
Comparing Operational Models

of Name-Passing Process Calculi ?

Marcelo Fiore 1 and Sam Staton

Computer Laboratory
University of Cambridge

Abstract

We study three operational models of name-passing process calculi: coalgebras on
(pre)sheaves, indexed labelled transition systems, and history dependent automata.

The coalgebraic model is considered both for presheaves over the category of finite
sets and injections, and for its subcategory of atomic sheaves known as the Schanuel
topos. Each coalgebra induces an indexed labelled transition system. Such transition
systems are characterised, relating the coalgebraic approach to an existing model
of name-passing. Further, we consider internal labelled transition systems within
the sheaf topos, and axiomatise a class that is in precise correspondence with the
coalgebraic and the indexed labelled transition system models. By establishing and
exploiting the equivalence of the Schanuel topos with a category of named-sets,
these internal labelled transition systems are also related to the theory of history
dependent automata.

Operational models of concurrent computation typically describe processes
in terms of a state space together with its possible evolution by performing
atomic actions. Transition systems have proved useful in modelling the kinds of
processes involved in static networks, like those described by CCS and related
calculi. In these situations, processes evolve by communicating along named
channels. Modern systems, though, often contain an element of mobility and
reconfiguration. In languages such as the π-calculus, this dynamic structure
is described in terms of the communication of the channel names themselves:
name-passing. This allows, for instance, one process to advise another process
to begin communicating on a particular channel. Not surprisingly, techniques
and models relevant to static networks are inadequate in the name-passing
context. Thus operational models of name-passing process calculi have been
investigated.

? This paper supersedes the extended abstract with the same title that appeared in
the Proceedings of CMCS’04 [5].
1 Research supported by an EPSRC Advanced Research Fellowship.

Preprint submitted to Elsevier Science 10 August 2005

Cattani and Sewell [1] have observed that labelled transition systems are too
generous a model for name-passing systems. They have thus constrained the
labelled transition systems that they consider in two ways. The first is that
the state space must be indexed, meaning that the names available to each
state are explicit and a notion of renaming of states is built-in. Secondly, the
labelled transition systems under consideration are required to satisfy certain
axioms that are theorems of the transition systems induced by π-calculus
processes. For instance, input actions must occur in a particular uniform way
and transitions must be invariant under injective renamings.

The theory of coalgebras has arisen as a general abstract theory of systems.
Coalgebras provide a general way of describing the stepwise evolution of a
system, together with an abstract notion of bisimulation. Thus, for instance, it
is possible to reformulate and generalise familiar notions such as rule formats
and modal logics. Fiore and Turi [6] have developed coalgebraic models for
name-passing, modelling the early and late kinds of bisimulation that arise.
Coalgebras are considered in a presheaf category; thus a renaming structure
is imposed on states and the naturality of morphisms ensures that evolution
is invariant under these renamings.

Neither the transition system model nor the coalgebraic model is immediately
suitable for implementation because of the cardinality of the state spaces in-
volved once all the renamings are considered. Montanari and Pistore [8] have
introduced several notions of named-sets which often provide finite descrip-
tions of state spaces by recording certain features of canonical states. By re-
formulating the theory of automata in this setting they have been able to
implement tools for the verification of name-passing processes.

The theme of this paper is to compare and relate the above developments.

In Section 1, we recall the coalgebraic model of Fiore and Turi for early bisim-
ulation. The carriers of the coalgebras are presheaves over I, the category
of finite sets of names and injections between them, reflecting the idea that
bisimilarity is invariant under injective renaming. We recall how a labelled
transition system arises from such a coalgebra and axiomatise the transition
systems that arise in this way. Subsequently, in Section 2, we relate these ax-
iomatised transition systems with those suggested by Cattani and Sewell. A
major difference is that Cattani and Sewell were concerned with a form of
open bisimilarity, which is invariant under arbitrary renaming. Thus it is nec-
essary to consider presheaves over F, the category of finite sets of names and
all functions between them. In Section 3 we revisit the presheaves of Section 1
to consider the implications of a sheaf condition. This leads us to the Schanuel
topos, and we explain how this topos is the Kleisli category of a monad on the
category of presheaves on B, the category of finite sets of names and bijections
between them. Recasting Section 1 in this light we are able to simplify our

2

axioms on transition systems. Lastly, in Section 4, we introduce a new no-
tion of internal labelled transition system, that is, a labelled transition system
internal to the Schanuel topos satisfying certain conditions phrased in its in-
ternal language. By exhibiting the Schanuel topos as equivalent to a category
of named-sets we connect these internal transition systems with the history
dependent automata of Montanari and Pistore.

1 Coalgebraic models over presheaves

Presheaves for name-passing process calculi. A key component of the
fully abstract models of the π-calculus of Fiore, Moggi, and Sangiorgi [4], and
of Stark [10] is the use of presheaves to index the domains of processes/states
by the names that they may use.

Fixing an infinite universe of names N , a suitable indexing category I is the
category of all finite subsets of N and injections between them. Indeed, I is
equivalent to the free symmetric monoidal category with an initial unit on
one generator, and as such has the appropriate structure for modelling name
generation. Accordingly, thus, we will consider I in this vein, denoting the
generator (a singleton) as 1, the initial unit (the empty set) as ∅, and the
tensor product (a chosen disjoint union) by ⊕. Importantly, it follows that
every finite name-set C ⊆f N comes equipped with canonical maps

oldC : C → (C ⊕ 1)← 1 : newC

given by oldC =
(
C ∼= (C⊕∅)→ (C⊕1)

)
and newC =

(
1 ∼= (∅⊕1)→ (C⊕1)

)
.

These maps induce a notion of injective renaming as follows: for an injection
ı : C → D and for d ∈ D \ im(ı), we let (d/νC)ı : (C ⊕ 1)→ D be the unique
injective function making the following diagram

C ⊕ 1

(d/νC)ı

��

C

oldC
;;wwwwwwwww

ı
##GGGGGGGGG 1

d||xxxxxxxxx

newC
bbEEEEEEEEE

D

commute. Further, whenever (d/νC)ı is a bijection we write (νC/d)ı for its
inverse. Finally, as a notational convention, we drop the subindex whenever ı
is an inclusion.

A presheaf (i.e., a set-valued functor) P : I → Set can be thought of as
mapping each name-set C ⊆f N to a set of processes PC that use (some of)

3

the names in C, and mapping each injective renaming function ı : C → D
to a renaming function Pı : PC → PD on processes. We write [ı]p for Pı(p)
when it is clear which presheaf we are referring to.

Coalgebras for early bisimulation. The work of Fiore and Turi [6] provides
a model of name-passing using coalgebras in SetI, the category of presheaves
over I and natural transformations. Early and late bisimulation are captured
in terms of coalgebraic bisimulation for particular behaviour functors.

We recall the relevant type constructors on presheaves.

• A type of names N — the inclusion functor I→ Set.
• A dynamic allocation operator δP , given by (δP)C = P (C⊕1). An injection
ı : C → D maps p ∈ (δP)C to P (ı⊕ 1)(p).
• Non-empty covariant powerset ℘+, acting pointwise as the non-empty co-

variant powerset functor in Set.
• The unit type 1 — the constantly 1 presheaf (terminal in SetI).
• Product and sum, defined pointwise in the standard fashion.
• The exponential PQ with PQC given (via the Yoneda lemma) by the set of

natural transformations I(C,−)×Q .→ P .
When Q = N , a finitary description is permitted, namely

PNC = (PC)C × P (C ⊕ 1)

since a natural transformation α : I(C,−) × N
.→ P is completely deter-

mined by the components

αC(idC ,−) : C → PC and α(C⊕1)

(
oldC , newC()

)
∈ P (C ⊕ 1)

that is, by its action on ‘known’ names and its action on a generic new
name. An injection ı : C → D acts on a pair (f, p) ∈ PNC to produce the
pair (f ′, p′) ∈ PND given by

f ′ c′ =





[ı](f c) , if c′ = ıc

[(c′/νC)ı] p , otherwise
p′ = [ı⊕ 1]p . (1)

• Pointwise partial exponentials N⇀⇀P and 1⇀⇀P given as follows.
(N⇀⇀P)C is the set C⇀⇀PC of partial functions from C to PC. For any

injection ı : C → D and partial function f : C ⇀ PC, the partial function
(N⇀⇀P)ıf : D ⇀ PD is defined as the composite

D
ıR
⇀ C

f
⇀ PC

Pı→ PD

where ıR denotes the partial function defined at d ∈ D iff d = ıc for some
(necessarily unique) c ∈ C, in which case ıR(d) = c.

