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Abstract. We present an algebraic theory for a fragment of predicate
logic. The fragment has disjunction, existential quantification and equal-
ity. It is not an algebraic theory in the classical sense, but rather within
a new framework that we call ‘parameterized algebraic theories’.

We demonstrate the relevance of this algebraic presentation to com-
puter science by identifying a programming language in which every type
carries a model of the algebraic theory. The result is a simple functional
logic programming language.

We provide a syntax-free representation theorem which places terms
in bijection with sieves, a concept from category theory.

We study presentation-invariance for general parameterized algebraic
theories by providing a theory of clones. We show that parameterized
algebraic theories characterize a class of enriched monads.

1 Introduction

This paper is about the following fragment of predicate logic:

P,Q ::� K | P _Q | pt � uq ^ P | Da. P paq | xrt1, . . . , tns

where t, u range over the domain of discourse and x is an n-ary predicate symbol.
We provide an algebraic presentation of logical equivalence using a new algebraic
framework that we call ‘parameterized algebraic theories’. This syntactic frame-
work comes with a straightforward deduction system.

Having introduced the new algebraic framework and presented the theory of
predicate logic, we make three further contributions.

1. We consider a programming language in which every type is equipped
with the structure of a model of the theory. This yields a simple functional logic
programming language (in the sense of [7]). In doing this, we add weight to the
slogan of Plotkin and Power [35]: ‘algebraic theories determine computational
effects’. We demonstrate our language by providing a simple implementation1.

2. We give a representation theorem for terms in our algebraic theory. There
is nothing canonical about a presentation of an algebraic theory: which function

� Research partially supported by a grant from the Isaac Newton Trust and ERC
Project ECSYM.

1 The implementation is available at http://www.cl.cam.ac.uk/users/ss368/flp.
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symbols should be used? which assortment of equations? We show that our
algebraic presentation of predicate logic is correct by representing terms up-to
equivalence as mathematical objects. More precisely, we show that terms up-to
equivalence can be understood as sieves, a kind of generalized subset.

3. The idea of presentation-invariance of theories is an important one, and so
we introduce a general notion of ‘clone’ for parameterized algebraic theories. Via
enriched category theory we obtain a semantic status for the syntactic framework
of parameterized algebraic theories. In particular, we show that the parameter-
ized algebraic theories can be understood as a class of enriched monads.

This work thus provides a principled foundation for program equations, with
anticipated consequences for program verification and compiler design (see [24]).

In many ways our algebraic presentation of predicate logic is an elaboration
of the algebraic theory of semilattices. Recall that the theory of semilattices has
a constant K and a binary function symbol _, and the following equations

px_ yq _ z � x_ py _ zq x_ y � y _ x x_ x � x K_ x � x. (1)

Predicate logic combines these equations with others, such as the equation
xrbs _ Da. xras � Da. xras. We introduce the article by considering the three con-
tributions from the simpler perspective of semilattices.

Extending the theory to a programming language (§3). To extend the theory of
semilattices to a functional language, we add a constant K and a binary operation
_ at each type. The result is a language that is declarative in two ways: first as
a functional language, and second in that the semilattice structure provides a
kind of non-determinism.

The additional constructs of predicate logic provide further techniques for
declarative programming: pt � uq ^ P can be understood as unification and
Da. P paq can be understood as introducing a new logic variable. Thus the func-
tional language gains an abstract type param, representing the domain of dis-
course. If the domain of discourse is the Peano natural numbers, we have ex-
pressions z:param and s:paramÑparam. Consider the following recursive program
add of type paramÑparamÑparamÑunit:

add a b c
def
�
�
pa � zq^pb � cq^pq

�
_
�
Da1. Db1. pa � spa1qq^pc � spc1qq^add a1 b c1

�

The program returns if a�b � c, and fails if not. Thus functions into unit are like
predicates. To experiment in more depth we provide a simple implementation in
Standard ML.

Representation theorem (§4). Any presentation of an algebraic theory is some-
what arbitrary. We could have presented semilattices (1) using a ternary disjunc-
tion, or by replacing associativity with mediality (pv_xq_py_zq � pv_yq_px_zq).
What really matters about the theory of semilattices is that to give a term is
to give the set of variables that appear in it. For instance, px _ zq _ v and
v _ ppz _ xq _ Kq both use the same variables, and they are provably equal.
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When we move to the algebraic theory of disjunctive predicate logic, a rep-
resentation result is even more desirable, since the axiomatization is more com-
plicated. We no longer have a characterization in terms of sets of variables.
Rather, we generalize that analysis by understanding a set of variables as a kind
of weakening principle: in any algebraic theory, any term involving those vari-
ables can also be considered as a term involving more variables. In the setting of
parameterized algebraic theories, the notions of substitution and weakening are
more sophisticated. Nonetheless our representation theorem characterizes terms
of disjunctive predicate logic as classes of substitutions that satisfy a closure
condition. We set this up using category theory, by defining a category whose
objects are contexts and whose morphisms are substitutions, so that a class of
substitutions is a ‘sieve’.

This representation theorem shows that our algebraic theory of disjunctive
predicate logic is not just an ad-hoc syntactic gadget: it is mathematically nat-
ural. This corroborates the following general hypothesis: algebraic theories for
computational effects should have elegant characterizations of terms and free
models [35, 30].

Clones (§5). In our third contribution we stay with the theme of presentation in-
variance, but we study it for parameterized algebraic theories in general. In clas-
sical universal algebra, presentation-invariance is studied via clones: closed sets
of operations. Recall that an abstract clone is given by a set T pnq for each nat-
ural number n, a tuple ηn P T pnq

n for each number n, and a family of functions
t�m,n : Tm�pTnqm Ñ Tnum,n, all satisfying some conditions (e.g. [14, Ch. III]).

