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Abstract. We show that a measure-based denotational semantics for
probabilistic programming is commutative.

The idea underlying probabilistic programming languages (Anglican,
Church, Hakaru, ...) is that programs express statistical models as a
combination of prior distributions and likelihood of observations. The
product of prior and likelihood is an unnormalized posterior distribu-
tion, and the inference problem is to find the normalizing constant. One
common semantic perspective is thus that a probabilistic program is un-
derstood as an unnormalized posterior measure, in the sense of measure
theory, and the normalizing constant is the measure of the entire seman-
tic domain.

A programming language is said to be commutative if only data flow is
meaningful; control flow is irrelevant, and expressions can be re-ordered.
It has been unclear whether probabilistic programs are commutative be-
cause it is well-known that Fubini-Tonelli theorems for reordering inte-
gration fail in general. We show that probabilistic programs are in fact
commutative, by characterizing the measures/kernels that arise from pro-
grams as ‘s-finite’, i.e. sums of finite measures/kernels.

The result is of theoretical interest, but also of practical interest, be-
cause program transformations based on commutativity help with sym-
bolic inference and can improve the efficiency of simulation.

1 Introduction

The key idea of probabilistic programming is that programs describe statistical
models. Programming language theory can give us tools to build and analyze
the models. Recall Bayes’ law: the posterior probability is proportional to the
product of the likelihood of observed data and the prior probability.

Posterior ∝ Likelihood× Prior (1)

One way to understand a probabilistic program is that it describes the measure
that is the product of the likelihood and the prior. This product is typically
not a probability measure, it does not sum to one. The inference problem is to
find the normalizing constant so that we can find (or approximate) the posterior
probability measure.

A probabilistic programming language is an ML-like programming language
with three special constructs, corresponding to the three terms in Bayes’ law:



– sample, which draws from a prior distribution, which may be discrete (like
a Bernoulli distribution) or continuous (like a Gaussian distribution);

– score, or observe, which records the likelihood of a particular observed data
point, sometimes called ‘soft conditioning’;

– normalize, which finds the normalization constant and the posterior proba-
bility distribution.

The implementation of normalize typically involves simulation. One hope is that
we can use program transformations to improve the efficiency of this simulation,
or even to symbolically calculate the normalizing constant. We turn to some
transformations of this kind in Section 4.1. But a very first program transfor-
mation is to reorder the lines of a program, as long as the data dependencies are
preserved, e.g.

letx = t in

let y = u in

v

=

let y = u in

letx = t in

v

(2)

where x not free in u, y not free in t. This is known as commutativity. For exam-
ple, in a traditional programming language with memory, this transformation
is valid provided t and u reference different locations. In probabilistic program-
ming, a fundamental intuition is that programs are stateless. From a practical
perspective, it is essential to be able to reorder lines and so access more sophis-
ticated program transformations (e.g. §4.1); reordering lines can also affect the
efficiency of simulation. The main contribution of this paper is the result:

Theorem 4 (§4.2). The commutativity equation (2) is always valid in proba-
bilistic programs.

1.1 A first introduction to probabilistic programming.

To illustrate the key ideas of probabilistic programming, consider the following
simple problem, which we explain in English and then specify as a probabilistic
program.

1. A telephone operator has forgotten what day it is.
2. He receives on average ten calls per hour in the week and three calls per

hour at the weekend.
3. He observes four calls in a given hour.
4. What is the probability that it is a week day?

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern( 5

7 )) in
3. let r = if x then 10 else 3 in
4. observe 4 from poisson(r);
5. return(x)) 0
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Lines 2–5 describe the combination of the likelihood and the prior. First, on
line 2, we sample from the prior: the chance that it is a week day is 5

7 . On line 3,
we set the rate of calls, depending on whether it is a week day. On line 4 we record
the observation that six calls were received when the rate was r, using the Poisson
distribution. For a discrete distribution, the likelihood is the probability of the
observation point, which for the Poisson distribution with rate r is r4e−r/4!.

We thus find a semantics for lines 2–5, an unnormalized posterior measure on
{true, false}, by considering the only two paths through the program, depending
on the outcome of the Bernoulli trial.

– The Bernoulli trial (line 2) produces true with prior probability 5
7 (it is a

week day), and then the rate is 10 (line 3) and so the likelihood of the data
is 104e−10/4! ≈ 0.019 (line 4). So the unnormalized posterior probability of
true is 5

7 × 0.019 ≈ 0.014 (prior×likelihood).
– The Bernoulli trial produces false with prior probability 2

7 (it is the weekend),
and then the likelihood of the observed data is 34e−3/4! ≈ 0.168; so the
unnormalized posterior measure of false is 2

7 × 0.168 ≈ 0.048.

The measure (true 7→ 0.014, false 7→ 0.048) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 0.014+0.048 =
0.062, to get a posterior probability measure (true 7→ 0.22, false 7→ 0.78). The
normalizing constant, 0.062, is sometimes called model evidence; it is an indica-
tion of how well the data fits the model.

Next we consider a slightly different problem. Rather than observing four
calls in a given hour, suppose the telephone operator merely observes that the
time between two given calls is 15 minutes. We describe this as a probabilistic
program as follows:

1. normalize(
2. letx = sample(bern( 5

7 )) in
3. let r = if x then 10 else 3 in
4. observe ( 15

60 ) from exp(r);
5. return(x)) 0

1

2

3

4
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exp(10)
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The difference here is that the observation is from the exponential distribution
(exp(r)), which is a continuous distribution, In Bayesian statistics, the likeli-
hood of a continuous distribution is taken to be the value of the probability
density function at the observation point. The density function of the exponen-
tial distribution exp(r) with rate r is (x 7→ re−rx). So if the decay rate is 10,
the likelihood of time 15

60 is 10e−2.5 ≈ 0.82, and if the decay rate is 3, the like-
lihood is 3e−0.75 ≈ 1.42. We thus find that the unnormalized posterior measure
of true is 5

7 × 0.82 ≈ 0.586 (prior×likelihood), and the unnormalized posterior
measure of false is 2

7 × 1.42 ≈ 0.405. In this example, the model evidence is
0.586 + 0.405 ≈ 0.991. We divide by this to find the normalized posterior, which
is (true 7→ 0.592, false 7→ 0.408).

In these simple examples, there are only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such



as the uniform distribution on an interval, in which case a simulation can only
find an approximate normalizing constant. Suppose that the telephone operator
does not know what time it is, but knows a function f : [0, 24)→ (0,∞) mapping
each time of day to the average call rate. Then by solving the following problem,
he can ascertain a posterior probability distribution for the current time.

normalize
(
let t = sample(uniform([0, 24))) in observe ( 15

60 ) from exp(f(t)); return(t)
)
.