4

Analogously, (1⇀⇀P)C = (1⇀⇀PC) with (1⇀⇀P)ıf = (Pı) ◦ f : 1 ⇀ PD
for all ı : C → D in I and f : 1 ⇀ PC.

A suitable behaviour endofunctor Be on SetI for early bisimulation is given
by

BeP = N⇀⇀((℘+P)N) input

× N⇀⇀(℘+(N × P)) output

× N⇀⇀(℘+δP) bound output

× 1⇀⇀(℘+P) silent action.

A Be-coalgebra is given by a presheaf P ∈ SetI together with a natural
transformation h : P

.→ BeP in SetI. A component hC (C ∈ I) of such a
natural transformation maps a process in PC to a behaviour in BeP (C); that
is, a tuple in

C⇀⇀
(
(℘+PC)C × ℘+P (C ⊕ 1)

)

× C⇀⇀
(
℘+(C × PC)

)

× C⇀⇀
(
℘+P (C ⊕ 1)

)

× 1⇀⇀(℘+PC)

indicating the capabilities of the process. For example, for p ∈ PC, if hC(p) =
(i, o, b, t), then i is a partial function to be interpreted as follows. For some
channel name c ∈ C, i is defined at c if p is able to input on the channel c,
in which case i(c) is a pair (φ, ψ) ∈ (℘+PC)C ×

(
℘+P (C ⊕ 1)

)
. Now suppose

a known name d ∈ C was to be input, then p would continue as one of the
processes in the non-empty set φ(d). For a fresh name d 6∈ C, we use ψ as a
set of templates for the resultant process, continuing as [d/νC]p′ ∈ P (C ∪{d})
for some p′ ∈ ψ.

Just as a coalgebra X → ℘(Lab × X) in Set induces a transition relation
over the state space given by X, a coalgebra P

.→ BeP in SetI induces a
transition relation with state space given by the elements of P , i.e. the set∫
P =

∑
C∈I PC. We write C ` p for an element (C, p) ∈ ∫P .

The labels on the transitions are taken from the set

Lab = (N ×N) + (N ×N) + 1 ,

with input (written c?d), output (written c!d), and silent (written τ) actions
respectively. Each label ` has associated with it some channels ch(`) and data
dat(`), which for convenience we will consider as sets; here they will have at
most one element, as follows.

5

` c?d c!d τ

ch(`) {c} {c} ∅
dat(`) {d} {d} ∅

For a label ` and a function f between subsets of N we write [f]` for the
obvious renaming.

Given a coalgebra h : P
.→ BeP , a transition relation −→h ⊆

∫
P × Lab × ∫P

is induced as follows:

C ` p c?d−→h C ` p′ ⇐⇒ p′ ∈ π1(π1(hCp)c)d

C ` p c?z−→h C ∪ {z} ` [z/νC]q ⇐⇒ q ∈ π2(π1(hCp)c)

C ` p c!d−→h C ` p′ ⇐⇒ (d, p′) ∈ π2(hCp)c

C ` p c!z−→h C ∪ {z} ` [z/νC]q ⇐⇒ q ∈ π3(hCp)c

C ` p τ−→h C ` p′ ⇐⇒ p′ ∈ π4(hCp)()

(2)

where c, d ∈ C and z 6∈ C.

We define early bisimulation for transition relations such as these.

Definition 1 Consider two transition relations, −→1 ⊆
∫
P1 × Lab × ∫P1 and

−→2 ⊆
∫
P2 × Lab × ∫P2, for presheaves P1, P2 ∈ SetI.

A relation R ⊆ ∫
P1 ×

∫
P2 is an early bisimulation between −→1 and −→2 if

whenever (C1 ` p1) R (C2 ` p2) then the following conditions hold:

(1) ∀` ∈ Lab, (C ′1 ` p′1) ∈ ∫P1.(
C1 ` p1

`−→1 C
′
1 ` p′1

=⇒ ∃(C ′2 ` p′2) ∈ ∫P2. C2 ` p2
`−→2 C

′
2 ` p′2

and (C ′1 ` p′1) R (C ′2 ` p′2)
)

(2) ∀` ∈ Lab, (C ′2 ` p′2) ∈ ∫P2.(
C2 ` p2

`−→2 C
′
2 ` p′2

=⇒ ∃(C ′1 ` p′1) ∈ ∫P1. C1 ` p1
`−→1 C

′
1 ` p′1

and (C ′1 ` p′1) R (C ′2 ` p′2)
)

.

An early bisimulation R that further satisfies

6

(3) (C1 ` p1) R (C2 ` p2) =⇒ C1 = C2

(4) (C ` p1) R (C ` p2) =⇒ ∀ı : C → C ′ in I. (C ′ ` [ı]p1) R (C ′ ` [ı]p2)

is called an I-indexed early bisimulation.

Fiore and Turi [6] show that Be-coalgebraic bisimulations between coalge-
bras (P1, h1), (P2, h2) correspond to I-indexed early bisimulations for the in-
duced transition relations (

∫
P1,−→h1), (

∫
P2,−→h2). We remark that for the

π-calculus, early bisimilarity and I-indexed early bisimilarity coincide.

I-indexed labelled transition systems

It is certainly not the case that every transition relation is induced by a
Be-coalgebra. In order to understand this coalgebraic model we characterise
the transition relations that are induced.

Definition 2 An I-indexed labelled transition system (I-LTS) is a presheaf
P ∈ SetI together with a transition relation −→ ⊆ ∫

P × Lab × ∫P satisfying
Conditions I1–I6 of Figure 1.

Notation. For a function f : C → D and C ′ ⊆ C the notation f |C′ stands
for the surjection C ′ � f(C ′) given by restricting the domain to C ′ and the
codomain to the corresponding image f(C ′) ⊆ D.

Conditions I5 and I6 together capture a dichotomy in the induced transition
systems: a transition is either allowed or disallowed. Transitions cannot depend
upon extraneous names.

The introduced notion of I-LTS is justified by the following result.

Theorem 3 The mapping (2) associating a transition relation to a Be-coalgebra
yields a bijective correspondence between Be-coalgebras in SetI and I-LTSs
over presheaves in SetI.

An I-LTS (P,−→) induces a Be-coalgebra ~h : P → BeP whose components
are given according to the following definition: for C ∈ I, p ∈ PC and c ∈ C,

π1(~hCp)c ↓ ⇐⇒ ∃ d ∈ N , D ∈ I, p′ ∈ PD. C ` p c?d−→ D ` p′

π2(~hCp)c ↓ ⇐⇒ ∃ d ∈ C,D ∈ I, p′ ∈ PD. C ` p c!d−→ D ` p′

π3(~hCp)c ↓ ⇐⇒ ∃ z ∈ N \ C,D ∈ I, p′ ∈ PD. C ` p c!z−→ D ` p′

π4(~hCp)() ↓ ⇐⇒ ∃D ∈ I, p′ ∈ PD. C ` p τ−→ D ` p′

(3)

7

I1. Channel is known and at most transmitted data is learnt:

C ` p `−→ C ′ ` p′ =⇒ ch(`) ⊆ C ∧ C ′ = C ∪ dat(`)

I2. If one name can be input, then so can any other: for all z ∈ N :

C ` p c?d−→ C ∪ {d} ` p′

=⇒ ∃p′′ ∈ P (C ∪ {z}). C ` p c?z−→ C ∪ {z} ` p′′

I3. Bijective maps preserve transitions: for all D ∈ I, with C ∪ C ′
β∼= D:

C ` p `−→ C ′ ` p′ =⇒ β(C) ` [β|C]p
[β]`−→ β(C ′) ` [β|C′]p′

I4a. Knowing/forgetting input data preserves transitions:

C ` p c?z−→ C ∪ {z} ` p′

⇐⇒ C ∪ {z} ` [C↪→C ∪ {z}]p c?z−→ C ∪ {z} ` p′

I4b. Known output data must really be known:

C ∪ {d} ` [C↪→C ∪ {d}]p c!d−→ C ∪ {d} ` p′ =⇒ d ∈ C

I5. Inclusion maps preserve transitions:

C ` p `−→ C ′ ` p′ ∧ D ∩ dat(`) = ∅
=⇒ C ∪D ` [C↪→C ∪D]p

`−→ C ′ ∪D ` [C ′↪→C ′ ∪D]p′

I6. Inclusion maps reflect transitions:

C ∪D ` [C↪→C ∪D]p
`−→ C ′ ∪D ` p′ ∧ D ∩ dat(`) = ∅

=⇒ ∃p′′ ∈ P (C ∪ dat(`)).