The terms in the theory of semilattices form a clone: T pnq is the set of terms
in n variables, η picks out the terms that are merely variables; and � describes
simultaneous substitution. Similarly the subsets form a clone: T pnq is the set of
subsets of n, η picks out the singleton subsets, and � is a union construction.
These two clones are isomorphic.

Abstract clones can be equivalently described as monoids in a suitable mon-
oidal category, and moreover equivalently described as finitary monads on the
category of sets. This provides the connection between Moggi’s work on compu-
tational monads [32] and the assertion of Plotkin and Power [35] that computa-
tional effects determine algebraic theories.

In Section 5, we revisit this situation in the context of parameterized algebraic
theories. We provide a general notion of enriched clone. Specialized to enrich-
ment in a presheaf category, this provides a presentation-invariant description
of parameterized algebraic theories. For general reasons, enriched clones can be
equivalently described as sifted-colimit-preserving enriched monads on a presheaf
category. Thus our syntactic framework of parameterized algebraic theories is
given a canonical semantic status and a connection with Moggi’s work [32].

Acknowledgements Thanks to reviewers for helpful feedback, and to M Fiore,
M Hyland, O Kammar, A Kurz, P Levy, P-A Melliès, R Møgelberg, G Plotkin,
J Power and T Uustalu for discussions.
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2 Presentations of parameterized algebraic theories

We will present disjunctive predicate logic as an algebraic theory within a new
framework of parameterized algebraic theories. It is an algebraic theory that
takes parameters from another algebraic theory. When we write

ppa � aq ^ xq � x (2)

this is a judgement of equality between predicates, and while x is a variable
standing for a predicate, a is not: it stands for a term (e.g. a natural number).
This phenomenon is common across mathematics. For example, in linear algebra,
when we write apx� yq � ax� ay the variables x and y have a different status
to the scalar parameter a.

Parameterized algebraic theories are not merely 2-sorted theories. In equa-
tion (2), the variable x stands for a predicate which might itself have parameters.
For example, we can describe the substitutive nature of equality like this:

pa � bq ^ xras � pa � bq ^ xrbs. (3)

The substitution of predicates for variables is now quite elaborate. One instance
of equation (3) is pa � bq ^ pa � aq ^ y � pa � bq ^ pb � aq ^ y, under the
assignment xrcs ÞÑ pc � aq ^ y.

Quantifiers bind parameters, requiring equations like this:

xrbs _ Da. xras � Da. xras (4)

in which the parameter b is free while the parameter a is bound. We work up-to
α-equivalence (Da. xras � Db. xrbs) and substitution must avoid variable capture:
we must change bound variables before substituting xrcs ÞÑ pc � aq ^ y in (4).

In this section we give a technical account of what constitutes a signature of
parameters (§2.1) and an algebraic theory parameterized in that signature (§2.2).
In the example of predicate logic, terms of the signature of parameters describe
the domain of discourse. Terms of the parameterized theory are predicates over
the domain of discourse, or alternatively simple logic programs over the domain
of discourse.

The general framework is essentially a single-sorted version of the ‘effect
theories’ developed in joint work with Møgelberg [31], based on proposals by
Plotkin and Pretnar [34, 37].

2.1 Signatures of parameters

Recall the notion of signature used in universal algebra. A signature is given
by a set of function symbols, f, g, . . . , each equipped with an arity, which is a
natural number specifying how many arguments it takes. From a signature we
can build terms-in-context:

(i ¤ |~a|)
~a $ ai

~a $ t1 . . . ~a $ tn
(f has arity n)

~a $ fpt1, . . . , tnq
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(We write ~a for a list of variables a1, a2, . . . and |~a| for the length of the list.)

Here are some simple examples of signatures:

 The empty signature has no function symbols.

 The signature of natural numbers has a constant symbol z (i.e. a function
symbol with arity 0) and a unary function symbol s.

 The domain of a database can be described by a signature with a constant
symbol for each element of the domain.

2.2 Parameterized algebraic theories

Let S be a signature as in Sect. 2.1. A signature T parameterized by S is given by a
set of function symbols F,G, . . . each equipped with an arity, written F : pp | ~nq,
where p is a natural number and ~n a list of natural numbers. We distinguish
between parameters and arguments. The number p determines how many pa-
rameters (from S) the function symbol takes. The length of the list ~n determines
how many arguments (from T) the function symbol takes, and each component of
the list determines the valence or binding depth of that argument. For instance,
the arity of binary join is _ : p0 | r0, 0sq, since it takes two arguments with no
variable binding; the arity of the equality predicate pa � bq ^ x is p2 | r0sq as it
takes two parameters (a and b) and one argument (x); the arity of the quantifier
is D : p0 | r1sq since it takes one argument with a bound variable.

From a parameterized signature we can build parameterized terms in context.
A context Γ | ∆ for a parameterized term has two parts, comprising two kinds of
variable. The first part Γ is a finite set of variables ranging over parameters. The
second part ∆ is a finite set of variables ranging over terms, each equipped with
a natural number, which specifies how many parameters the variable takes. As
usual, we write a set of variables as a list with the convention that all variables
are different. The terms-in-context are built from variables, function symbols
and terms from the signature of parameters, using the following two rules.

Γ $ t1 . . . Γ $ tni

Γ | x1 : n1 . . . xk : nk $ xirt1 . . . tni
s

Γ $ t1 . . . Γ $ tp Γ, a1,1 . . . a1,n1
| ∆ $ u1 . . . Γ, ak,1 . . . ak,nk

| ∆ $ uk

Γ | ∆ $ Fpt1, . . . , tp,~a1. u1, . . . ,~ak. ukq

(5)

where F : pp | rn1 . . . nksq. We work up-to α-renaming the binders ~a. Notice our
distinction between judgements of parameters (Γ $ t) and of terms (Γ | ∆ $ t).

Definition 1. A presentation of a parameterized algebraic theory is a parame-
terized signature together with a collection of equations, where an equation is a
pair of two terms in the same context.

We define substitution for the two kinds of variable in a standard way, so as to
give the following derived rules.