(3)
Although simulation might only be approximate, we can give a precise semantics
to the language using measure theory. In brief,

– programs of type A are interpreted as measures on A, and more generally
expressions of type A with free variables in Γ are measure kernels Γ  A;

– sampling from a prior describes a probability measure;
– observations are interpreted by multiplying the measure of a path by the

likelihood of the data;
– sequencing is Lebesgue integration: letx = t inu ≈

∫
t(dx)u;

– normalization finds the measure of the whole space, the normalizing con-
stant.

To put it another way, the programming language is a language for building
measures. For full details, see Section 3.2.

1.2 Commutativity and infinite measures.

If, informally, sequencing is integration, then commutativity laws such as (2)
amount to changing the order of integration, e.g.∫

t(dx)

∫
u(dy) v =

∫
u(dy)

∫
t(dx) v (4)

A first non-trivial fact of measure theory is Fubini’s theorem: for finite measures,
equation (4) holds. However, commutativity theorems like this do not hold for
arbitrary infinite measures. In fact, if we deal with arbitrary infinite measures,
we do not even know whether sequencing

∫
t(dx) v is a genuine measure kernel.

As we will show, for the measures that are definable in our language, sequencing
is well defined, and commutativity does hold. But let us first emphasize that
infinite measures appear to be unavoidable because

– there is no known useful syntactic restriction that enforces finite measures;
– a program with finite measure may have a subexpression with infinite mea-

sure, and this can be useful.

To illustrate these points, consider the following program, a variation on (3).

let x = sample(gauss(0, 1)) in observe d from exp(1/f(x)); return(x) : R (5)

Here gauss(0, 1) is the standard Gaussian distribution with mean 0 and standard

deviation 1; recall that its density f is f(x) = 1√
2π
e−

x2

2 . The illustration on the



0

1

−4 0 4

d = 0

d = 0.1right shows the unnormalized posterior for (5) as
the observed data goes from d = 0.1 (blue dotted
line) to d = 0 (red straight line). Notice that at
d = 0, the resulting unnormalized posterior mea-
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be normalizing constant, is∞, so we cannot find a posterior probability measure.
A statistician would probably not be very bothered about this, because a tiny
change in the observed data yields a finite normalizing constant. But that is not
good enough for a semanticist, who must give a meaning to every program.

It is difficult to see how a simple syntactic restriction could eliminate pro-
gram (5) while keeping other useful programs such as (3). Another similar pro-
gram is

letx = sample(gauss(0, 1)) in score(g(x)/f(x)); return(x) : R (6)
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where g(x) = 1
π(1+x2) is the density function of the

standard Cauchy distribution and score(r) is short-
hand for (observe 0 from exp(r)) — recall that the den-
sity of the exponential distribution exp(r) at 0 is
r = re−r×0. Program (6) is the importance sampling
algorithm for simulating a Cauchy distribution from
a Gaussian. To see why this algorithm is correct,
i.e. (6)=sample(cauchy(0, 1)), it is helpful to rewrite it:

let x = sample(gauss(0, 1)) in score(1/f(x)) ; score(g(x)) ; return(x) : R.

Notice that the underlined subexpression is the Lebesgue measure, as in (5),
and recall that sequencing is integration. So program (6) is correct because it is
integrating the density g over the Lebesgue measure; this is equal to the Cauchy
probability measure, by definition of density.

1.3 Commutativity through s-finite kernels.

It is known that commutativity holds not just for finite measures but also for s-
finite measures, which are formed from a countable sum of finite measures. The
key contribution of this paper is that all closed probabilistic programs define
s-finite measures. To show this compositionally, we must also give a semantics
to open programs, which we interpret using a notion of s-finite kernel (Def. 2),
which is a countable sum of finite, bounded kernels; these support sequential
composition (Lemma 3). Iterated integrals and interchange (4) are no problem
for s-finite measures (Prop. 5). We conclude (Theorem 4) that the commutativity
equation (2) is always valid in probabilistic programs.

Moreover, s-finite kernels are exactly what is needed, because:

Theorem 6 (§5.1). The following are equivalent:



– a probabilistic program expression of type A and free variables in Γ ;
– an s-finite kernel Γ  A.

(The probabilistic programming language here is an idealized one that includes
countable sum types, all measurable functions, and all probability distributions.)

Summary of contribution. We use s-finite kernels to provide the first seman-
tic model (§3.2) of a probabilistic programming language that

– interprets programs such as those in Section 1.1;
– supports basic program transformations such as commutativity (Theorem 4);
– justifies program transformations based on statistical ideas such as conjugate

priors, importance sampling and resampling, in a compositional way (§4.1).

In Section 6 we relate our contributions with earlier attempts at this problem.

2 Preliminaries

2.1 Measures and kernels

Measure theory generalizes the ideas of size and probability distribution from
countable discrete sets to uncountable sets. To motivate, recall that if we sample
a real number from a standard Gaussian distribution then it is impossible that
we should sample the precise value 0, even though that is the expected value.
We resolve this apparent paradox by recording the probability that the sample
drawn lies within an interval, or more generally, a measurable set. For example,
a sample drawn from a standard Gaussian distribution will lie in the interval
(−1, 1) with probability 0.68. We now recall some rudiments of measure theory;
see e.g. [32] for a full introduction.

A σ-algebra on a set X is a collection of subsets of X that contains ∅ and
is closed under complements and countable unions. A measurable space is a
pair (X,ΣX) of a set X and a σ-algebra ΣX on it. The sets in ΣX are called
measurable sets.

For example, the Borel sets are the smallest σ-algebra on R that contains the
intervals. We will always consider R with this σ-algebra. Similarly the Borel sets
on [0,∞] are the smallest σ-algebra containing the intervals. For any countable
set (e.g. N, {0, 1}) we will consider the discrete σ-algebra, where all sets are
measurable.

A measure on a measurable space (X,ΣX) is a function µ : ΣX → [0,∞]
into the set [0,∞] of extended non-negative reals that takes countable disjoint
unions to sums, i.e. µ(∅) = 0 and µ(

⊎
n∈N Un) =

∑
n∈N µ(Un) for any N-indexed

sequence of disjoint measurable sets U . A probability measure is a measure µ
such that µ(X) = 1.

For example, the Lebesgue measure λ on R is generated by λ(a, b) = b − a.
For any x ∈ X, the Dirac measure δx has δx(U) = [x ∈ U ]. (Here and elsewhere
we regard a property, e.g. [x ∈ U ], as its characteristic function X → {0, 1}.)



To give a measure on a countable discrete measurable space X it is sufficient
to assign an element of [0,∞] to each element of X. For example, the counting
measure γ is determined by γ({x}) = 1 for all x ∈ X.

A function f : X → Y between measurable spaces is measurable if f -1(U) ∈
ΣX for all U ∈ ΣY . This ensures that we can form a pushforward measure f∗µ
on Y out of any measure µ on X, with (f∗µ)(U) = µ(f -1(U)).