[C ∪ dat(`) ↪→C ′ ∪D]p′′ = p′ ∧ C ` p `−→ C ∪ dat(`) ` p′′

Fig. 1. Requirements on an I-indexed labelled transition system.

with

π1(~hCp)c =
(
λ d ∈ C.

{
p′ ∈ PC | C ` p c?d−→ C ` p′

}
,

{
p′ ∈ P (C ⊕ 1) | C ` p c?z−→ C ∪ {z} ` [z/νC]p′ for z 6∈ C

})

π2(~hCp)c =
{

(d, p′) ∈ C × PC | C ` p c!d−→ C ` p′
}

π3(~hCp)c =
{
p′ ∈ P (C ⊕ 1) | C ` p c!z−→ C ∪ {z} ` [z/νC]p′ for z 6∈ C

}

π4(~hCp)() =
{
p′ ∈ PC | C ` p τ−→ C ` p′

}
.

(4)

In Appendix A we show that the transition relation (P,−→h) of (2) induced
by a coalgebra h : P → BeP is an I-LTS and, conversely, that the definition

8

of (3) and (4) yields a natural family of maps ~hC : PC → BePC (C ∈ I).
Theorem 3 follows because these transformations are inverses of each other.

In brief, Conditions I1 and I2 correspond to the well-formedness of the in-
duced family of maps ~h. Conditions I3–I6 correspond to the naturality of the
induced family of maps, with Condition I4a accounting for the action of the
exponential that is used to model input, and Condition I4b enforcing the sep-
aration between output and bound output. (This axiom system corrects an
oversight in that of [5].)

2 F-indexed labelled transition systems

The model considered above is concerned with describing early bisimulation.
We now turn to a finer notion. To formulate this, we require a different in-
dexing category: let F be the category of finite subsets of N and all functions
between them. Precomposition with the inclusion functor I ↪→F gives a for-
getful functor |− | : SetF → SetI. Since the sets

∫
X =

∑
C∈FX(C) and

∫ |X|
are equal, a transition relation � ⊆ ∫

X × Lab × ∫X is also a transition rela-
tion � ⊆ ∫ |X| × Lab × ∫ |X|, and vice versa.

Definition 4 A relation R ⊆ ∫
X1 ×

∫
X2 is an F-indexed early bisimula-

tion between transition relations (
∫
X1,

�

1) and (
∫
X2,

�

2) if it is an early
bisimulation in the sense of Definition 1 and satisfies the following additional
conditions.

(3’) (C1 ` p1) R (C2 ` p2) =⇒ C1 = C2

(4’) (C ` p1) R (C ` p2)

=⇒ ∀f : C → C ′ in F. (C ′ ` [f]p1) R (C ′ ` [f]p2)

Note that this definition slightly differs from Sangiorgi’s notion of open bisim-
ulation [9], in which distinctions are used to exempt names introduced by
bound output transitions from being joined by the renamings that are consid-
ered. However, we think that the above definition is still of interest as it arises
from the general theory of Fiore and Turi [6] and because, for the π-calculus,
F-indexed early bisimilarity is the greatest congruence that is an early bisim-
ulation.

Cattani and Sewell have developed a model of name-passing that is based
on the above notion of F-indexed early bisimulation. They consider a class of
indexed labelled transition systems that are required to satisfy certain axioms.
These axioms are suggested according to experience and intuition, but are not
induced from mathematical structure as in the case of Conditions I1–I6 for

9

I-LTSs (Figure 1). However, our axioms essentially match up with theirs. The
main difference highlights the relationship between I-indexed and F-indexed
early bisimulation.

Definition 5 (Cattani and Sewell) An F-indexed labelled transition system
(F-LTS) is a presheaf X ∈ SetF together with a transition relation

� ⊆ ∫X × Lab × ∫X satisfying Conditions F1–F4 of Figure 2.

Conditions F1–F4 are Conditions 1–4 of Cattani and Sewell rewritten in our
notation. Furthermore, in Condition F4 we have only considered inclusion
maps, while Cattani and Sewell consider all injections in their Condition 4; in
the presence of the other conditions these two conditions are equivalent.

Notation. For A ⊆ N and a, z ∈ N , we let [z/a] : A ∪ {a} → A ∪ {z} be
the function given by [z/a](x) = x for all x 6= a, and [z/a](a) = z. Further,
for functions fi : Ai → Bi (i = 1, 2) with A1 and A2 disjoint and also B1

and B2 disjoint, we let f1 + f2 : A1 ∪ A2 → B1 ∪ B2 be the function given by
(f1 + f2)(x) = fi(x) for all x ∈ Ai (i = 1, 2).

Conditions F2a and F2b are not entirely relevant in the context of early
bisimilarity. For instance, consider the processes

pi = a(x). if x = a then ā〈a〉 else ā〈d1〉
+ a(x). if x = a then ā〈b〉 else ā〈d2〉
+ a(x). if x = a then ā〈c〉 else ā〈di〉

(i = 1, 2)

where we write ‘a(x).p’ for ‘input a name on channel a, binding it to x in p’;
‘ā〈x〉’ for ‘output the name x on channel a’; and ‘+’ for nondeterministic sum.
The state graphs of the pi (i = 1, 2), with the transition a?x representing all
transitions for which x 6= a, are given by

•
a?a

jjjjjjjj

uujjjjjjjj a?x
ppppp

xxppppp a?a
��
a?x
@@@

��@@@ a?a
TTTTTTTT

))TTTTTTTTa?x
WWWWWWWWWWW

++WWWWWWWWWWW

•
a!a
��

•
a!d1

��

•
a!b
��

•
a!d2

��

•
a!c
��

•
a!di
��• • • • • •

which, up to early bisimilarity, minimise to the following one

p

a?a
nnnnnn

vvnnnnnn a?a
|||

}}||| a?a
��

a?x
DDDD

!!DDDD a?x
RRRRRRR

((RRRRRRR

pa

a!a
PPPPPP

((PPPPPP

pb

a!b
BBB

 BBB

pc

a!c
��

pd1

a!d1
{{{

}}{{{

pd2

a!d2
mmmmmm

vvmmmmmm

nil

10

F1. Channel is known and at most transmitted data is learnt:

C ` p `
� C ′ ` p′ =⇒ ch(`) ⊆ C ∧ C ′ = C ∪ dat(`)

F2a. Input of new names induces input of old names: for all z ∈ N \ C, d ∈ C:

C ` p c?z
� C ∪ {z} ` p′ =⇒ C ` p c?d

� C ` [d/z]p′

F2b. Input of old names induces input of new names: for all z ∈ N \ C:

C ` p c?d
� C ` p′

=⇒ ∃p′′ ∈ X(C ∪ {z}). C ` p c?z
� C ∪ {z} ` p′′ ∧ [d/z]p′′ = p′

F3a. Injective renaming: for all ı : C → D, β : dat(`) \ C ∼→ D′, with D ∩D′ = ∅:

C ` p `
� C ∪ dat(`) ` p′

=⇒ D ` [ı]p
[ı+β]`

� D ∪D′ ` [ı+ β]p′

F3b. Knowing fresh input data preserves transitions: for all z ∈ N \C:

C ` p c?z
� C ∪ {z} ` p′

=⇒ C ∪ {z} ` [C↪→C ∪ {z}]p c?z
� C ∪ {z} ` p′

F4. Inclusion maps reflect transitions:

C ∪D ` [C ↪→C ∪D]p
`

� C ′ ` p′

=⇒ dat(`) ∩ (D \ C) = ∅
∧ ∃p′′ ∈ X(C ∪ dat(`)).

C ` p `
� C ∪ dat(`) ` p′′ ∧ [C ∪ dat(`) ↪→C ′]p′′ = p′

OR

∃c ∈ C, z ∈ D \ C, p′′ ∈ X(C ∪ {z}).
` = c?z ∧ C ` p c?z

� C ∪ {z} ` p′′

∧ [C ∪ {z} ↪→C ′]p′′ = p′

Fig. 2. Requirements on an F-indexed labelled transition system.

yielding an I-LTS (according to Definition 2) but not an F-LTS (accord-
ing to Definition 5) as it does not satisfy Condition F2b. If it did satisfy
the condition then, for C = {a, b, c, d1, d2} and z 6∈ C, we must have some

p′a = [z/a]pa, p
′
b = [z/a]pb, and p′c = [z/a]pc, with C ` p a?z−→ C ∪ {z} ` p′a,

C ` p a?z−→ C ∪ {z} ` p′b, and C ` p a?z−→ C ∪ {z} ` p′c. The only possibilities
are (p′a = pdi , p

′
b = pdj , p

′
c = pdk) for i, j, k ∈ {1, 2}. Recall that F-LTSs admit

renaming of states by all functions. In particular, we can then consider the

11

retraction [a/z] : C ∪ {z}� C. Now, we have that

[a/z]pdi = pa [a/z]pdj = pb [a/z]pdk = pc .

