1. J−K ∈ Cont→ (Set→ Set) is full and faithful.

Containers also give rise to two modalities which operate on families: given
B ∈ A→ Set we have

�SCP B,♦SCP B ∈ JS C P KA→ Set

�SCP B (s, h) = Πp ∈ P s.B (h p)
♦SCP B (s, h) = Σp ∈ P s.B (h p)

� can be defined for any functor because it corresponds to applying the functor
to the representation of the family as an arrow.

The identity functor is given by Id = 1 C 1 and given S C P and T C Q we
can construct their composite:

(S C P ) ◦ (T CQ) = JS C P KT C ♦SCPQ



Composition is functorial but we shall not explore the 2-categorical structure of
Cont any further.

In [2] it is shown that containers are closed under finite products and coprod-
ucts. Indeed they are closed under arbitrary products and coproducts. Given a
family of containers F ∈ I → Cont this family can be isomorphically presented
as

S ∈ I → Set

P ∈ Πi∈IS i→ Set

with F i = S iCP i. We write SCP for this family. We now define the coproduct
and the product of S C P :

Σ(S C P ) = (i, s) ∈ Σi ∈ I.S iC P i s

Π(S C P ) = f ∈ Πi ∈ I.S iCΣi ∈ I.P i (f i)

We summarize the operations on containers:

Proposition 2. Containers contain and are closed under:

identity

JIdKA ' A

composition

J(S C P ) ◦ (T CQ)K ' JS C P K ◦ JT CQK

coproducts

JΣ (S C P )KA ' Σi ∈ I.JS iC P iK

products

JΠ (S C P )KA ' Πi ∈ I.JS iC P iK

It is important to realize that the infinite coproducts and products are internal
wrt. to the ambient category. The case of constant exponentiation in [2] arises
as a constant product.

4 Containers are cartesian closed

Our central observation is that exponentiation with a container which has only
one shape 1CP , i.e. a container representing an internal hom functor J1CP KX =
P → X, is straightforward.



(J1C P K→ F )X

'
∫
Y

(X → Y )→ J1C P KY → F Y using (1)

=
∫
Y

(X → Y )→ (P → Y )→ F Y

'
∫
Y

(X → Y )× (P → Y )→ F Y uncurry

'
∫
Y

(X + P → Y )→ F Y adjunction

' F (X + P )

To summarize we have that

J1C P K→ F ' F ◦ (+P ) (2)

where (+P )X = X + P . Extensionally, every container is the a coproduct of
hom containers:

JS C P KX (3)
' Σs ∈ S.P s→ X

' Σs ∈ S.J1C P sKX

Because of proposition 1 this is also true in the category of containers;

S C P ' Σs ∈ S.1C P s (4)

Combining these observations we can see that exponentiation by a container is
always possible and can be constructed using products and composition:

JS C P K→ F

' JΣs ∈ S.1C P sK→ F using (4)
' Πs ∈ S.J1C P sK→ F adjunction
' Πs ∈ S.F ◦ (+P s) using (2)

Proposition 3. Given a container S C P and a functor F ∈ Set → Set we
have:

JS C P K→ F ' Πs ∈ S.F ◦ (+P s)

Using proposition 2 we know that if F is a container then Πs ∈ S.F ◦ (+P s) is
a container. Since containers are a full subcategory of Set→ Set (prop. 1) this
implies our main result:

Corollary 1. The category of containers is cartesian closed, and the embedding
J−K ∈ Cont→ (Set→ Set) preserves the cartesian closed structure.



We can spell out the construction of the exponential by expanding the defini-
tions of the operations involved. Note that +P s is given by l : 1+P sCl = in0 ():

S C P → T CQ

' Πs ∈ S.(T CQ) ◦ (+P s)
' Πs ∈ S.(T CQ) ◦ (l : 1 + P sC l = in0 ())
' Πs ∈ S.JT CQK(1 + P s)C ♦TCQ(λl.l = in0 ())
' f ∈ Πs ∈ S.JT CQK(1 + P s)CΣs ∈ S.♦TCQ(λl.l = in0 ()) (f s)
' f ∈ Πs ∈ S.Σt ∈ T.Q t→ 1 + P s

CΣs ∈ S.Σq ∈ Qs.(f s).2 q = in0 ()

We can also obtain a less direct proof of Corollary 1 by piecing together some
known facts. Recall that an endofunctor on Set is a container if and only if it pre-
serves wide pullbacks (see e.g. [8]). Thus the containers are precisely those func-
tors (Set→ Set) that are orthogonal to certain cones (see [11, Ch. 6]). In fact,
they form an orthogonality class in the category of small functors (Set→ Set),
which is cartesian closed (see e.g. [16, Prop. 1]). As an orthogonality class that
is closed under products, containers form an exponential ideal in the category
of small functors (see [9, Sec. 11.2] and also [10]).

5 Local cartesian closure?

The previous section shows that we can interpret the simply typed λ-calculus
within the category of containers. Can we go further, i.e. can we interpret de-
pendent types in Cont?

Dependent types correspond to locally cartesian closed categories, LCCCs.
A category is locally cartesian closed, if it has a terminal object and pullbacks
(i.e. all finite limits) and a (fibred) right adjoint to the pullback functor. We will
show that pullbacks can indeed be constructed, if we have quotient types (i.e.
exact coequalizers) in the underlying Type Theory. However, we show that the
right adjoints do not exist in general and hence while the category of containers
has finite limits, it is not locally cartesian closed.