For example, the arithmetic operations on R are all measurable. If U ∈ ΣX
then the characteristic function [− ∈ U ] : X → {0, 1} is measurable.

We can integrate a measurable function f : X → [0,∞] over a measure µ on
X to get number

∫
X
µ(dx) f(x) ∈ [0,∞]. (Some authors use different notation,

e.g.
∫
f dµ.) Integration satisfies the following properties (e.g. [32, Thm. 12]):∫

X
µ(dx) [x ∈ U ] = µ(U),

∫
X
µ(dx) rf(x) = r

∫
X
µ(dx) f(x),

∫
X
µ(dx) 0 = 0,∫

X
µ(dx) (f(x) + g(x)) = (

∫
X
µ(dx) f(x)) + (

∫
X
µ(dx) g(x)), and

limi

∫
X
µ(dx) fi(x) =

∫
X
µ(dx) (limi fi(x)) (7)

for any monotone sequence f1 ≤ f2 ≤ . . . of measurable functions f : X → [0,∞].
These properties entirely determine integration, since every measurable function
is a limit of a monotone sequence of simple functions [32, Lemma 11]. It follows
that countable sums commute with integration:∫

X

µ(dx)
(∑
i∈N

fi(x)
)

=
∑
i∈N

∫
X

µ(dx) fi(x). (8)

For example, integration over the Lebesgue measure on R is Lebesgue in-
tegration, generalizing the idea of the area under a curve. Integration with re-
spect to the counting measure on a countable discrete space is just summation,
e.g.

∫
N γ(di) f(i) =

∑
i∈N f(i).

We can use integration to build new measures. If µ is a measure on X and
f : X → [0,∞] is measurable then we define a measure µf on X by putting
µf (U)

def
=
∫
U
µ(dx) f(x). We say f is the density function for µf . For example,

the function x 7→ 1√
2π
e−

1
2x

2

is the density function for the standard Gaussian

probability measure on R with respect to the Lebesgue measure.
A kernel k from X to Y is a function k : X ×ΣY → [0,∞] such that each

k(x,−) : ΣY → [0,∞] is a measure and each k(−, U) : X → [0,∞] is measurable.
Because each k(x,−) is a measure, we can integrate any measurable function
f : Y → [0,∞] to get

∫
Y
k(x, dy) f(y) ∈ [0,∞]. We write k : X  Y if k is a

kernel. We say that k is a probability kernel if k(x, Y ) = 1 for all x ∈ X.

2.2 s-Finite measures and kernels

We begin with a lemma about sums of kernels.

Proposition 1. Let X,Y be measurable spaces. If k1 . . . kn · · · : X  Y are
kernels then the function (

∑∞
i=1 ki) : X ×ΣY → [0,∞] given by

(
∑∞
i=1 ki)(x, U)

def
=

∞∑
i=1

(ki(x, U))



is a kernel X  Y . Moreover, for any measurable function f : Y → [0,∞],∫
Y

(
∑∞
i=1 ki)(x,dy) f(y) =

∞∑
i=1

∫
Y

ki(x,dy) f(y).

Proof. That
∑
i∈N ki : X×ΣY → [0,∞] is a kernel is quite straightforward: it is

measurable in X because a countable sum of measurable functions is measurable
(e.g. [32, §2.2]); it is a measure in Y because countable positive sums commute:∑∞

i=1(ki(x,
⊎∞
j=1 Uj)) =

∑∞
i=1(

∑∞
j=1 ki(x, Uj)) =

∑∞
j=1(

∑∞
i=1 ki(x, Uj))

The second part of the proposition follows once we understand that every mea-
surable function f : Y → [0,∞] is a limit of simple functions and apply the mono-
tone convergence theorem (7).

Definition 2. Let X,Y be measurable spaces. A kernel k : X  Y is finite if
there is finite r ∈ [0,∞) such that, for all x, k(x, Y ) < r.

A kernel k : X  Y is s-finite if there is a sequence k1 . . . kn . . . of finite
kernels and

∑∞
i=1 ki = k.

Note that the bound in the finiteness condition, and the choice of sequence in
the s-finiteness condition, are uniform, across all arguments to the kernel.

The definition of s-finite kernel also appears in recent work by Kallenberg [20]
and Last and Penrose [23, App. A]. The idea of s-finite measures is perhaps more
established ([9, L. 8.6], [39, §A.0]).

3 Semantics of a probabilistic programming language

We give a typed first order probabilistic programming language in Section 3.1,
and its semantics in Section 3.2. The semantics is new: we interpret programs as
s-finite kernels. The idea of interpreting programs as kernels is old (e.g. [21]), but
the novelty here is that we can treat infinite measures. It is not a priori obvious
that a compositional denotational semantics based on kernels makes sense for
infinite measures; the trick is to use s-finite kernels as an invariant, via Lemma 3.

3.1 A typed first order probabilistic programming language

Our language syntax is not novel: it is the same language as in [43], and as such
an idealized, typed, first order version of Anglican [46], Church [11], Hakaru [30],
Venture [26] and so on.

Types. The language has types

A,B ::= R | P(A) | 1 | A× B |
∑
i∈I Ai

where I ranges over countable, non-empty sets. Alongside the usual sum and
product types, we have a special type R of real numbers and types P(A) of prob-
ability distributions. For example, (1 + 1) is a type of booleans, and P(1 + 1) is



a type of distributions over booleans, and
∑
i∈N 1 is a type of natural numbers.

This is not a genuine programming language because we include countably in-
finite sums rather than recursion schemes; this is primarily because countably
infinite disjoint unions play such a crucial role in classical measure theory, and
constructive measure theory is an orthogonal issue (but see e.g. [1]).

Types A are interpreted as measurable spaces JAK.

– JRK is the measurable space of reals, with its Borel sets.

– JP(A)K is the set P (JAK) of probability measures on JAK together with the σ-
algebra generated by the sets {µ | µ(U) < r} for each U ∈ ΣX and r ∈ [0, 1]
(the ‘Giry monad’ [10]).

– J1K is the discrete measurable space with one point.

– JA× BK is the product space JAK× JBK. The σ-algebra ΣJA×BK is generated
by rectangles (U × V ) with U ∈ ΣJAK and V ∈ ΣJBK (e.g. [32, Def. 16]).

– J
∑
i∈I AiK is the coproduct space

⊎
i∈IJAiK. The σ-algebra ΣJ

∑
i∈I AiK is gen-

erated by sets {(i, a) | a ∈ U} for U ∈ ΣJAiK.