Since i, j, k ∈ {1, 2} it follows that two of the states in {pa, pb, pc} are equal,
which is not the case.

In summary, p1 is early bisimilar to p2, but, considering the context a(d1).[−],
we have that a(d1).p1 is not early bisimilar to a(d1).p2, so p1 and p2 are not
related by any early bisimulation congruence.

Similar considerations apply to Condition F2a.

Conditions F2a and F2b serve to strengthen Condition I2. They not only re-
quire that ‘if one name can be input then so can any other’, but also ensure
that the input behaviour is parametric in the input data. In addition, Condi-
tions F1, F3, and F4 do not mention non-injective renamings, and moreover
are together equivalent to Conditions I1 and I3–I6. Thus we have the following
results.

Proposition 6 (1) An F-LTS over X ∈ SetF is an I-LTS over |X| ∈ SetI.
(2) For X ∈ SetF, an I-LTS over |X| ∈ SetI that satisfies Conditions F2a

and F2b is an F-LTS over X ∈ SetF.

In the journal version of their paper, Cattani and Sewell have introduced
a class Ninj-LTS of indexed labelled transition systems for presheaves over I.
Conditions F1, F3, and F4 can be reconsidered as conditions on such systems,
and indeed an Ninj-LTS is a system that satisfies these axioms.

Proposition 7 An indexed labelled transition system on a presheaf in SetI

is an Ninj-LTS if and only if it satisfies Conditions I1, I3–I6.

3 From presheaves to sheaves: Refining the model

We now return to the model of Section 1 based on injective renamings. We
describe how the state space can be refined by imposing a sheaf condition.

The Schanuel topos. Consider a presheaf P ∈ SetI. For p ∈ P (D) and
an inclusion D ⊆ D′, we have [D ↪→D′]p ∈ P (D′). We have assumed that it
does no harm to suppose that a process uses more names than it actually does.
Furthermore, it may be that D itself contains more names than p actually uses,
that is to say, perhaps there exists C ⊆ D and p′ ∈ P (C) with [C ↪→D]p′ = p.

12

We can also identify the names that p ∈ P (D) uses by observing how the in-
jections act on it. For instance, if every automorphism of D that fixes (i.e. does
not move) all of C ⊆ D also fixes p, then we expect that p only uses the names
in C. More generally, we have the following notion of support.

Definition 8 For a presheaf P in SetI we say that a name-set C ⊆ D sup-
ports an element p ∈ PD if and only if, for all ı,  : D → E in I, whenever
ı|C = |C then [ı]p = []p.

Given the intuitions discussed earlier, one would expect that if C supports
p ∈ PD, then p would exist uniquely in PC. This is precisely the sheaf con-
dition for the atomic topology :

(Sheaf condition) Whenever C ⊆ D supports p ∈ PD, there exists a unique
q ∈ PC with [C ↪→D]q = p.

That is, the statement “C supports p” defines a compatible family and the
sheaf condition requires that it has a unique gluing at C. For our purposes, this
is a sensible condition to impose. The full subcategory Sh(Iop) of presheaves
satisfying this condition is known as the Schanuel topos.

We briefly recall the analysis of the Schanuel topos given by Fiore [3]. Let
B be the category of all finite name-sets and bijections; i.e., the groupoid
underlying I. For P ∈ SetI, define a presheaf 〈P 〉 ∈ SetB with

〈P 〉C =




p ∈ PC ∀ C0 ⊆ C. ∀ p0 ∈ P (C0).

[C0 ↪→C]p0 = p =⇒ C0 = C





and, conversely, from Q ∈ SetB generate a presheaf Q! ∈ SetI by freely acting
on the canonical inclusion maps as follows:

Q!C =
∑

C′⊆C
Q(C ′) , Q!ı(C

′, q) = (ı(C ′), Q(ı|C′)q) .

For every Q ∈ SetB, we have that Q! is actually a sheaf in Sh(Iop) and there
is a canonical natural isomorphism

Q ∼= 〈Q!〉 in SetB

mapping q ∈ Q(C0) to (C0, q) ∈ 〈Q!〉C0. Also, for every P ∈ SetI, we have a
canonical natural epimorphism

ϕP : 〈P 〉! � P in SetI

13

given by

(
C0 ⊆ C, p ∈ 〈P 〉C0

)
∈ 〈P 〉!C 7→ P (C0 ↪→C)p ∈ PC .

Moreover, a presheaf P in SetI is a sheaf in Sh(Iop) if and only if ϕP is a
monomorphism, and hence an isomorphism.

For a sheaf P in Sh(Iop) and p ∈ PC, we let supp(p) ⊆ C (the support of p) and
seed(p) ∈ 〈P 〉(supp p) (the seed of p) determine the unique (supp p, seed p) ∈
〈P 〉!C such that (ϕP)C(supp p, seed p) = p. We note that supp(p) is the least
support of p, and that

supp([ı]p) = ı(supp p)

for all p ∈ PC and ı : C → D in I.

The construction (−)! extends to a functor SetB → SetI, left adjoint to the
forgetful functor |− | : SetI → SetB; the Schanuel topos is (equivalent to) the
Kleisli category arising from this adjunction. Thus, the sheaves in Sh(Iop) can
be equivalently considered as presheaves in SetB. Further, the maps P → P ′ in
Sh(Iop) are in bijective correspondence with the maps 〈P 〉 → |〈P ′〉!| in SetB;
hence, in addition to acting naturally on bijections, they are permitted to
reduce the support.

B-indexed labelled transition systems

The early behaviour endofunctor Be on SetI restricts to an endofunctor on
Sh(Iop) and it thus makes sense to discuss Be-coalgebras in this full subcat-
egory. In particular, we now ask which transition systems over presheaves in
SetB should be considered.

Definition 9 A B-indexed labelled transition system (B-LTS) is a presheaf
Q ∈ SetB together with a transition relation 99K ⊆ ∫Q× Lab × ∫Q, where∫
Q =

∑
C∈BQC, satisfying Conditions B1–B3 of Figure 3.

We have the following result relating the notions of indexed labelled transition
systems introduced.

Theorem 10 For sheaves P ∈ Sh(Iop), B-LTSs over 〈P 〉 and I-LTSs over P
are in bijective correspondence.

Details of the proof of Theorem 10 are given in Appendix B where we show
that 99K! and 〈−→〉 as defined below are respectively an I-LTS and a B-LTS,
and that 〈99K!〉 = 99K and 〈−→〉! = −→.

14

B1. Channel is known and at most the transmitted data is learnt:

C ` p `99K C ′ ` p′ =⇒ ch(`) ⊆ C ∧ C ′ ⊆ C ∪ dat(`)

B2. If one name can be input, then so can any other: for all z ∈ N :

C ` p c?d99K C ′ ` p′ =⇒ ∃C ′′ ∈ B, p′′ ∈ Q(C ′′). C ` p c?z99K C ′′ ` p′′

B3. Bijective maps preserve transitions: for all D ∈ B and β : C ∪ C ′ ∪ dat(`)
∼→ D:

C ` p `99K C ′ ` p′ =⇒ βC ` [β|C]p
[β]`
99K βC ′ ` [β|C′]p′

Fig. 3. Requirements on a B-indexed labelled transition system.

The I-LTS induced by a B-LTS:

Let 99K ⊆ ∫〈P 〉 × Lab × ∫〈P 〉 be a B-LTS with P ∈ Sh(Iop). We define

99K! ⊆
∫
P × Lab × ∫P

to be the least indexed transition relation satisfying the following.

If C0 ` p
c?d99K C ′0 ` p′ and C0 ⊆ C and C ′0 ⊆ C ∪ {d},

then C ` [C0 ↪→C]p
c?d99K! C ∪ {d} ` [C ′0 ↪→C ∪ {d}]p′.

If C0 ` p
c!d99K C ′0 ` p′, and d ∈ C0 ⊆ C and C ′0 ⊆ C,

then C ` [C0 ↪→C]p
c!d99K! C ` [C ′0 ↪→C]p′.

If C0 ` p
c!d99K C ′0 ` p′, C0 ⊆ C and C ′0 ⊆ C ∪ {d}, and d 6∈ C

then C ` [C0 ↪→C]p
c!d99K! C ∪ {d} ` [C ′0 ↪→C ∪ {d}]p′.