Γ $ t Γ, a | ∆ $ u

Γ | ∆ $ urt{as

Γ, a1 . . . an | ∆ $ t Γ | ∆,x : n $ u

Γ | ∆ $ ura1...an.t{xs
(6)
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Recall that all variables in a context are distinct. Thus substitution is capture-
avoiding unless the capture is explicit.

We form a deductive system from a presentation by combining all substitution-
instances of the equations with the usual laws of reflexivity, symmetry, transi-
tivity, and the following congruence rule:

Γ $ t1 . . . Γ $ tp Γ,~a1 | ∆ $ u1 � u11 . . . Γ,~ak | ∆ $ uk � u1k

Γ | ∆ $ Fpt1, . . . , tp,~a1. u1, . . . ,~ak. ukq � Fpt1, . . . , tp,~a1. u
1
1, . . . ,~ak. u

1
kq

(7)

2.3 Presentation of predicate logic

We now describe disjunctive predicate logic as a parameterized algebraic theory.
Predicates range over a domain of discourse, which is a signature of parameters.
In this paper we only consider two signatures of parameters: (1) the empty one;
(2) the signature of natural numbers; but other signatures can be accommodated
straightforwardly.

The parameterized algebraic theory is given in Figure 1. It has a constant
symbol K and a binary function symbol _. There is a unary function symbol p�:�q
which takes two parameters, and a function symbol D which binds a parameter.
We use an infix notation for _ and �:�. Term formation (5) yields

Γ |∆ $ K

Γ |∆ $ t Γ |∆ $ u

Γ |∆ $ t_ u

Γ $ t1 Γ $ t2 Γ |∆ $ u

Γ |∆ $ pt1 �:� t2qu

Γ, a | ∆ $ u

Γ | ∆ $ Da. u

The string pa �:� bqxrs can be thought of as the predicate pa � bq ^ xrs, or
as the logic program ‘unify a and b, and then continue as x’. Note that we do
not have arbitrary conjunctions in our algebraic theory. However, if we under-
stand predicate variables as continuation variables, then substitution behaves
like conjunction: e.g. given ~a | x : 0 $ t and ~a | � $ u, the expression tru{xs
can be understood as t^ u. We return to the idea of ‘conjunction as sequential
composition’ in Section 3.

Laws 1–4 are the laws of semilattices. Laws 5–7 are basic axioms for equality.
If we write ‘t ¤ u’ for ‘t_u � u’, then Laws 8, 9, 10 can be written Da. xrs ¤ xrs,
xrbs ¤ Da. xras, pa �:� bqxrs ¤ xrs. Laws 11 and 12 say that _ commutes over �:�
and D. In fact, all the operations commute over each other. For instance,

a, b | � $ pa �:� bqK
4
� K_ pa �:� bqK

2
� pa �:� bqK _ K

10
� K.

Laws 13 and 14 are axioms of Peano arithmetic. Law 15 is ‘occurs check’.
We can derive a, b | y : 0 $ pa �:� bqyrs � pb �:� aqyrs. First, notice that

a, b | y : 0 $ pa �:� bqpa �:� aqyrs � pa �:� bqpb �:� aqyrs is an instance of Law 6, un-
der the substitution rc.ppc�:�aqyrsq{xs. Now,

a, b | y : 0 $ pa �:� bqy
5
� pa �:� bqpa �:� aqyrs

6
� pa �:� bqpb �:� aqyrs

7
� pb �:� aqpa �:� bqyrs

6
� pb �:� aqpb �:� bqyrs

5
� pb �:� aqyrs.
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Signature: K : p0 | rsq _ : p0 | r0, 0sq p�:�q : p2 | r0sq D : p0 | r1sq

Equations: 1. � | x, y, z : 0 $ pxrs _ yrsq _ zrs � xrs _ pyrs _ zrsq

2. � | x, y : 0 $ xrs _ yrs � yrs _ xrs

3. � | x : 0 $ xrs _ xrs � xrs

4. � | x : 0 $ K_ xrs � xrs

5. a | x : 0 $ pa �:� aqxrs � xrs

6. a, b | x : 1 $ pa �:� bqxras � pa �:� bqxrbs

7. a, b, c, d | x : 0 $ pa �:� bqpc �:� dqx � pc �:� dqpa �:� bqx

8. � | x : 0 $ pDa. xrsq _ xrs � xrs

9. b | x : 1 $ xrbs _ Da. xras � Da. xras

10. a, b | x : 0 $ ppa �:� bqxrsq _ xrs � xrs

11. a, b | x, y : 0 $ pa �:� bqpxrs _ yrsq � ppa �:� bqxrsq _ ppa �:� bqyrsq

12. � | x, y : 1 $ Da. pxras _ yrasq � Da. xras _ Da. yras

Additional equation schemes when the signature of parameters is natural numbers:

13. a | x : 0 $ pz �:� spaqqxrs � K

14. a, b | x : 0 $ pspaq �:� spbqqxrs � pa �:� bqxrs

15. a | x : 0 $ pa �:� snpaqqxrs � K @n ¡ 0, where s
2paq � spspaqq, etc.

Fig. 1. A presentation of the parameterized theory of disjunctive predicate logic.

A subtle point is that the context cannot be omitted. When the signature of
parameters is empty, the equation � | x : 0 $ Da. xrs � xrs is not derivable, al-

though we do have a | x : 0 $ Da. xrs
9
� xrs _ Da. xrs

2
� pDa. xrsq _ xrs

8
� xrs. (To

instantiate law 9 we applied the substitution ra.xrs{xs.)

2.4 Other examples of parameterized algebraic theories

Any classical algebraic theory can be understood as a parameterized one in which
the function symbols take no parameters and all the valences are 0. A slightly
more elaborate example is the 2-sorted theory of modules over an unspecified
ring, which is an algebraic theory parameterized in the signature of rings.