Terms. We distinguish typing judgements: Γ d̀ t : A for deterministic terms, and
Γ p̀ t : A for probabilistic terms. Formally, a context Γ = (x1 : A1, . . . , xn : An)
means a measurable space JΓ K def

=
∏n
i=1JAiK. Deterministic terms Γ d̀ t : A denote

measurable functions from JΓ K→ JAK, and probabilistic terms Γ p̀ t
′ : A denote

kernels JΓ K JAK. We give a syntax and type system here, and a semantics in
Section 3.2.

Sums and products. The language includes variables, and standard constructors
and destructors for sum and product types.

Γ, x : A, Γ ′ d̀ x : A
Γ d̀ t : Ai

Γ d̀ (i, t) :
∑
i∈I Ai

Γ d̀ t :
∑
i∈I Ai (Γ, x : Ai z̀ ui : B)i∈I

Γ z̀ case t of {(i, x)⇒ ui}i∈I : B
(z ∈ {d, p})

Γ d̀ () : 1

Γ d̀ t0 : A0 Γ d̀ t1 : A1

Γ d̀ (t0, t1) : A0 × A1

Γ d̀ t : A0 × A1

Γ d̀ πj(t) : Aj

In the rules for sums, I may be infinite. In the last rule, j is 0 or 1. We use some
standard syntactic sugar, such as false and true for the injections in the type
bool = 1 + 1, and if for case in that instance.

Sequencing. We include the standard constructs for sequencing (e.g. [25,29]).

Γ d̀ t : A
Γ p̀ return(t) : A

Γ p̀ t : A Γ, x : A p̀ u : B
Γ p̀ let x = t in u : B



Language-specific constructs. So far the language is very standard. We also in-
clude constant terms for all measurable functions.

Γ d̀ t : A
Γ d̀ f(t) : B

(f : JAK→ JBK measurable) (9)

Thus the language contains all the arithmetic operations (e.g. + : R × R → R)
and predicates (e.g. (=) : R×R→ bool). Moreover, all the families of probability
measures are in the language. For example, the Gaussian distributions gauss :
R × R → P (R) are parameterized by mean and standard deviation, so that
we have a judgement µ : R, σ : R d̀ gauss(µ, σ) : P(R). (Some families are not
defined for all parameters, e.g. the standard deviation should be positive, but we
make ad-hoc safe choices throughout rather than using exceptions or subtyping.)

The core of the language is the constructs corresponding to the terms in
Bayes’ law (1): sampling from prior distributions, recording likelihood scores,

Γ d̀ t : P(A)

Γ p̀ sample(t) : A
Γ d̀ t : R

Γ p̀ score(t) : 1

and calculating the normalizing constant and a normalized posterior.

Γ p̀ t : A
Γ d̀ normalize(t) : R× P(A) + 1 + 1

Normalization will fail if the normalizing constant is zero or infinity. Notice that
normalization produces a probability distribution; in a complex model this could
then be used as a prior and sampled from. This is sometimes called a ‘nested
query’.

Note about observations. Often a probability distribution d has a widely under-
stood density function f with respect to some base measure. For example, the
exponential distribution with rate r is usually defined in terms of the density
function x 7→ re−rx with respect to the Lebesgue measure on R. The score con-
struct is typically called with a density. In this circumstance, we use the informal
notation observe t from d for score(f(t)). For example, observe t from exp(r) is in-
formal notation for score(re−r×t). In a more realistic programming language,
this informality is avoided by defining a ‘distribution object’ to be a pair of a
probability measure and a density function for it. There is no difference in ex-
pressivity between an observe construction and a score construct. For example,
score(r) can be understood as observe 0 from exp(r), since re−r0 = r.

(Technical point: although density functions can be understood as Radon-
Nikodym derivatives, these are not uniquely determined on measure-zero sets,
and so a distribution object does need to come with a given density function.
Typically the density is continuous with respect to some metric so that the
likelihood is not vulnerable to small inaccuracies in observations. See e.g. [43,
§9] for more details.)



3.2 Denotational semantics

Recall that types A are interpreted as measurable spaces JAK. We now explain
how to interpret a deterministic term in context, Γ d̀ t : A as a measurable
function JtK : JΓ K → JAK, and how to interpret a probabilistic term in context,
Γ p̀ t : A, as an s-finite kernel JtK : JΓ K JAK.

The semantics is given by induction on the structure of terms. Before we
begin we need a lemma.

Lemma 3. Let X,Y, Z be measurable spaces, and let k : X × Y  Z and
l : X  Y be s-finite kernels (Def. 2). Then we can define a s-finite kernel
(k ? l) : X  Z by

(k ? l)(x, U)
def
=

∫
Y

l(x,dy) k(x, y, U)

so that ∫
Z

(k ? l)(x, dz) f(z) =

∫
Y

l(x, dy)

∫
Z

k(x, y,dz) f(z)

Proof. Suppose k =
∑∞
i=1 ki and l =

∑∞
j=1 lj are s-finite kernels, and that the

ki’s and lj ’s are finite kernels. We need to show that k?l is a kernel and moreover
s-finite. We first show that each ki ? lj is a finite kernel. Each (ki ? lj)(x,−) :
ΣZ → [0,∞] is a measure:

(ki ? lj)(x,
⊎∞
a=1 Ua) =

∫
Y
lj(x, dy) ki(x, y,

⊎∞
a=1 Ua)

=
∫
Y
lj(x, dy)

∑∞
a=1 ki(x, y, Ua) k is a kernel

=
∑∞
a=1

∫
Y
lj(x, dy) ki(x, y, Ua) eqn (8)

The measurability of each (ki ? lj)(−, U) : X → [0,∞] follows from the
general fact that for any measurable function f : X × Y → [0,∞], the function∫
Y
lj(−,dy) f(−, y) : X → [0,∞] is measurable (e.g. [32, Thm. 20(ii)]). Thus

(ki ? lj) is a kernel. This step crucially uses the fact that each measure lj(x,−)
is finite.

To show that (ki ? lj) is a finite kernel, we exhibit a bound. Since ki and lj
are finite, we have r, s ∈ (0,∞) such that ki(x, y, Z) < r and lj(x, Y ) < s for all
x, y. Now rs is a bound on (ki ? lj) since

(ki ? lj)(x, Z) =
∫
Y
lj(x, dy) k(x, y, Z) <

∫
Y
lj(x, dy) r = rlj(x, Y ) < rs.

So each (ki ? lj) is a finite kernel. Note that here we used the uniformity in the
definition of finite kernel.

We conclude that (k ? l) is an s-finite kernel by showing that it is a countable
sum of finite kernels:

(k ? l)(x, U) = ((
∑
i ki) ? (

∑
j lj))(x, U)

=
∫
Y

∑
j(lj(x, dy))

∑
i(ki(x, y, U))

=
∑
i

∫
Y

∑
j(lj(x,dy)) ki(x, y, U) eqn (8)

=
∑
i

∑
j

∫
Y
lj(x,dy) ki(x, y, U) Prop. 1

=
∑
i

∑
j(ki ? lj)(x, U)



The final part of the statement follows by writing f as a limit of a sequence
of simple functions and using the monotone convergence property (7).