If C0 ` p
τ99K C ′0 ` p′, and C0 ⊆ C and C ′0 ⊆ C,

then C ` [C0 ↪→C]p
τ99K! C ` [C ′0 ↪→C]p′.

The B-LTS induced by an I-LTS:

Let −→ ⊆ ∫P × Lab × ∫P be an I-LTS with P ∈ Sh(Iop). We define

〈−→〉 ⊆ ∫〈P 〉 × Lab × ∫〈P 〉

to be the least indexed transition relation such that:

If C ` p `−→ C ′ ` p′

then supp(p) ` seed(p) 〈 `−→〉 supp(p′) ` seed(p′).

15

4 Internal transition systems

So far, we have been concerned with relating coalgebras on variable sets
(in SetI and Sh(Iop)) with indexed transition systems (I-LTSs, F-LTSs, and
B-LTSs). Our motivation for studying such transition systems was to under-
stand the nature of the Be-coalgebras from a traditional point of view. Having
done this, then, it is possible to consider the classes of I-, F-, B-LTSs them-
selves as models of name-passing. This is the direction pursued by Cattani
and Sewell [1]. Another approach is to work with internal transition systems
— that is to say, transition relations taken as subobjects of P ×L×P , for an
object of states P and a distinguished object of labels L. This is very much
the approach taken by Montanari and Pistore in their History Dependent Au-
tomata (HDA) [8].

We now introduce a notion of internal labelled transition system, relating
it to the other models that we have studied, and to HDA. We fix a sheaf
of labels L = (N ×N) + (N ×N) + 1 in Sh(Iop), respectively considering the
components (and naming the injections) as input (in), output (out), and silent
action (tau). Since we will be using the internal language of Sh(Iop) we need
structure particular to this topos, namely, the map upP : P → δP given by
(upP)C(p) = P (oldC)p.

Definition 11 An internal labelled transition system (i-LTS) is a sheaf P
together with a relation ;⊆ P ×L×P in Sh(Iop) satisfying Conditions i1–i3
of Figure 4.

i1. The channel is known:

∀x : P, ` : δL, y : δP.

(upP (x), `, y) ∈ δ(;)

=⇒ ∃ c : N, d : δN.

` = δin(upN (c), d) ∨ ` = δout(upN (c), d) ∨ ` = δtau

i2. The map up reflects transition derivatives:

∀x : P, ` : L, y : δP.

(upP (x), upL(`), y) ∈ δ(;) =⇒ ∃ y′ : P. upP (y′) = y

i3. If one name can be input, then so can any other:

∀x : P, c, d : N, y : P.

(x, in(c, d), y) ∈ ; =⇒ ∀ e : N. ∃y′ : P. (x, in(c, e), y′) ∈ ;

Fig. 4. Requirements on an i-indexed labelled transition system, expressed in the
internal logic of Sh(Iop).

16

Proposition 12 Collectively, the conditions of Figure 4 can be equivalently

presented in elementary terms as follows, where we write C ` p `
; p′ for (p, `, p′) ∈ ;(C).

i1. The channel is known:

C ∪D ` [C ↪→C ∪D]p
`

; p′ =⇒ ch(`) ⊆ C
i2. Inclusion maps reflect transition derivatives:

C ∪D ` [C ↪→C ∪D]p
[C↪→C∪D]`

; p′ =⇒ ∃p′′ ∈ PC. [C ↪→C ∪D]p′′ = p′

i3. If one name can be input, then so can any other:

C ` p in(c,d)
; p′ =⇒ ∀e ∈ N . ∃p′′ ∈ P (C ∪ {e}).

C ∪ {e} ` [C ↪→C ∪ {e}]p in(c,e)
; p′′

Separately, each of Conditions i1 and i2 of Figure 4 and Proposition 12 are
equivalent; Conditions i2 and i3 of Figure 4 imply Condition i3 of Proposi-
tion 12, which in turn implies Condition i3 of Figure 4.

We can now relate the internal structures of this section with those already
studied.

Theorem 13 i-LTSs and I-LTSs over sheaves in Sh(Iop) are in bijective cor-
respondence.

Let P be a sheaf. Given an i-LTS ; on P , let

;I ⊆
∫
P × Lab × ∫P

be the least indexed transition relation satisfying the following.

If C ∪ {d} ` [C ↪→C ∪ {d}]p in(c,d)
; p′,

then C ` p c?d
;I C ∪ {d} ` p′.

If C ` p out(c,d)
; p′ and d ∈ supp(p),

then C ` p c!d
;I C ` p′.

If C ` p out(c,d)
; p′ and d 6∈ supp(p),

then C \ {d} ` p0
c!d
;I C ` p′,

where p0 ∈ P (C \ {d}) is the unique such with [C \ {d} ↪→C]p0 = p,

existing since P is a sheaf and (C \ {d}) supports p.

If C ` p tau
; p′,

then C ` p τ
;I C ` p′.

17

Conversely, given an I-LTS −→ on P , let

C ` − −−→i − ⊆ PC × LC × PC (C ∈ I)

be the least family of transition relations such that:

If C ` p `−→ C ′ ` p′

then C ∪ C ′ ` [C ↪→C ∪ C ′]p `−→i [C ′ ↪→C ∪ C ′]p′.

eliding the obvious translation of labels (which makes sense as a result of
Condition I1).

The verification that this correspondence is bijective and actually yields i-LTSs
and I-LTSs is deferred to Appendix C.

Named-sets with symmetries. The idea of interpreting the notion of
transition system inside the Schanuel topos is similar in spirit to the idea of
interpreting the notion of automaton inside a category of named-sets — that
is, the idea of History Dependent Automata due to Montanari and Pistore [8].
In fact, the two notions are essentially the same, since as we show below the
category of finitely supported named-sets with symmetries is equivalent to the
Schanuel topos.

A variety of categories of named-sets have been proposed; see, e.g., [2,8]. Here,
we consider named-sets with symmetries as introduced by Pistore in his the-
sis [8, Chapter 7].

Definition 14 (Pistore) A named-set with symmetries (X,H = {Hx}x∈X) is
given by a set X, with each element x ∈ X equipped with a subgroup Hx ⊆
Sym(N) of the symmetric group Sym(N) on the infinite set of names N .

For each x ∈ X, Hx is to be thought of as the group of permutations that
fix x. This can be made more precise, as follows. Recall that a left action of
Sym(N) on a set A is a function α : Sym(N)×A→ A that respects the group
structure (i.e., satisfies α(id, a) = a and α(τσ, a) = α(τ, α(σ, a))). The sta-
biliser of a ∈ A is the subgroup Stab(a) = {σ ∈ Sym(N) | α(σ, a) = a} of all
the permutations that fix a, and the orbit-stabiliser theorem exhibits a bijec-
tion between the orbit of each a, Orb(a) = {a′ | ∃σ ∈ Sym(N). α(σ, a) = a′},
and the set of left cosets of the stabiliser Stab(a). Thus, for a section of the
quotient map A � {Orb(a) | a ∈ A} with image O ⊆ A, we have a bijection
A ∼= ∑

o∈O{σ Stab(o) | σ ∈ Sym(N)}. In this vein, a named-set (X,H) can be
thought of as a representation of an action: X provides canonical members of
the orbits and Hx describes the stabiliser of each x ∈ X. This intuition will
guide us in what follows.

18

From a named-set (X,H) one can recover a notion of support. Following Def-
inition 8, we say that a finite set C ⊆ N supports x ∈ X if whenever two
permutations σ, σ′ ∈ Sym(N) agree on C then they induce the same left
cosets of Hx. That is, C supports x in (X,H) if

∀ σ, σ′ ∈ Sym(N). σ|C = σ′|C =⇒ σHx = σ′Hx (5)

where, as above, we write σ|C for the bijection given by restricting the domain
of σ to C.

Note that σHx = σ′Hx if and only if σ−1σ′ ∈ Hx. Thus, an equivalent formu-
lation of (5) is

∀ σ ∈ Sym(N). σ|C = idC =⇒ σ ∈ Hx .

We restrict attention to those named-sets in which each element is supported
by a finite set. In this case, every element x ∈ X admits a (necessarily finite)
set

suppH(x) =
⋂

C′⊆C
{C ′ | C ′ supports x in (X,H) }

, where C is a finite set supporting x

which is least among all finite sets supporting x in (X,H). (To see this show
that the finite supporting sets of an element are closed under intersection.)