For any signature we have the following theory of computations over a mem-
ory cell. There are two function symbols in the parameterized algebraic theory:
w : p1 | r0sq and r : p0 | r1sq. The intuition is that wpa, xrsq writes a to memory
and continues as x, while rpa. xrasq reads from memory, binds the result to a,
and continues as x. The presentation has three equations (c.f. [35]):

xrs � rpa.wpa, xrsqq wpa,wpb, xrsqq � wpb, xrsq wpa, rpb. xrbsqq � wpa, xrasq

The first equation says that if you read a, then write a, then continue as x,
then you may as well just run x. The second equation says that if you write to
memory twice then it is the second write that counts. The third equation says
that if you read b after a write a, then b will be a and the read is unnecessary.
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If the parameterizing signature is the signature of natural numbers then there
is an expression rpa.wpspaq, xqq, which increments the memory and continues
as x.

2.5 Set-theoretic models

We briefly discuss models of parameterized algebraic theories. As we will see,
the set-theoretic notion of model is not a complete way to understand theories,
but it is sound and so we are able to use it to verify consistency.

A set-theoretic structure for a parameterized algebraic theory is given by
two sets: a set π of parameters, and a set M which is the carrier. For each n-
ary function symbol f in the signature of parameters, a function f : πn Ñ π
must be given. For each function symbol F : pp | ~nq in the theory, a function

F : πp �
±|~n|
j�1M

pπnj q ÑM must be given. Here M pπnj q is the set of functions
from pπnj q to M . It is routine to extend this to all terms, interpreting a term-

in-context ~a | ~x : ~n $ t as a function JtK : π|~a| �
±|~n|
j�1M

pπnj q ÑM . We say that
a structure is a model when for each equation Γ | ∆ $ t � u in the theory the
corresponding functions are equal: JtK � JuK. This interpretation is sound:

Proposition 1. If ~a | ~x : ~n $ t � u is derivable in a parameterized algebraic
theory, then JtK � JuK in all models.

Consider the theory of disjunctive predicate logic over the signature for natu-
ral numbers. We can let π be the set N of natural numbers, and then we must pro-
vide a set M together with an element K and three functions: _ : M �M ÑM ,
p�:�q : N�N�M ÑM , and D : MN ÑM . In fact, this forms a model if and only
if M is a countable semilattice, with K and _ supplying the finite joins and D
supplying the countably infinite joins. By the soundness result, the consistency
of our theory is witnessed by giving a non-trivial countable-join-semilattice.

There are two things that are unsatisfactory about set-theoretic models of
disjunctive predicate logic. First, it is often best not to think of D as a countable
join: in logic programming it is better to think of D as introducing a free logic
variable. Second, the interpretation of p�:�q is necessarily fixed, as we now explain.

2.6 Incompleteness of set-theoretic models

Classical universal algebra is complete for set-theoretic models: if an equation is
true in all algebras, then it is derivable. However, set-theoretic models are not
complete for parameterized algebraic theories: some equations are true in all set-
theoretic models but not derivable. In any set-theoretic structure for disjunctive
predicate logic, the three equations

pa �:� aqxrs � xrs pa �:� bqK � K pa �:� bqxras � pa �:� bqxrbs (8)

entirely determine p�:�q. This is because two elements a, b of π are either equal
or not equal. In any structure satisfying the three equations we must have
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pa �:� bqpxq � x when a � b and pa �:� bqpxq � K when a � b. The first case,
when a � b, is the first equation in (8). To establish the second case, when a � b,

we define a function δax : π ÑM by setting δaxpcq
def
� x if c � a and δaxpcq

def
� K

if c � a, so that pa �:� bqpxq � pa �:� bqδaxpaq � pa �:� bqδaxpbq � pa �:� bqK � K.

Thus any set-theoretic structure satisfying the laws in (8) will also satisfy
law 7 in Figure 1: pa �:� bqpc �:� dqxrs � pc �:� dqpa �:� bqxrs. But that is not deriv-
able from (8). To resolve this incompleteness we must move to a constructive
set theory in which equality is not two-valued, which is the essence of Section 5.

2.7 Other equational approaches to logic

The syntax for parameterized algebraic theories is reminiscent of logical frame-
works such as Type Framework [4] although it is much simpler.

Our syntax is also similar to Aczel’s syntax [1] which forms the basis of
the second-order algebraic theories of Fiore et al. [18, 19]. The key difference
is that we do not allow second-order variables to take second-order terms as
parameters, e.g. xryrs _ zrss. This restriction allows us to make a connection
with programming languages (§3) and a simple categorical model theory (§5).

By far the most studied equational approach to logic is Tarski’s cylindric
algebra. Cylindric algebra encodes the binding structures of predicate logic into
classical universal algebra. Although cylindric algebra can provide a foundation
for concurrent constraint programming [39], it does not extend easily to higher
typed programming languages. Our parameterized algebraic theory does (§3).

There have been several proposals for ‘nominal algebra’ [13, 20]. Gabbay and
Matthijssen used this to describe first-order logic [20] and the author has earlier
developed a nominal-style presentation of semilattices and equality [41, §6]. How-
ever, it is unclear how to combine a theory of nominal algebra with programming
language primitives in a canonical way. Although the free model construction [13]
yields a monad on the category of nominal sets, it does not yield a strength for
the monad, and so Moggi’s framework [32] does not apply to nominal algebraic
theories. Moggi’s framework does apply to parameterized algebraic theories (§5).

Kurz and Petrişan [28] have shown how to understand cylindric algebra and
nominal algebra within the framework of presheaf categories. In Section 5 we
will demonstrate that parameterized algebraic theories can be understood as
algebraic theories enriched in a presheaf category.