Remark. It seems unlikely that we can drop the assumption of s-finiteness in
Lemma 3. The difficulty is in showing that (k ? l) : X × ΣZ → [0,∞] is mea-
surable in its first argument without some extra assumption. (I do not have
a counterexample, but then examples of non-measurable functions are hard to
find.)

Semantics. We now explain the semantics of the language, beginning with
variables, sums and products, which is essentially the same as a set-theoretic
semantics.

JxKγ,d,γ′
def
= d J(i, t)Kγ

def
= (i, JtKγ)

Jcase t of {(i, x)⇒ ui}i∈IKγ
def
= JuiKγ,d if JtKγ = (i, d)

J()Kγ
def
= () J(t0, t1)Kγ

def
= (Jt0Kγ , Jt1Kγ) Jπj(t)Kγ

def
= di if JtKγ = (d0, d1)

Here we have only treated the case expressions when the continuation is deter-
ministic; we return to the probabilistic case later.

The semantics of sequencing are perhaps the most interesting: return is the
Dirac delta measure, and let is integration.

Jreturn(t)Kγ,U
def
=

{
1 if JtKγ ∈ U
0 otherwise

Jletx = t inuKγ,U
def
=

∫
A
JtKγ,dx JuKγ,x,U

The interpretation Jreturn(t)K is finite, hence s-finite. The fact that Jletx = t inuK
is an s-finite kernel is Lemma 3: this is the most intricate part of the semantics.

We return to the case expression where the continuation is probabilistic:

Jcase t of {(i, x)⇒ ui}i∈IKγ,U
def
= JuiKγ,d,U if JtKγ = (i, d).

We must show that this is an s-finite kernel. Recall that JuiK : JΓ × AiK JBK,
s-finite. We can also form JuiK : JΓ K×

⊎
jJAjK JBK with

JuiKγ,(j,a),U
def
=

{
JuiKγ,a,U i = j

0 otherwise

and it is easy to show that JuiK is an s-finite kernel. Another easy fact is that a
countable sum of s-finite kernels is again an s-finite kernel, so we can build an
s-finite kernel (

∑
i JuiK) : JΓ K×

⊎
jJAjK JBK. Finally, we use a simple instance

of Lemma 3 to compose (
∑
i JuiK) with JtK : JΓ K →

⊎
jJAjK and conclude that

Jcase t of {(i, x)⇒ ui}i∈IK is an s-finite kernel.
The language specific constructions are straightforward.

Jsample(t)Kγ,U
def
= JtKγ(U) Jscore(t)Kγ,U

def
=

{
|JtKγ | if U = {()}
0 if U = ∅.



In the semantics of sample, we are merely using the fact that to give a measurable
function X → P (Y ) is to give a probability kernel X  Y . Probability kernels
are finite, hence s-finite.

The semantics of score is a one point space whose measure is the argument.
(We take the absolute value of JtKγ because measures should be non-negative. An
alternative would be to somehow enforce this in the type system.) We need to
show that Jscore(t)K is an s-finite kernel. Although Jscore(t)Kγ,1 is always finite,
Jscore(t)K is not necessarily a finite kernel because we cannot find a uniform
bound. To show that it is s-finite, for each i ∈ N0, define a kernel ki : JΓ K 1

ki(γ, U)
def
=

{
Jscore(t)Kγ,U if Jscore(t)Kγ,U ∈ [i, i+ 1)

0 otherwise

So each ki is a finite kernel, bounded by (i+ 1), and Jscore(t)K =
∑∞
i=0 ki, so it

is s-finite.
We give a semantics to normalization by finding the normalizing constant

and dividing by it, as follows. Consider Γ p̀ t : A and let evidencet
def
= JtKγ,JAK.

Jnormalize(t)Kγ
def
=


(0, (evidencet,

JtKγ,(−)

evidencet
)) evidencet ∈ (0,∞)

(1, ()) evidencet = 0

(2, ()) evidencet =∞

(In practice, the normalization will only be approximate. We leave it for future
work to develop semantic notions of approximation in this setting, e.g. [27].)

4 Properties and examples

4.1 Examples of statistical reasoning

Lebesgue measure, densities and importance sampling. The Lebesgue
measure on R is not a primitive in our language, because it is not a probability
measure, but it is definable. For example, we can score the standard Gaussian
by the inverse of its density function, f(x) = 1√

2π
e−

1
2x

2

.

J p̀ letx = sample(gauss(0, 1)) in score( 1
f(x) ); return(x) : RK−,U (10)

=

∫
U

gauss(0, 1)(dx) ( 1
f(x) )

=

∫
U

lebesgue(dx) (f(x))( 1
f(x) ) since gauss(0, 1)(V ) =

∫
V

lebesgue(dx) f(x)

= lebesgue(U)

(On the third line, we use the definition of density function.)
Some languages (such as Stan [40], also Core Hakaru [38]) encourage the

use of the Lebesgue measure as an ‘improper prior’. We return to the example



of importance sampling, proposed in the introduction. Consider a probability
measure p with density g. Then

Jsample(p)K = Jletx = lebesgue in observex from p; return(x)K (11)

— a simple example of how an improper prior can lead to a proper posterior.
We can derive the importance sampling algorithm for p by combining (11) with
(10):

Jsample(p)K = Jletx = lebesgue in observex from p; return(x)K

= Jletx = gauss(0, 1) in score( 1
f(x) ); score(g(x)); return(x)K

= Jletx = gauss(0, 1) in score( g(x)f(x) ); return(x)K.

Conjugate prior relationships and symbolic Bayesian update. A key
technique for Bayesian inference involves conjugate prior relationships. In gen-
eral, inference problems are solved by simulation, but sometimes we can work
symbolically, when there is a closed form for updating the parameters of a prior
according to an observation. In a probabilistic programming language, this sym-
bolic translation can be done semi-automatically as a program transformation
(see e.g. [5]).

Recall that beta(α, β) is a probability measure on [0, 1] describing the distri-
bution of a bias of a coin from which we have observed (α−1) heads and (β−1)
tails. This has a conjugate prior relationship with the Bernoulli distribution. For
instance,

Jletx = sample(beta(2, 2)) in observe 1 from bern(x);xK
=
Jobserve 1 from bern( 2

2+2 ); sample(beta(2 + 1, 2))K
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In the graph, notice that beta(3, 2) depicts the updated posterior belief of the
bias of the coin after an additional observation: it is more probable that the coin
is biassed to heads.