We know from the previous section that Cont has a terminal object 1 C 0
because this is just the nullary case of a finite product. Pullbacks correspond to
products in the slice category, i.e. given

fi C ai ∈ Cont (Si C Pi) (T CQ) i ∈ 2

we need to construct a new container U CR = (f0Ca0)×TCQ (f1Ca1) together
with projections:

gi C hi ∈ Cont (U CR) (Si C Pi) i ∈ 2



We define

U ∈ Set

U = {(s0, s1) ∈ S0 × S1 | f0 s0 = f1 s1}
R ∈ U → Set

R (s0, s1) = (P0 s0 + P1 s1)/ ∼

where ∼ is an equivalence relation on P0 s0 + P1 s1 generated by

in0 (a0 q) ∼ in1 (a1 q)

for q ∈ Q (f0 s0) which due to the assumption f0 s0 = f1 s1 is equivalent to
q ∈ Q (f1 s1). The definition of gi C hi of the projections is straightforward :
gi C hi = πi C ini.

Proposition 4. U CR, gi C hi is a pullback of fi C ai in Cont.

We omit the laborious verification of the equational conditions. As a consequence
we have:

Corollary 2. The category of containers has all finite limits, and the embedding
J−K ∈ Cont→ (Set→ Set) preserves finite limits.

The restriction to finite limits isn’t essential, it is not hard to generalize the
construction to arbitrary limits, again in the appropriate internal sense.

Pullbacks are products in the slice category, i.e. for a given container A
the slice category Cont/A has as objects morphisms with codomain A and as
morphisms commuting triangles. Given arrows α, β ∈ Cont/A their pullback
α ×A β is the product in Cont/A. For the category to be locally cartesian
closed we need a right adjoint to α ×A −: assume γ, δ ∈ Cont/A, there is a
γ →A δ ∈ Cont/A such that for all α ∈ Cont/A,

Cont/A (α×A γ) δ ' Cont/Aα (γ →A δ)

There is the additional condition that the local exponentials are fibred. However,
this doesn’t matter here because we are going to construct a counterexample,
showing that already the isomorphism above doesn’t exist in general. We let
Id2 = 1C2 and we will show that the slice Cont/Id2 is not cartesian closed. We
set

γ = !1 C !2 ∈ Cont Id Id2 (there is only one)

δ = !1 C λx. 0 ∈ Cont Id2 Id2

α = !1 C id ∈ Cont Id2 Id2

β = !1 C (0 7→ 0, 1 7→ 2) ∈ Cont Id3 Id2 (where Id3 = 1C 3)

Suppose that the exponential γ →Id2 δ exists. Let

γ →Id2 δ = !S C f ∈ Cont (S C P ) Id2 with f ∈ Πs ∈ S.2→ P s.



We will derive a contradiction. Let us investigate the structure of this supposed
exponential.

The pullback α×Id2 γ is again γ. There is exactly one morphism Cont/Id2 γ δ
since there is only one morphism in Cont Id Id2. Thus there is exactly one mor-
phism in Cont/Id2 α (γ →Id2 δ).

To give a morphism in Cont/Id2 α (γ →Id2 δ) is to give a shape s ∈ S
together with a function g ∈ P s→ 2 such that g ◦ (f s) = id2. Because there is
a unique morphism Cont/Id2 α (γ →Id2 δ) there must be a shape t such that

1. The function f t ∈ 2→ P t is a bijection, with inverse g ∈ P t→ 2.
2. For all s 6= t, f s is not injective, i.e. f s 0 = f s 1.

To give a morphism in Cont/Id2 β (γ →Id2 δ) is to give a shape s ∈ S
together with a function h ∈ P s → 3 such that h ◦ (f s) = (0 7→ 0, 1 7→ 2). In
this situation, f s must be injective, so, by the two conditions above, we must
have s = t. Thus there is at most one morphism in Cont/Id2 β (γ →Id2 δ).

On the other hand, the pullback β ×Id2 γ is δ. There are two morphisms
Cont/Id2 δ δ. So, if γ →Id2 δ was an exponential, there would be two morphisms
in Cont/Id2 β (γ →Id2 δ). Hence it is not an exponential and Cont is not locally
cartesian closed.

6 Conclusions and further work

The category of containers is a full subcategory of the category of endofunctors
with a number of interesting closure properties. The initial motivation was to
find a subcategory which is closed under taking initial algebras and terminal
coalgebras and has the necessary infrastructure to define datatypes, i.e. prod-
ucts and coproducts. The fact that this category is also cartesian closed is an
additional benefit and shows that we can interpret higher order constructions.
Finite limits are also an interesting feature which may help in modelling depen-
dent types directly, however, the failure of local cartesian closure might indicate
that we should look for a different category. Quotient containers [3] might be an
interesting alternative but an initial analysis indicates that they are not locally
cartesian closed either.

It is usual to work in an ambient category in which initial algebras of contain-
ers exist (W-types). However, the container Λ for λ-terms, in the introduction, is
an initial algebra of a container, not in the category of sets, but in the category
of containers. An investigation into the nature of W-types in the category of
containers is left for future work.
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