Definition 15 The category fsNSet has as objects finitely-supported named-
sets with symmetries, and morphisms

(m,K = {Kx}x∈X) : (X,H)→ (X ′, H ′)

given by a function m : X → X ′ together with, for each x ∈ X, a left coset
Kx = σxH

′
mx such that Hx ⊆ σxH

′
mxσx

−1. (Note that this makes sense, for if
σH ′mx = σ′H ′mx then also σH ′mxσ

−1 = σ′H ′mxσ
′−1.)

The identity morphism on (X,H) is (idX , H = {Hx}x∈X), and the composition
of

(X,H)
(m,{σxH′mx}x∈X) // (X ′, H ′)

(m′,{σ′
x′H

′′
m′ x′}x′∈X′) // (X ′′, H ′′)

is (m′ ◦ m, {σxσ′mxH
′′
m′(mx)}x∈X). (Note that the definition is independent of

the descriptions of cosets used, in the sense that if σxH
′
mx = τxH

′
mx and

σ′mxH
′′
m′(mx) = τ ′mxH

′′
m′(mx), then also σxσ

′
mxH

′′
m′(mx) = τxτ

′
mxH

′′
m′(mx).)

It is important to note that, for a morphism (m, {σxH ′mx}x∈X) : (X,H) →
(X ′, H ′) in fsNSet, if C supports x in (X,H) then σx

−1(C) supports mx in
(X ′, H ′). Indeed, if τ |σx−1(C) = idσx−1(C) then τσx

−1|C = σx
−1|C and, assuming

that C supports x, we have σxτσx
−1 ∈ Hx from which it follows that τ ∈ H ′mx

as required.

19

The morphisms that we use are based on the informal discussion in Pistore’s
thesis (although the formal definition here is slightly different). The second
component K of each morphism describes, for each x ∈ X, how the permu-
tations in Hx correspond to the permutations in H ′mx. Every permutation
σx ∈ Sym(N) defines a homomorphism by conjugation Hx → Sym(N) given
by τ 7→ σx

−1τσx. The condition Hx ⊆ σxH
′
mxσx

−1 ensures that the image
of this homomorphism lies within H ′mx. Pistore remarks that some of these
homomorphisms should be equated; we have used cosets to achieve this.

These morphisms also have an interpretation in terms of the intuition of
named-sets as representing group actions. Let (X,H) and (X ′, H ′) be named-
sets regarded as Sym(N)-actions in the manner outlined after Definition 14.
Recall that a homomorphism of actions (A, α)→ (A′, α′) is a function f : A→ A′

that respects the actions (i.e., satisfying f(α(σ, a)) = α′(σ, fa)). Consider a
morphism of named-sets (m,K) : (X,H)→ (X ′, H ′). From the viewpoint of
actions, the first component m is to be thought of as providing a mapping be-
tween canonical members of orbits. However, since homomorphisms of group
actions need not preserve canonical representatives of orbits, the second com-
ponent K of a morphism of named-sets provides a permutation to rectify this.
That is, if Kx = σxH

′
mx then the named-set morphism is to be thought of as

mapping x ∈ X to the result of the action of σx on mx.

The following result is the main step towards relating i-LTSs and HDA.

Theorem 16 The category fsNSet of finitely-supported named-sets with sym-
metries is equivalent to the Schanuel topos Sh(Iop).

For a named-set (X,H) ∈ fsNSet we define the presheaf Σ(X,H) ∈ SetB as
follows:

• For C ∈ B,

Σ(X,H)C =





(x, σHx)
suppH(x) = σ−1(C)

with x ∈ X and σ ∈ Sym(N)





It is interesting to note that if σ−1(C) supports x then σHx = τHx implies
that τ−1(C) also supports x.
• For β : C

∼→ D in B and (x, J) ∈ Σ(X,H)C,

Σ(X,H)β(x, J) = (x, σJ) ∈ Σ(X,H)D

where σ ∈ Sym(N) is an extension of β (i.e., σ|C = β).

Observe that if σ, σ′ ∈ Sym(N) are extensions of β then σJ = σ′J . Indeed,
since στ |τ−1(C) = σ′τ |τ−1(C), then for J = τHx we have, as τ−1(C) supports
x, that στHx = σ′τHx as required.

20

Note also that for any extension σ ∈ Sym(N) of β and any permutation

τ ∈ Sym(N) for which J = τHx, we have that (στ)−1(D) = τ−1
(
σ−1(D)

)
=

τ−1(C) is least among the finite supports of x in (X,H). Thus the image of
Σ(X,H)β is within the codomain.

The above construction induces a functor Σ! : fsNSet → Sh(Iop) given on
objects (X,H) as

Σ!(X,H)C =





(x, σHx)
σ−1(C) supports x ∈ X

with x ∈ X and σ ∈ Sym(N)





for C ∈ I, and

Σ!(X,H)ı(x, σHx) = (x, τσHx)

, where τ is an extension of ı|σ(suppHx)

for ı : C → D in I. That is, recalling the functor (−)! : SetB → Sh(Iop) from
Section 3,

Σ!(X,H) ∼=
(
Σ(X,H)

)
!

.

To each morphism

(m,K) : (X,H)→ (X ′, H ′) in fsNSet

we associate a natural family of functions

{Σ!(m,K)C : Σ!(X,H)C → Σ!(X
′, H ′)C }C∈I

defined by Σ!(m,K)C(x, σHx) = (mx, σKx).

We must now show (i) that this definition is independent of the choice of σ;
(ii) that the image falls within the codomain; (iii) that the family is natural.
To proceed, for each x ∈ X we suppose that Kx = σxH

′
mx, in accordance with

the definition of morphism in fsNSet.

(i) The definition is independent of the choice of σ. If σ′Hx = σ′′Hx, then
σ′−1σ′′ ∈ Hx. Since (m,K) is a morphism in fsNSet, we know that
σ−1
x σ′−1σ′′σx ∈ H ′mx. That is, σ′Kx = σ′σxH

′
mx = σ′′σxH

′
mx = σ′′Kx.

(ii) The image of each function Σ!(m,K)C is within the codomain Σ!(X
′, H ′)C.

Because if σ−1(C) supports x in (X,H), then (σσx)
−1(C) = σx

−1
(
σ−1(C)

)

supports m(x) in (X ′, H ′), as observed after Definition 15.
(iii) The family is natural. Let ı : C → D in I. On the one hand, we

have that Σ!(m,K)
(
[ı](x, σHx)

)
= Σ!(m,K)(x, τσHx) = (mx, τσKx) =

(mx, τσσxH
′
mx), where τ is an extension of ı|σ(suppHx). On the other hand,

21

[ı]
(
Σ!(m,K)(x, σHx)

)
= [ı](mx, σKx) = [ı](mx, σσxH

′
mx) = (mx, ρσσxH

′
mx),

where ρ is an extension of ı|(σσx)(suppH′(mx)).

Since, by the observation after Definition 15, we have that σx
(

suppH′(mx)
)
⊆

suppH(x), every extension τ of ı|σ(suppHx) is also an extension of ı|σ(σx(suppH′(mx))) =

ı|(σσx)(suppH′ (mx)) and hence [ı]
(
Σ!(m,K)(x, σHx)

)
= (mx, τσσxH

′
mx) =

Σ!(m,K)
(
[ı](x, σHx)

)
. Thus, the family Σ!(m,K) is natural.

Finally, we must verify that the construction Σ! is functorial. The identity
morphism (idX , H = {Hx}x∈X) is mapped to Σ!(idX , H) and, for each x ∈ X
and σ ∈ Sym(N), we have Σ!(idX , H)(x, σHx) = (x, σHx). Thus the identity
of named-sets is mapped to the identity of sheaves.

Consider the composite (m′ ◦m, (K ′ ◦K) = {σxσ′mxH
′′
m′(mx)}x∈X) of named-

set morphisms (m,K = {σxH ′mx}x∈X) and (m′, K ′ = {σx′H ′′m′ x′}x′∈X′). In
Sh(Iop), for some x ∈ X and σ ∈ Sym(N), we have Σ!(m,K)C(x, σHx) =
(mx, σσxH

′
mx); so that Σ!(m

′, K ′)C(Σ!(m,K)C(x, σHx)) = (m′(mx), σσxσ
′
mxH

′′
m′(mx)).

This is precisely the value of Σ!(m
′ ◦m,K ′ ◦K)C(x, σHx). Thus composition

is preserved and we have a functor Σ! : fsNSet→ Sh(Iop).

We show in Appendix D that this functor is essentially surjective (i.e., that
for every P ∈ Sh(Iop) there exists (X,H) ∈ fsNSet such that Σ!(X,H) ∼= P)
and full and faithful. Thus Theorem 16 is proved.