Bronsard and Reddy [12] axiomatized a theory of disjunction, conjunction,
existentials and if-then-else, and they gave a completeness result for domain the-
oretic models, providing a more axiomatic account than earlier domain theoretic
models of logic programming (e.g. [21, 33, 38]). Our work strengthens that early
development by moving away from concrete models, which are not a complete
way to study algebraic theories with binding (see §2.6). This allows us to give a
canonical status to our algebraic theory (Theorem 1).
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3 Extending the algebraic theory to a programming
language

Plotkin and Power have proposed that algebraic theories determine notions of
computational effect [35]. One can build a higher-order functional programming
language in which each type is a model of the algebraic theory, so that the
algebraic structure provides the impurities in the functional programming lan-
guage. We demonstrate this by picking out a fragment of Standard ML, elic-
iting the algebraic structure of each type by identifying suitable generic ef-
fects [36]. For instance, the generic effect for disjunction, _, is an impure function
choose: unit Ñ bool, to be thought of as returning an undetermined boolean.
Our implementation is thus a structure for the following ML signature.

infix 3 �:�
sig

(* SIGNATURE OF PARAMETERS *)

(* param is the domain

of discourse *)

type param

val succ : param Ñ param

val zero : param

(* MAIN SIGNATURE *)

(* Presented using

generic effects *)

val choose : unit Ñ bool

val fail : unit Ñ 'a
val �:� : param * param Ñ unit

val free : unit Ñ param end

The algebraic operations at each type can be recovered from the generic effects:

t_ u
def
� if choose() then t else u K

def
� fail()

pa �:� bqptq
def
� a�:�b ; t Da. t

def
� let val a=free() in t end

In this ML signature, there are two ways to define addition, firstly as a function:

- fun add(a,b) = if choose () then a �:� zero ; b

else let val a' = free()

in a �:� succ a' ; add(a',succ(b)) end

val add = fn : param * param Ñ param

and secondly as a predicate:

- fun add'(a,b,c) = if choose () then a �:� zero ; b �:� c

else let val a' = free() val c' = free() in

a �:� succ a' ; c �:� succ c' ; add'(a',b,c') end

val add' = fn : param * param * param Ñ unit

This demonstrates a type isomorphism:

- fun iso f a = let val b = free() in (b,f(a,b)) end

val iso = fn : ('a * param Ñ 'c) Ñ ('a Ñ param * 'c)
- fun inverse g a = let val (b',c) = g(a) in b �:� b' ; c end

val inverse = fn : ('a Ñ param * 'c) Ñ ('a * param Ñ 'c)

Notice that sequencing (semicolon) is like conjunction.
Our implementation of the ML signature (Appendix A) uses references and

callcc. One way to view the laws in Figure 1 is as an axiomatic account of
which optimizations are allowed [24]. Our implementation certainly doesn’t im-
plement Law 2 (commutativity), which would need parallel execution. Does our
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implementation capture the other laws? A proper answer to this question would
need a theory of observational equivalence for this fragment of ML, for instance
extending [22] to parameterized algebraic theories, which we leave for future
work.

Our lightweight approach to implementation is partly inspired by Eff [9],
a new language for algebraic effects. A related approach is to use monads in
Haskell, following [11, 40], since in our language the type construction unit Ñ (-)

is equipped with the structure of a monad.

4 Representation of terms

In Figure 1 we have presented an algebraic theory of disjunctive predicate logic.
In Section 3 we have seen that the theory provides a reasonable account of the
basic phenomena in logic programming. However, the choice of the presentation,
which operations and which equations, is somewhat arbitrary. We now justify the
theory by giving a canonical representation of the terms modulo the equations.

As a first step, we consider the theory of semilattices, the fragment of dis-
junctive predicate logic restricted to _ and K. A term built from _ and K is
determined by the variables that appear in the term. For instance, the terms
� | v, x, y, z : 0 $ pxrs _ zrsq _ vrs and � | v, x, y, z : 0 $ vrs _ ppzrs _ xrsq _ Kq
both contain the same variables tv, x, zu, and they are equal. We are able to get
a similar result for full disjunctive predicate logic, but it is more complicated.
For instance, consider the following term.

� | x : 2 $ Da. xra, as (9)

To understand this term as a ‘subset’ of txu, we make the following observa-
tion. The subset tv, x, zu of tv, x, y, zu provides a weakening principle: for any
algebraic theory, any term in context tv, x, zu can also be understood as a term
in context tv, x, y, zu. The term (9) also describes a weakening principle: in any
parameterized algebraic theory, a term in context px : 1q can be understood as
a term in context px : 2q, by substituting every occurrence of xrts by xrt, ts.

This motivates us to define a category whose objects are contexts and whose
morphisms are substitutions. We investigate sieves, which are sets of substi-
tutions subject to a closure condition. Our representation theorem provides a
correspondence between terms of disjunctive predicate logic and sieves.

Subsets and sieves. The concept of ‘subset’ is not a priori a category-theoretic
notion because it is defined in terms of elements of sets rather than morphisms.
One category-theoretic notion of ‘subset’ is the notion of sieve.

Definition 2. Let C be a category, and let X be an object in C. A sieve S on X
is a class of morphisms with codomain X which is closed under precomposition:
f P S ùñ fg P S. Every morphism f : Y Ñ X generates a sieve on X as
follows: rf s

def
� tg : Z Ñ X | Dh : Z Ñ Y. g � fhu. A sieve S on X is singleton-

generated if it is of this form.
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For two morphisms f : Y Ñ X and f 1 : Y 1 Ñ X, the following are equivalent:
(i) they generate the same sieve (rf s � rf 1s); (ii) f P rf 1s and f 1 P rf s; (iii) there
are morphisms g : Y Ñ Y 1 and g1 : Y 1 Ñ Y such that f � f 1g and f 1 � fg1.

Singleton generated sieves can be understood as a category-theoretic version
of subset. For instance, in the category of sets, a function f : X Ñ Y generates
the same sieve of Y as its image fpXq� Y (assuming choice). More generally, a
singleton-generated sieve on an object X of a category C is a subobject of X in
the regularization of C [23, A1.3.10(d)]. The importance of sieves and presheaves
to logic programming has been observed earlier [16, 26, 27].