Resampling. In many situations, particularly in Sequential Monte Carlo sim-
ulations, it is helpful to freeze a simulation and resample from a histogram that
has been built (e.g. [31]). In practical terms, this avoids having too many threads
of low weight. Resampling in this way is justified by the following program equa-
tion:

JtK = Jcase normalize(t) of (1, (e, d))⇒ score(e); sample(d)

| (2, ())⇒ score(0); t

| (3, ())⇒ t K



Notice that we cannot resample if the model evidence is∞. For example, we can-
not resample from the expression above computing the Lebesgue measure (10),
although of course this doesn’t prevent us from resampling from programs that
contain it (e.g. (11)).

Hard constraints. A hard constraint is a score of 0; a non-zero score is a soft
constraint. In our language, every type is inhabited, so for each type A we can
define a term

failA
def
= score(0); f() : A (12)

picking arbitrary f : 1→ JAK at each type A. The semantics is JfailAKγ,U = 0.
Hard constraints suffice for scores below 1, because then

Jscore(r)K = Jif sample(bern(r)) then () else fail1K.

Hard constraints cannot express scores above 1, which can arise from continuous
likelihoods — for instance, in the example in the introduction, the likelihoods
were 0.82 and 1.42. Inference algorithms often perform better when soft con-
straints are used.

4.2 Basic semantic properties

Standard β/η laws and associativity of let. The standard β/η laws for
sums and products hold. These are easy to verify. For instance,

Jcase (i, t) of {(j, x)⇒ uj}j∈IK = Jui[t/x]K.

We also have the standard associativity and identity laws for let:

Jletx = return(t) inuK = Ju[t/x]K Jletx = u in return(x)K = JuK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

For instance, the associativity law follows from Lemma 3.

Commutativity

Theorem 4. For any terms Γ p̀ t : A, Γ p̀ u : B, Γ, x : A, y : B p̀ v : C, we have

Jletx = t in let y = u in vK = Jlet y = u in letx = t in vK.

This theorem is an immediate consequence of Proposition 5:

Proposition 5. Let µ and λ be s-finite measures on X and Y respectively, and
let f : X × Y → [0,∞] be measurable. Then∫

X

µ(dx)

∫
Y

λ(dy) f(x, y) =

∫
Y

λ(dy)

∫
X

µ(dx) f(x, y)



Proof. This result is known (e.g. [39]) and it is easy to prove. Since µ and λ are
s-finite, we have µ =

∑∞
i=1 µi and λ =

∑∞
j=1 λj , with the µi’s and λj ’s all finite.

Now,∫
X

(
∑
i µi)(dx)

∫
Y

(
∑
j λj)(dy) f(x, y)

=
∑
i

∫
X
µi(dx)

∑
j

∫
Y
λj(dy) f(x, y) using Prop. 2

=
∑
i

∑
j

∫
X
µi(dx)

∫
Y
λj(dy) f(x, y) using (8)

=
∑
i

∑
j

∫
Y
λj(dy)

∫
X
µi(dx) f(x, y) finite measures commute, [32, Th 25]

=
∑
i

∫
Y

(
∑
j λj)(dy)

∫
X
µi(dx) f(x, y) using Prop. 2

=
∫
Y

(
∑
j λj)(dy)

∑
i

∫
X
µi(dx) f(x, y) using (8)

=
∫
Y

(
∑
j λj)(dy)

∫
X

(
∑
i µi)(dx) f(x, y) using Prop. 2.

(The commutativity for finite measures is often called Fubini’s theorem.)

Iteration. We did not include iteration in our language but in fact it is definable.
In brief, we can use the probabilistic constructs to guess how many iterations
are needed for termination. (We do not envisage this as a good implementation
strategy, we merely want to show that the language and semantic model can
accommodate reasoning about iteration.)

In detail, we define a construction iterate t fromx=u, that keeps calling t,
starting from x=u; if t returns u′ : A, then we repeat with x=u′, if t finally
returns in B, then we stop. This has the following derived typing rule:

Γ, x : A p̀ t : (A + B) Γ d̀ u : A
Γ p̀ iterate t fromx=u : B

We begin by defining the counting measure on N, which assigns to each set
its size. This is not a primitive, because it isn’t a probability measure, but we
can define it in a similar way to the Lebesgue measure:

countingN = J p̀ letx = sample(poisson(1)) in score(x!e); return(x) : NK (13)

(Recall that the Poisson distribution has poisson(1)({x}) = 1
x!e .)

Now we can define

iterate t fromx=u
def
= case countingN of (n, ())⇒ iteraten t fromx=u

where Γ p̀ iteraten t fromx=u : B is the program that returns v : B if t returns v
after exactly n iterations and fails otherwise:

iterate1 t fromx=u
def
= case t[u/x] of (1, u′)⇒ fail

| (2, v)⇒ return(v)

iteraten+1 t fromx=u
def
= case t[u/x] of (1, u′)⇒ iteraten t fromx=u′

| (2, v)⇒ fail



For a simple illustration, von Neumann’s trick for simulating a fair coin from
a biassed one d can be written d : P(bool) p̀ iterate t fromx=(): bool where

t
def
= (let y = sample(d) in

let z = sample(d) in if y 6= z then return(2, y) else return(1, ())) : 1 + bool

We leave for future work the relation between this iteration and other axioma-
tizations of iteration (e.g. [12, Ch. 3]).

5 Remarks about s-finite kernels

5.1 Full definability

Theorem 6. If k : JΓ K  JAK is s-finite then there is a term Γ p̀ t : A such
that k = JtK.

Proof. We show that probability kernels are definable. Consider a probabil-
ity kernel k : JΓ K  JAK with Γ = (x1 : B1 . . . xn : Bn). This corresponds
to a measurable function f : J

∏n
i=1 BK → P (JAK), with f(b1, . . . , bn)(U) =

k(b1, . . . , bn, U), and k = JΓ p̀ sample(f(x1, . . . , xn)) : AK.
We move on to subprobability kernels, which are kernels k : JΓ K JAK such

that k(γ, JAK) ≤ 1 for all γ. We show that they are all definable. Recall that
to give a subprobability kernel k : JΓ K  JAK is to give a probability kernel
k̄ : JΓ K JA + 1K. Define

k̄(γ, U) =

{
k(γ, {a | (1, a) ∈ U}) + (1− k(γ, JAK)) (2, ()) ∈ U
k(γ, {a | (1, a) ∈ U}) otherwise

This probability kernel k̄ is definable, with k̄ = JtK, say, and this has the property
that

k = Jcase t of (1, x)⇒ return(x) | (2, ())⇒ failK.

where fail is the zero kernel defined in (12). So the subprobability kernel k is
definable.

Next, we show that all finite kernels k : JΓ K JAK are definable. If k is finite
then there is a bound r ∈ (0,∞) such that k(γ, JAK) < r for all γ. Then 1

rk is
a subprobability kernel, hence definable, so we have t such that 1

rk = JtK. So
k = rJtK = Jscore(r); tK.