History dependent automata. We remarked in Section 3 that the oper-
ators on SetI introduced in Section 1 restrict to Sh(Iop); it is now routine to
translate them into operators on fsNSet. It is also straightforward to inter-
pret the Conditions i1–i3 in fsNSet, and, in this way, obtain a class of HDA
that correspond to Be-coalgebras. An example of such an interpretation was
provided in the Proceedings of CMCS’04 [5].

5 Concluding remarks

Rule formats. Throughout the present work we have not considered how
the coalgebra, transition system, or automaton is initially defined. In practice,
transition relations are often defined over terms using structural induction over
rules. There are various rule formats for calculi such as CCS that guarantee
bisimilarity to be a congruence for the induced transition system. It is well-
known (and was recalled in Section 2) that early bisimilarity is typically not
a congruence for name-passing calculi. In this context, though, we have devel-
oped a format for rules inducing F-LTSs. Within this format, F-indexed early
bisimilarity is seen to be a congruence.

22

Minimisation. An application of final coalgebra semantics is the use of min-
imisation techniques to determine, for instance, whether processes are bisim-
ilar. We have a framework for understanding partition refinement techniques
in a coalgebraic setting. It can be shown that the partition refinement proce-
dure will terminate if performed on a coalgebra whose state space is a finitely
presentable sheaf in Sh(Iop). This latter condition on the state space translates
to the requirement that the first component of the named-set representing the
sheaf is finite. The second component of such a named-set is thus a finite fam-
ily of infinite permutation groups. The finite support requirement, however,
ensures that each of these groups has a finite description. Thus the framework
of named-sets is convenient from a practical point of view. Indeed, problems
of minimisation for name-passing systems have already been investigated as
related to history dependent automata [2].

Further related work. Gadducci, Miculan, and Montanari [7] have obtained
a result analogous to our Theorem 16 for a variant of named-sets similar to that
considered by Ferrari, Montanari, and Pistore [2]. One important difference in
this variant of named-sets is that finite descriptions of support and groups, as
mentioned in the previous paragraph, are explicitly given.

Acknowledgements. We thank Peter Sewell for useful discussions, espe-
cially about Section 2.

References

[1] Cattani, G. L. and P. Sewell, Models for name-passing processes: Interleaving
and causal, Information and Computation 190 (2004), pp. 136–178. (Extended
abstract in Proc. LICS’00.)

[2] Ferrari, G., U. Montanari and M. Pistore, Minimising transition systems for
name passing calculi: A co-algebraic formulation, in: Proc. FOSSACS’02, LNCS
2302 (2002), pp. 129–158.

[3] Fiore, M. P., Notes on combinatorial functors, Draft available on-line (January
2001).

[4] Fiore, M. P., E. Moggi and D. Sangiorgi, A fully abstract model for the π-calculus,
Information and Computation 179 (2002), pp. 76–117. (Extended abstract in
Proc. LICS’96.)

[5] Fiore, M. P. and S. Staton, Comparing operational models of name-passing
process calculi, in: Proc. CMCS’04, ENTCS 106 (2004), pp. 91–104.

[6] Fiore, M. P. and D. Turi, Semantics of name and value passing, in: Proc. LICS’01
(2001), pp. 93–104.

23

[7] Gadducci, F., M. Miculan and U. Montanari, About permutation algebras,
(pre)sheaves and named sets, Private communication (July 2005). (Preliminary
version as Some characterization results for permutation algebras, in
Proc. COMETA, 2004.)

[8] Pistore, M., “History Dependent Automata”, Ph.D. thesis, University of Pisa
(1999).

[9] Sangiorgi, D., A theory of bisimulation for the π-calculus, Acta Informatica 33
(1996), pp. 69–97. (Extended abstract in Proc. CONCUR’93.)

[10] Stark, I., A fully abstract domain model for the π-calculus, in: Proc. LICS’96
(1996), pp. 36–42.

A Proof of Theorem 3

A.1 The I-LTS induced by a Be-coalgebra

We explain how the transition relation −→h induced by a Be-coalgebra h
satisfies the conditions in Figure 1.

Condition I1 is guaranteed by definition. For example, if C ` p c?d−→h C
′ ` p′

is induced by p′ ∈ π1(π1(hCp)c)d then C ′ = C. Since π1(hCp) is a partial
function C ⇀ ((℘+PC)C × ℘+P (C ⊕ 1)), we have c ∈ C — the channel is
known. We have d ∈ C since π1(π1(hCp)c) is a function (C → ℘+PC). So

certainly C ′ = C ∪ {d} — the data is learnt. Again, if C ` p c?z−→h C
′ ` p′ is

induced by q ∈ π2(π1(hCp)c) then we know z 6∈ C, and we have C ′ = C ∪{z}
and p′ = [d/ν]q. We have c ∈ C since π1(hCp) is a partial function C ⇀
((℘+PC)C × ℘+P (C ⊕ 1)).

Condition I2 is guaranteed by the careful use of partial exponentials and non-
empty powersets, as follows. Suppose we are concerned with the behaviour of
p ∈ PC. Recall that the input component is of type N⇀⇀(℘+P)N , so, at stage
C ∈ I, we have an element i of type C ⇀ (℘+PC)C × ℘+P (C ⊕ 1). That is,
on each channel c ∈ C there must be either no input communication (the
partial function i is undefined at c) or input of every name: on inputting a
known name d ∈ C we proceed as a state in the non-empty set π1(ic)d ∈
℘+PC, and on inputting a fresh name z 6∈ C we proceed as a state in the
non-empty set (℘+P)[z/ν](π2(ic)) ∈ ℘+P (C ∪ {z}).

Condition I3 captures the naturality of h with respect to bijective renamings.

Indeed, suppose that C ` p c!d−→h C
′ ` p′ is induced by (d, p′) ∈ π2(hC p)c (so

C = C ′). Consider a bijection β : C
∼→ D. Since h is natural, we have

hD([β]p) = [β](hC p). In particular, from the definitions of the various type

24

constructors, π2

(
hD([β]p)

)
(βc) = [β](π2(hC p)c). So (βd, [β]p′) ∈ π2

(
hD([β]p)

)
(βc),

inducing D ` [β]p
βc!βd−→h D ` [β]p′. The other kinds of transition behave in a

similar manner. Thus Condition I3 is satisfied by the induced transition sys-
tem.

Condition I4a is essentially a result of the structure of the exponential. Re-
call (1) that for (φ, ψ) ∈ (℘+P)NC and z ∈ N \ C we have that

π1

(
(℘+P)N(C ↪→C ∪ {z})(φ, ψ)

)
z

= (℘+P)[z/ν](ψ)

=
{
P [z/ν]q ∈ P (C ∪ {z}) | q ∈ ψ

}
.

(A.1)

We will prove the left to right direction of Condition I4a; the opposite direction

is proved by following the same steps in reverse. Suppose that C ` p c?z−→h C ∪ {z} ` p′
is induced, for z 6∈ C (otherwise the result is trivial). This must have been
induced by P [ν/z]p′ ∈ π2(π1(hCp)c). By (A.1) above, we thus have that

p′ = [z/ν][ν/z]p′ ∈ π1

(
(℘+P)N(C ↪→C ∪ {z})(π1(hCp)c)

)
z .

Further, since h is natural, we also have that

(℘+P)N(C ↪→C ∪ {z})(π1(hCp)c) = π1

(
hC∪{z}(P (C ↪→C ∪ {z})p)

)
c .

Hence

p′ ∈ π1

(
π1

(
hC∪{z}(P (C ↪→C ∪ {z})p)

)
c
)
z

and Condition I4a is satisfied by the induced transition.

Condition I4b is a result of the naturality of h. For if

C ∪ {d} ` [C ↪→C ∪ {d}]p c!d−→h C ∪ {d} ` p′

is induced, we must have (d, p′) ∈ π2(hC∪{d}([C ↪→ C ∪ {d}]p))c. Since h is
natural,

(d, p′) ∈ π2

(
hC∪{d}(P (C ↪→C ∪ {d})p)

)
c

=
(
℘+(N × P)

)
(C ↪→C ∪ {d})(π2(hCp)c)

=
{

(e, P (C ↪→C ∪ {d})q) ∈ C × P (C ∪ {d}) | (e, q) ∈ π2(hCp)c
}

.

So d ∈ C, as required by Condition I4b.

Just as Condition I3 captures the naturality of h with respect to bijective re-
namings, Condition I5 captures the naturality with respect to inclusion maps.