A category of contexts. We will describe a correspondence between terms of
disjunctive predicate logic and sieves in a category whose objects are contexts
and whose morphisms are substitutions.

In a parameterized algebraic theory, the context has two components pΓ |∆q:
variables in Γ ranging over parameters and variables in ∆ ranging over terms.
The objects of our category focus on the second component ∆. Since the names
of variables are irrelevant, we represent a context by a list of numbers.

The morphisms of our category are simultaneous substitutions. To motivate,
consider the following derived typing rule for substituting variables for variables.

~a $ t1 . . . ~a $ tn � | ~x : ~m, y : |~a| $ u

� | ~x : ~m, z : n $ ur~a.zrt1,...,tns{ys
(10)

Definition 3. Let S be a signature (of parameters, as in §2.1). The objects of
the category CtxpSq are lists of natural numbers. A morphism ~mÑ ~n comprises
a function f : |~m| Ñ |~n| together with, for 1 ¤ i ¤ |~m| and 1 ¤ j ¤ nfpiq,
a term a1, . . . ami

$ ti,j in the signature of parameters. Morphisms compose by
composing functions and substituting terms for variables. The identity morphism
is built from variables.

The category theorist will recognize CtxpSq as the free finite coproduct comple-
tion of the Lawvere theory for the signature S. Lawvere theories are widely re-
garded as important to the foundations of logic programming (e.g. [8, 26, 6, 27]).

For any term � | ~x : ~m $ u in any parameterized algebraic theory, and any
morphism pf,~tq : ~mÑ ~n in CtxpSq, notice that we can build a term by substi-
tution, following (10),

� | ~y : ~n $ pf,~tq  u
def
� ura1...am1 .yfp1qr~t1s{x1

s . . . r
a1...am|~m|

.yfp|~m|qr~t|~m|s{x|~m|
s

so that substitution respects composition: pg,~vq  ppf, ~uq  tq � ppg,~vq � pf, ~uqq  t.

Representation theorem. We now state our representation theorem for the the-
ory of disjunctive predicate logic. We focus on terms with no free parameters,
returning to this point later.

Given a morphism pf, tb1, . . . , bmi $ ti,jui¤|~m|,j¤nfpiq
q : ~mÑ ~n in CtxpSq we

define the following term:

*f,~t+ def
� � | ~x : ~n $

�|~m|
i�1 Db1. . . . Dbmi

. xfpiqrti,1 . . . ti,nfpiq
s (11)
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Theorem 1. Let S be either the empty signature or the signature for natural
numbers. Let ~n be a list of numbers. The construction * � + induces a bijective
correspondence between:

 terms in context, � | ~x : ~n $ t, modulo the equivalence relation in Figure 1;

 singleton-generated sieves on ~n in the category CtxpSq.

(The Theorem can be established for a different signature of parameters by
finding appropriate analogues of Laws 13–15.)

Outline proof of Theorem 1. To prove the representation theorem, we first char-
acterize morphisms into ~n as terms modulo a fragment of the theory. We then
show that two morphisms generate the same sieve if and only if the corresponding
terms are equal in the full theory.

For the first step, we show that the construction * � + determines a bijec-
tive correspondence between morphisms into ~n and terms-in-context modulo a
fragment of the theory in Figure 1. The fragment is given by laws 1, 4, 5, 6, 7,
11 and 12 from Figure 1, and schemes 13–15 where relevant, together with the
following five laws, which are derivable from laws 2, 3 and 8–10 in Figure 1 but
not from the other laws.

� | x : 0 $ K_ x � x a, b | � $ pa �:� bqK � K

� | � $ Da.K � K b, c | x : 1 $ pb �:� cqDa. xras � Da. pb �:� cqxras

b | x : 1� n $ Dc1. . . . Dcn. xrb,~cs � Da. Dc1. . . . Dcn. pa �:� bqxra,~cs

The first four laws are commutativity conditions; the last one is roughly intro-
duction and elimination for D.

Note that every term can be rewritten to the form in (11) using the laws in
this fragment of the theory. We first pull the disjunctions to the front, then the
existentials, and then we use the remaining axioms to rearrange and eliminate
the equality tests. We thus have a bijective correspondence between terms in
context ~n modulo this fragment of the theory, and morphisms into ~n in CtxpSq.

The second step is to show that that two morphisms in CtxpSq determine the
same sieve if and only if the corresponding terms (11) can be proven equal using
the laws in Figure 1. We show that rf,~ts � rg, ~us if and only if *f,~t+ ¤ *g, ~u+.

Terms with free parameters. Let T D_pp|~nq be the set of terms in the context
pa1, . . . , ap|~x : ~nq, modulo the equivalence relation. If we write Sieves1p~nq for the
set of singleton-generated sieves on ~n in CtxpSq, then Theorem 1 provides a
natural bijection T D_p0|~nq � Sieves1p~nq.

We now briefly consider the situation where the parameter context p is non-
empty, by exhibiting a bijection T D_pp|rn1, . . . , nksq � T D_p0|rp� n1, . . . , p� nksq.

To go from left to right we substitute ~a,~b | xi : p� ni $ xirb1 . . . bp, a1 . . . ani
s

for each variable xira1 . . . anis (i ¤ k), and then existentially quantify all the free

variables ~b. From right to left we substitute

a1 . . ani
. . ap�ni�n, b1 . . bp | xi : mi $ pani�1 �:� b1q . . . pani�p �:� bpqxira1 . . . anis
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for each variable xi, yielding a term with free variables ~b (c.f. iso in §3).

5 Enriched clones

We conclude by giving our general syntactic framework of parameterized alge-
braic theories a canonical status by reference to enriched category theory. The
importance of enriched monads for programming language semantics has long
been recognized [32]. We show that parameterized algebraic theories characterize
a class of enriched monads.