Finally, if k is s-finite then there are finite kernels ki : JΓ K  JAK such that
k =

∑∞
i=1 ki. Since the ki’s are finite, we have terms ti with ki = JtiK. Recall that

a countable sum is merely integration over the counting measure on N, which
we showed to be definable in (13). So we have k = Jcase countingN of i⇒ tiK.



5.2 Failure of commutativity in general

The standard example of the failure of Tonelli’s theorem (e.g. [32, Ch 4., Ex 12]
can be used to explain why the commutativity program equation (2) fails if we
allow arbitrary measures as programs.

Let lebesgue be the Lebesgue measure on R, and let countingR be the counting
measure on R. Recall that countingR(U) is the cardinality of U if U is finite, and
∞ if U is infinite. Then∫

R
lebesgue(dr)

∫
R

countingR(ds) [r = s] =

∫
R

lebesgue(dr) 1 = ∞∫
R

countingR(ds)

∫
R

lebesgue(dr) [r = s] =

∫
R

countingR(ds) 0 = 0

So, by Proposition 5, the counting measure on R is not s-finite, and hence it is
not definable in our language. (This is in contrast to the counting measure on N,
see (13).)

Just for this subsection, we suppose that we can add the counting measure
on R to our language as a term constructor p̀ countingR : R and that we can
extend the semantics to accommodate it. (This would require some extension of
Lemma 3.) The Lebesgue measure is already definable in our language (10). In
this extended language we would have

J p̀ let r = lebesgue in let s = countingR in [r = s] : boolK(),{true} = ∞
J p̀ let s = countingR in let r = lebesgue in [r = s] : boolK(),{true} = 0.

So if such as language extension was possible, we would not have commutativity.

5.3 Variations on s-finiteness

Infinite versions of Fubini/Tonelli theorems are often stated for σ-finite measures.
Recall that a measure µ on X is σ-finite if X =

⊎∞
i=1 Ui with each Ui ∈ ΣX

and each µ(Ui) finite. The restriction to σ-finite measures is too strong for our
purposes. For example, although the Lebesgue measure (lebesgue) is σ-finite, and
definable (10), the measure J p̀ letx = lebesgue in () : 1K is the infinite measure on
the one-point space, which is not σ-finite. This illustrates the difference between
σ-finite and s-finite measures:

Proposition 7. A measure is s-finite if and only if it is a pushforward of a
σ-finite measure.

Proof. From left to right, let µ =
∑∞
i=1 µi be a measure on X with each

µi finite. Then we can form a σ-finite measure ν on N × X with ν(U) =∑∞
i=1 µi({x | (i, x) ∈ U}). The original measure µ is the pushforward of ν along

the projection N×X → X.
From right to left, let ν be a σ-finite measure on X =

⊎∞
i=1 Ui with each

restricted measure ν(Ui) finite. Let f : X → Y be measurable. For i ∈ N, let
µi(V ) = ν({x ∈ Ui | f(x) ∈ V }). Then each µi is a finite measure on Y and∑∞
i=1 µi is the pushforward of ν along f , as required. (See also [9, L. 8.6].)



However, this does not mean that s-finite kernels (Def. 2) are ‘just’ kernels whose
images are pushforwards of σ-finite measures. In the proof of commutativity, we
did only need kernels k : X  Y such that k(x) is an s-finite measure for all x ∈
X. This condition is implied by the definition of s-finite kernel (Def. 2) but the
definition of s-finite kernel seems to be strictly stronger because of the uniformity
in the definition. (This is not known for sure; see also the discussion about σ-
finite kernels in [32, §4.10].) The reason we use the notion of s-finite kernel,
rather than this apparently weaker notion, is that Lemma 3 (and hence the well-
defined semantics of let) appears to require the uniformity in the definition of
finite and s-finite kernels. In brief, the stronger notion of s-finite kernel provides
a compositional semantics giving s-finite measures.

6 Concluding remarks

6.1 Related work on commutativity for probabilistic programs

Work using finite kernels. Several other authors have given a semantics for
probabilistic programs using kernels. Subprobability kernels and finite measures
already appear in Kozen’s work on probabilistic programming [21]. Ramsey and
Pfeffer [34] focus on a language like ours but without score or normalize; they give
a semantics in terms of probability kernels. The measure-transformer-semantics
of Börgstrom et al. [3] incorporates observations by moving to finite kernels; their
semantics is similar to ours (§3.2), but they are able to make do with finite kernels
by considering a very limited language. In the more recent operational seman-
tics by Börgstrom et al. [4], problems of commutativity are avoided by requiring
scores to be less than 1, so that all the measures are subprobability measures.
Jacobs and Zanasi [18] also impose this restriction to make a connection with an
elegant mathematical construction. With discrete countable distributions, this is
fine because density functions and likelihoods lie below 1. But when dealing with
continuous distributions, it is artificial to restrict to scores below 1, since the like-
lihood of a continuous distribution may just as well lie above 1 as below it. For ex-
ample, the subprobability semantics could not handle the example in Section 1.1.
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This is not merely a matter of scaling, because den-
sity functions are sometimes unbounded, as shown
in beta(0.5, 0.5) on the right. Our results here show
that, by using s-finite kernels, one can consider ar-
bitrary likelihoods without penalty.

Verification conditions for commutativity. Shan
and Ramsey [38] use a similar semantics to ours to
justify their disintegration program transformation.
They interpret a term Γ p̀ t : A as a measurable function into a monad M of
measures, JtKSR : JΓ K → M(A), which actually amounts to the same thing as a
kernel. However, there is a problem with the semantics in this style: we do not
know a proof for Lemma 3 without the s-finiteness restriction. In other words, we
do not know whether the monad of all measures M is a strong monad. A strength



is needed to give a semantics for the let construction. So it is not clear whether
the semantics is well-defined. Even if M is strong, it is certainly not commuta-
tive, as we have discussed in §5.2, a point also emphasized by Ramsey [35]. Shan
and Ramsey [38] regain commutativity by imposing additional verification con-
ditions. Our results here show that these conditions are always satisfied because
all definable programs are s-finite kernels and hence commutative.

Contextual equivalence. Very recently, Culpepper and Cobb [6] have proposed an
operational notion of contextual equivalence for a language with arbitrary like-
lihoods, and shown that this supports commutativity. The relationship between
their argument and s-finite kernels remains to be investigated.