In the previous section we described a bijection between the set of terms
of disjunctive predicate logic and the set of sieves in a category of contexts.
However, the set of terms is not a mere set: it also has a substitution structure.
We characterize this abstractly by introducing enriched clones.

Definition 4. Let pV,b, Iq be a symmetric monoidal category. Let C be a V-
enriched category, and J : A � C be a full sub-V-category. An enriched clone is
given by
1. For each A P A, an object TA in C;
2. A morphism ηA : I Ñ CpJA, TAq in V for all A P A;
3. A morphism �A,B : CpJA, TBq Ñ CpTA, TBq in V for all A,B P A
such that the following diagrams commute:

I b CpJA, TBq
ηb� //

λ ++WWWWWWWWWWWW
CpJA, TAq b CpTA, TBq

composition��
CpJA, TBq

I
ηA //

idTA ''OOOOOOOO CpJA, TAq
���

CpTA, TAq

CpJA, TBq b CpJB, TCq � //

�b� ��

CpJA, TBq b CpTB, TCq
comp// CpJA, TCq

���
CpTA, TBq b CpTB, TCq

composition
// CpTA, TCq

The original notion of abstract clone (e.g. [14, Ch. III]) appears when V � C � Set
and A comprises natural numbers considered as sets. When V � Set then en-
riched clones have been called ‘Kleisli structures’ (e.g. [15, §7]) and ‘relative
monads’ [5].

We now turn to parameterized algebraic theories. The signature of parame-
ters induces a Lawvere theory S which is a category whose objects are natural
numbers and where a morphism m Ñ n is a family of n terms over m parame-
ter variables. We are interested in the category Ŝ of presheaves on the Lawvere
theory S, that is, the category of contravariant functors Sop Ñ Set and natural
transformations between them. As we will see shortly, a presheaf can be under-
stood as a set with substitution structure (see also [26, 17]). Notice that CtxpSq
(Def. 3) can be understood as a full subcategory of Ŝ once we understand a

context rn1, . . . , nks as the presheaf
²k
i�1 Sp�, niq. We let J : CtxpSq � Ŝ be

the embedding. To put it another way, CtxpSq is the completion of S under
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coproducts, and Ŝ is the completion under all colimits. We consider Ŝ as a carte-
sian closed category, i.e. self-enriched. The function space ŜpJ~n, F q is given by

context extension: ŜpJ~n, F qppq �
±|~n|
i�1 F pp� niq.

Every presentation of a parameterized algebraic theory gives rise to an en-
riched clone for V � C � Ŝ and A � CtxpSq.
1. The data T p~nq assigns a presheaf to each context ~n. The set pT p~nqqppq is the

set of terms in context pp|~nq modulo the equations. The functorial action of
T p~nq corresponds to the left-hand substitution structure in (6).

2. The data η~n provides an element of the set Ŝp~n, P qp0q, which identifies the
variables among the terms.

3. The right-hand substitution structure in (6) gives natural transformations

T ~m� ŜpJ ~m, T~nq Ñ T~n. By currying, this supplies the data �~m,~n.
The three commuting diagrams are easy substitution lemmas.

Theorem 2. Every enriched clone for V � C � Ŝ and A � CtxpSq arises from
a presentation of a parameterized algebraic theory.

In general, when J is dense, enriched clones can be understood as monoids
in the multicategory whose objects are V-functors A Ñ C, and where an n-
ary morphism F1, . . . , Fn Ñ G between V-functors is an extra-natural family of
morphisms CpJA0, F1A1q b � � � b CpJAn�1, FnAnq Ñ CpJA0, GAnq in V. When
this multicategory has tensors then we arrive at the situation considered by Kelly
and Power [25, §5]. They focus on the situation where A comprises the finitely
presentable objects of C, but it seems reasonable to replace ‘finitely presentable’
with another well-behaved notion of finiteness [29, 2, 10, 42]. We consider sifted
colimits [2, 3, 29], i.e. colimits that commute with products in the category of
sets, which leads us to the notions of strongly finitely presentable object and
strongly accessible category [2] (aka generalized variety [3]).

Proposition 2 (c.f. [25], §5). Let V be strongly finitely accessible as a closed cat-
egory. Let J : A�V comprise the strongly finitely presentable objects. Let T : AÑV
be a V-functor. To equip T with the structure of an enriched clone is to equip the
left Kan extension of T along J with the structure of an enriched monad.

Parameterized algebraic theories fit the premises of this proposition. The
presheaf category Ŝ is strongly finitely accessible as a closed category, and CtxpSq
comprises the strongly finitely presentable objects (up to splitting idempotents).

Corollary 1. To give a parameterized algebraic theory is to give a sifted-colimit-
preserving enriched monad on Ŝ.

Summary. We have shown that our framework for parameterized algebraic
theories (§2) is a syntactic formalism for enriched clones (§5). For our theory of
disjunctive predicate logic, which has applications to logic programming (§3),
the clones can be represented abstractly as sieves (§4).
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A Implementation in Standard ML

This appendix is included to aid the referee. We elaborate on Section 3 by
providing the source code of our simple implementation of the parameterized
algebraic theory of disjunctive predicate logic in Standard ML.

In the body of this paper we focused on two parameterizing signatures: the
empty signature, and the signature of natural numbers. In our implementation
we consider a general signature with a function symbol (cons str) of every arity
and for each string str. We demonstrate our implementation with the simple
arithmetic examples from Section 3 and also a simple example of proof search
in natural deduction.

Full source code is at www.cl.cam.ac.uk/~ss368/flp.

A.1 Signature

infix 3 �:�

signature DISJPREDLOGIC = sig

(* SIGNATURE OF PARAMETERS *)

(* param is the domain of discourse *)

type param

(* cons: takes a label and a list of arguments *)

val cons : string * param list Ñ param

(* MAIN SIGNATURE *)

val choose : unit Ñ bool

val fail : unit Ñ 'a
val free : unit Ñ param

val �:� : param * param Ñ unit

(* Auxilliary constructs, for testing *)

exception Cancel

exception Rollback

val toString : param Ñ string

end

A.2 Structure

structure DisjPredLogic :> DISJPREDLOGIC = struct

open SMLofNJ.Cont

exception Cancel

exception Rollback

(* A param is either something built from a constructor or a free variable

(a pointer to NONE) or a pointer to another param (a pointer to SOME).

The second argument of Var is for pretty printing. *)

datatype param = Cons of string * param list

| Var of param option ref * int
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val cons = Cons

fun toString ...

(* equals : param * param Ñ bool

equals (a,b) returns true if a and b are known to be equal, false otherwise.

equals will traverse chains of pointers. NB it is local to the structure. *)

fun equals ...

local val counter_ref = ref 0 in

fun counter () = (counter_ref := !counter_ref + 1 ; !counter_ref)

end

(* NB capture/escape is like callcc/throw

except the exception context is not captured. *)

fun choose () =

capture (fn k ñ ((escape k true) handle Rollback ñ escape k false))

fun fail() = raise Rollback ;

fun free() = Var ((ref NONE),counter())

(* occurs i t checks whether i occurs in param t *)

fun occurs i (Cons(s,es)) = app (occurs i) es

| occurs i (Var (j,l)) = if i = j then fail()

else case !j of NONE ñ () | (SOME a) ñ occurs i a

(* implementation of unification *)

fun (Cons(s,es)) �:� (Cons(s',es')) =

if s=s' then ListPair.appEq (op�:�) (es,es')
handle UnequalLengths ñ fail()

else fail()

| (Var (i,l)) �:� b =

if equals (Var (i,l),b) then ()

else

(case !i of NONE ñ (occurs i b ; i := SOME b ;

capture (fn k ñ ((escape k ())

handle Rollback ñ (i := NONE ; raise Rollback)

| Cancel ñ (i := NONE ; raise Cancel))))

| SOME a ñ a �:� b)

| a �:� (Var (j,l)) = (Var (j,l)) �:� a

end

A.3 Demonstration of arithmetic

(* Simple definitions *)

val zero = cons (''zero'',[])
fun succ x = cons (''succ'',[x])
fun fromInt n = if n=0 then zero else succ (fromInt (n-1))
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(* Demonstrations from Sec 3 *)

fun add(a,b) = if choose() then (a �:� zero ; b)

else let val a' = free() val c' = free()

in a �:� succ a' ; add(a',succ(b)) end

fun add'(a,b,c) = if choose() then (a �:� zero ; b �:� c)

else let val a' = free() val c' = free()

in a �:� succ a' ; c �:� succ c' ; add'(a',b,c') end

fun iso f a = let val b = free() in f(a,b) end

fun isoinv g (a,b) = let val (b',c) = g(a) in b �:� b' ; c end

A.4 Demonstration of proof search in natural deduction

Here is a slightly more elaborate demonstration.

(* impl : param * param Ñ param *)

fun impl (a,b) = cons (''ñ'',[a,b])

(* member : (param list) Ñ param Ñ unit *)

fun member [] p = fail ()

| member (p :: ps) q = if choose () then p �:� q else member ps q

(* (pick n) returns a number in [1,n] *)

fun pick n = if n = 0 then fail () else if choose () then 1 else 1 + pick (n-1)

(* ded : (param list) * param Ñ unit

ded(ps,p) succeeds if p follows from ps

There are three cases: axiom; impl introduction and impl elimination *)

fun ded(ps,p) = case pick 3 of

1 ñ member ps p

| 2 ñ let val q = free () val r = free () in

p �:� (impl (q,r)) ; ded ((q :: ps),r) end

| 3 ñ let val q = free () in

ded (ps,(impl (q,p))) ; ded (ps,q) end

A.5 Sample toplevel transcript.

The following function is useful in testing.

(* get_all_interactive : ('a Ñ 'b) Ñ 'a Ñ param list Ñ unit

(get_all_interactive f x vars) will run (f x)

and print a possible instantiation for each of the params in vars

press return to get next instantiation, press n to cancel *)

fun get_all_interactive ...
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Here is a transcript from the SML toplevel.
$ sml flp.sml

Standard ML of New Jersey v110.72 [built: ...

...

- toString(add(fromInt 2,fromInt 1));

val it = "succ(succ(succ(zero)))" : string

- let val a=free() in add’(fromInt 2,fromInt 1,a) ; add’(a,a,fromInt 6) end;

val it = () : unit

- let val a=free() in add’(fromInt 2,fromInt 1,a) ; add’(a,a,fromInt 5) end;

uncaught exception Rollback...

- val a = free ();

val a = - : param

- val b = free ();

val b = - : param

- get_all_interactive add’ (a,b,fromInt 4) [a,b];

zero,succ(succ(succ(succ(zero))))

succ(zero),succ(succ(succ(zero)))

succ(succ(zero)),succ(succ(zero))

succ(succ(succ(zero))),succ(zero)

succ(succ(succ(succ(zero)))),zero

Exhausted.

val it = () : unit

- get_all_interactive add’ (fromInt 4,a,fromInt 6) [a];

succ(succ(zero))

Exhausted.

val it = () : unit

- get_all_interactive add’(a,a,fromInt 4) [a];

succ(succ(zero))

Exhausted.

val it = () : unit

- val p = cons("p",[]) val q = cons("q",[]) val r = cons("r",[]);

val p = - : param

val q = - : param

val r = - : param

- ded([],(impl (p,p)));

val it = () : unit

- ded([],(impl (p,q)));

^C

Interrupt

- ded([impl(p,q),impl(q,r)],(impl (p,r)));

val it = () : unit

- get_all_interactive ded ([a],(impl(p,q))) [a];

=>(p,q)

q

=>(p,q)

=>(=>(var279384,var279384),q)

=>(=>(var279383,p),q)

n

Cancelled.