Sampling semantics. An alternative approach to denotational semantics for
probabilistic programs is based on interpreting an expression Γ p̀ t : A as a
probability kernel JtK′ : JΓ K  ([0,∞) × JAK), so that JtK′(γ) is a probability
measure on pairs (r, x) of a result x and a weight r. In brief, the probabil-
ity measure comes from sampling priors, and the weight comes from scoring
likelihoods of observations. Börgstrom et al. [4] call this a sampling semantics
by contrast with the distribution semantics that we have considered here. This
sampling semantics, which has a more intensional flavour and is closer to an op-
erational intuition, is also considered by Ścibor et al. [37] and Staton et al. [43],
as well as Doberkat [7]. The two methods are related because every probability
kernel k : X  ([0,∞) × Y ) induces a measure kernel k̄ : X  Y by summing
over the possible scores:

k̄(x, U)
def
=

∫
[0,∞)×U

k(x, d(r, y)) r (14)

An advantage to the sampling semantics is that it is clearly commutative, be-
cause it is based on a commutative monad (P ([0,∞) × (−))), built by com-
bining the commutative Giry monad P and the commutative monoid monad
transformer. However, the sampling semantics does not validate many of the
semantic equations in Section 4.1: importance sampling, conjugate priors, and
resampling are only sound in the sampling semantics if we wrap the programs in
normalize(. . . ). (See e.g. [43].) This makes it difficult to justify applying program
transformations compositionally. The point of this paper is that we can verify
the semantic equations in Section 4.1 directly, while retaining commutativity, by
using the measure based (distributional) semantics.

As an aside we note that the probability kernels X  ([0,∞) × Y ) used in
the sampling semantics are closely related to the s-finite kernels advocated in
this paper:

Proposition 8. A kernel l : X  Y is s-finite if and only if there exists a
probability kernel k : X  ([0,∞)× Y ) and l(x, U) =

∫
[0,∞)×U k(x, d(r, y)) r.

Proof (notes). We focus on the case where X = JAK and Y = JBK. From left to
right: build a probability kernel from an s-finite kernel by first understanding it as



a probabilistic program (via Thm. 6) and then using the denotational semantics
in [43]. From right to left: given a probability kernel k : JAK  ([0,∞) × JBK),
we build an s-finite kernel

Jx : A p̀ let (r, y) = sample(k(x)) in score(r); return(y) : BK : JAK JBK.

Valuations versus measures. Some authors advocate using valuations on topo-
logical spaces instead of measures on measurable spaces. This appears to rule
out the problematic examples, such as the counting measure on R. Indeed, Vick-
ers [45] has shown that a monad of valuations on locales is commutative. This
suggests a constructive or topological model of probabilistic programming (see
[8,15]) but a potential obstacle is that conditioning is not always computable [1].

6.2 Related work on commutativity more generally

Multicategories and data flow graphs. An early discussion of commutativ-
ity is in Lambek’s work on deductive systems and categories [22]. A judgement
x1 : A1, . . . , xn : An ` t : B is interpreted as a multimorphism (A1 . . . An) → B.
These could be drawn as triangles:

A1
A2

An

Bt...

(This hints at a link with the graphical ideas underlying several probabilis-
tic programming languages e.g. Stan [40].) Alongside requiring associativity of
composition, Lambek requires commutativity:

vu

t
vu

t
=

which matches with our commutativity condition (2). (See also [42].) In this
diagrammatic notation, commutativity says that the semantics is preserved un-
der topological transformations. Without commutativity, one would need extra
control flow wires to give a topological description of what rewritings are ac-
ceptable (e.g. [19,28]). Our main technical results (Lemma 3 and Prop. 5) can
be phrased as follows:

Measurable spaces and s-finite kernels X1 × · · · ×Xn  Y form a mul-
ticategory.



Monoidal categories, monads and arrows. There is a tight connection
between multicategories and monoidal categories [13,24,42]. Our main technical
results (Lemma 3 and Prop. 5) together with the basic facts in Section 4.2 can
be phrased as follows:

Consider the category whose objects are measurable spaces and mor-
phisms are s-finite kernels. The cartesian product of spaces extends to
a monoidal structure which distributes over the coproduct structure.

From this point of view, the key step is that given s-finite kernels k : X1  Y1
and k2 : X2  Y2, we can form (k1 ⊗ k2) : X1 ×X2  Y1 × Y2, with

(k1 ⊗ k2)((x1, x2), U) =

∫
X1

k1(x1,dy1)

∫
X2

k2(x2,dy2)[(y1, y2) ∈ U ]

and the interchange law holds, in particular, (k1 ⊗ id) ◦ (id ⊗ k2) = (id ⊗ k2) ◦
(k1 ⊗ id).

One way of building monoidal categories is as Kleisli categories for commu-
tative monads. For example, the monoidal category of probability kernels is the
Kleisli category for the Giry monad [10]. However, we conjecture that s-finite
kernels do not form a Kleisli category for a commutative monad on the cate-
gory of measurable spaces. One could form a space Msfin(Y ) of s-finite measures
on a given space Y , but, as discussed in Section 5.3, it is unlikely that every
measurable function X → Msfin(Y ) is an s-finite kernel in general, because of
the uniformity in the definition (Def. 2). This makes it difficult to ascertain
whether Msfin is a strong commutative monad. Having a monad would give us a
slightly-higher-order type constructor T (A) and the rules

Γ p̀ t : A
Γ d̀ thunk(t) : T (A)

Γ d̀ t : T (A)

Γ p̀ force(t) : A

allowing us to thunk (suspend, freeze) a probabilistic computation and then force
(resume, run) it again [29,25]. The rules are reminiscent of, but not the same
as, the rules for normalize and sample. Although monads are a convenient way of
building a semantics for programming languages, they are not essential for first
order languages such as the language in this paper.

As a technical aside we recall that Power, Hughes and others have eschewed
monads and given categorical semantics for first order languages in terms of
Freyd categories [25] or Arrows [16] (see also [2,17,41]), and the idea of structur-
ing the finite kernels as an Arrow already appears in the work of Börgstrom et
al. [3] (see also [36,44]). Our semantics based on s-finite kernels forms a ‘count-
ably distributive commutative Freyd category’, which is to say that the identity-
on-objects functor(

measurable spaces
& measurable functions

)
−→

(
measurable spaces
& s-finite kernels

)
preserves countable sums and is monoidal. In fact every countably distributive
commutative Freyd category C → D corresponds to a commutative monad, not



on the category C but on the category of countable-product-preserving functors
Cop → Set (e.g. [33,43]). This functor category is cartesian closed, and so it is
also a fairly canonical semantics for higher order programs. (For a more concrete
variant, see also [14].)

6.3 Summary

We have given a denotational semantics for a probabilistic programming lan-
guage using s-finite kernels (§3.2). Compositionality relied on a technical lemma
(Lemma 3). This semantic model supports reasoning based on statistical tech-
niques (§4.1), such as conjugate priors, as well as basic equational reasoning
(§4.2), such as commutativity (Thm. 4). The model is actually completely de-
scribed by the syntax, according to our full definability theorem (Thm. 6).
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