25

For instance, if C ` p τ−→h C ` p′ is induced, it must be by p′ ∈ π4(hC p)().
Since h is natural, we have that

P (C ↪→C ∪D)p′ ∈ (℘+P)(C ↪→C ∪D)
(
π4(hC p)()

)

= π4

(
hC∪D(P (C ↪→C ∪D)p)

)
()

and thus C ∪D ` [C ↪→C ∪D]p
τ−→h C ∪D ` [C ↪→C ∪D]p′ is induced. The

other kinds of transition are similar; thus Condition I5 is satisfied by the
induced transition system.

Condition I6 also results from the naturality of h.

(1) Suppose for instance that

C ∪D ` [C ↪→C ∪D]p
c!z−→h C

′ ∪D ` p′

is induced, with z 6∈ C ∪D. Then C ′ ∪D = C ∪D ∪ {z} and

[νC∪D/z]p′ ∈ π3

(
hC∪D([C ↪→C ∪D]p)

)
c .

Since h is natural, we have that

π3

(
hC∪D(P (C ↪→C ∪D)p)

)

= (N⇀⇀℘+δP)(C ↪→C ∪D)
(
π3(hC p)

)

= (℘+P)
(
(C ↪→C ∪D)⊕ 1

)
◦ π3(hCp) ◦ (C ↪→C ∪D)R

and, since this partial function is defined at c, it follows that c ∈ C.
Moreover,

[νC∪D/z]p
′ ∈ π3

(
hC∪D(P (C ↪→C ∪D)p)

)
c

= (℘+P)
(
(C ↪→C ∪D)⊕ 1

)
(π3(hCp)c)

=
{

[(C ↪→C ∪D)⊕ 1]q | q ∈ π3(hCp)c
}

.

So there exists q ∈ π3(hCp)c ∈ ℘+P (C ⊕ 1) with

[(C ↪→C ∪D)⊕ 1]q = [νC∪D/z]p′ .

Finally, considering the diagram

C ⊕ 1

(C↪→C∪D)⊕1
��

[z/νC]
∼ //C ∪ {z}� _

��
(C ∪D)⊕ 1 ∼

[z/νC∪D]
//C ∪D ∪ {z}

26

in I, it follows that p′′ = [z/νC]q ∈ P (C ∪ {z}) satisfies

[C ∪ {z} ↪→C ∪ {z} ∪D]p′′ = p′ and C ` p c!z−→h C ∪ {z} ` p′′ .

(2) Now, suppose that

C ∪D ` [C ↪→C ∪D]p
c!d−→h C ∪D ` p′

this time with d ∈ C \D. Then (d, p′) ∈ π2

(
hC∪D([C ↪→C ∪D]p)

)
c. Since

h is natural, we have that

(d, p′) ∈ π2

(
hC∪D(P (C ↪→C ∪D)p)

)
c

=
(
℘+(N × P)

)
(C ↪→C ∪D)(π2(hCp)c)

=
{

(e, P (C ↪→C ∪D)q) ∈ C × P (C ∪D) | (e, q) ∈ π2(hCp)c
}

.

Thus we have p′′ ∈ PC with [C ↪→C ∪D]p′′ = p′ and (d, p′′) ∈ π2(hCp)c.

So C ` p c!d−→h C ` p′′ is induced by the coalgebra.

Condition I6 is proved similarly for the other kinds of transition.

A.2 The Be-coalgebra induced by an I-LTS

We show that the definition (3–4) inducing aBe-coalgebra ~h from an I-LTS−→
makes sense and yields a natural transformation.

Of principle concern for well-definedness is the input component, where the
function space and non-empty powersets are used in a particularly intricate
manner. For C ∈ I, p ∈ PC, and c ∈ C, suppose that π1(~hCp)c is de-
fined. Then, by definition and using Condition I1, there is some d ∈ N and

p′ ∈ P (C ∪ {d}) with C ` p c?d−→ C ∪ {d} ` p′. So, by Condition I2, for any

d′ ∈ C, we have p′′ ∈ PC with C ` p c?d′−→ C ` p′′. So π1(π1(~hC p)c) as de-
scribed is indeed a total function C → ℘+PC. On the other hand, also by Con-

dition I2, for any z 6∈ C we have p′′ ∈ P (C ∪ {z}) with C ` p c?z−→ C ∪ {z} ` p′′.
So [ν/z]p′′ ∈ π2(π1(~hC p)c) and thus the induced π2(π1(~hC p)c) is indeed

a non-empty subset of P (C ⊕ 1). So π1(~hCp) is a partial function of type

C ⇀ ((℘+PC)C × ℘+P (C ⊕ 1)). Analogously, one establishes that π2(~hCp),

π3(~hCp), and π4(~hCp) are respectively partial functions of type C ⇀ ℘+(C × PC),

C ⇀ ℘+P (C⊕1), and 1 ⇀ ℘+PC. Thus each map ~hC : PC → BePC (C ∈ I)
is well-defined.

We now proceed to establish the naturality condition for the family of maps
~hC : PC → BePC (C ∈ I). For all ı : C → D in I and p ∈ PC, we need to

27

establish the following identities.

π1

(
~hD(Pıp)

)
= (℘+P)N ı ◦ π1(~hCp) ◦ ıR (A.2)

π2

(
~hD(Pıp)

)
=
(
℘+(N × P)

)
ı ◦ π2(~hCp) ◦ ıR (A.3)

π3

(
~hD(Pıp)

)
= (℘+δP)ı ◦ π3(~hCp) ◦ ıR (A.4)

π4

(
~hD(Pıp)

)
= (℘+P)ı ◦ π4(~hCp) (A.5)

Let us first consider (A.4) for ı a bijection C
∼→ D. We need to establish that

π3

(
~hD(Pıp)

)
(ıc) = (℘+δP)ı(π3(~hCp)c)

=
{
P (ı⊕ 1)p′ | p′ ∈ π3(~hCp)c

}

for all c ∈ C. We show each inclusion in turn:

(⊇) Let p′ ∈ π3(~hC p)c ∈ ℘+P (C ⊕ 1). Then, there is a transition

C ` p c!z−→ C ∪ {z} ` [z/νC]p′

for some z 6∈ C. Applying Condition I3 to this transition with respect to
the bijection (z′/νD) ◦ (νD/z)ı−1 : C ∪ {z} ∼→ D ∪ {z′} for some z′ 6∈ D, we
obtain the transition

D ` [ı]p
(ıc)!z′−→ D ∪ {z′} ` [z′/νD][(νD/z)ı−1][z/νC]p′ .

Since (νD/z)ı−1◦(z/νC) = ı⊕1 the above transition amounts to the following
one

D ` [ı]p
(ıc)!z′−→ D ∪ {z′} ` [z′/νD][ı⊕ 1]p′

showing that [ı⊕ 1]p′ ∈ π3

(
~hD([ı]p)

)
(ıc) as required.

Note that if (℘+δP)ı(π3(~hCp)c) is defined then so is π3(~hCp)c and, con-

sequently, also π3

(
~hD(Pıp)

)
(ıc) is defined.

(⊆) Let q ∈ π3

(
~hD([ı]p)

)
(ıc) ∈ ℘+P (D ⊕ 1). Then, there is a transition

D ` [ı]p
(ıc)!z−→ D ∪ {z} ` [z/νD]q

for some z 6∈ D. Applying Condition I3 to this transition with respect to
the bijection (z′/νC) ◦ (νC/z)ı : D ∪ {z} ∼→ C ∪ {z′} for some z′ 6∈ C, we
obtain the transition

C ` [ı−1][ı]p
(ı−1ı c)!z′−→ C ∪ {z′} ` [z′/νC][(νC/z)ı][z/νD]q

28

Since ı−1 ◦ ı = idC and (νC/z)ı ◦ (z/νD) = ı−1 ⊕ 1 the above transition
amounts to the following one

C ` p c!z′−→ C ∪ {z′} ` [z′/νC][ı−1 ⊕ 1]q

showing that [ı−1 ⊕ 1]q ∈ π3(~hCp)c. As q = [ı⊕ 1][ı−1 ⊕ 1]q, we are done.

Note that if π3

(
~hD(Pıp)

)
(ıc) is defined then so is π3(~hCp)c and, conse-

quently, also (℘+δP)ı(π3(~hCp)c) is defined.

One establishes (A.2), (A.3), and (A.5) with respect to bijections in a similar
manner: Condition I3 is the key to naturality with respect to bijections.

Finally, we consider naturality with respect to inclusions. The case of in-
put (A.2) is the most complex. Recall the action of the exponential (1):

(f ′, q′) = QN(C ↪→C ∪D)(f, q) ∈
(
Q(C ∪D)

)C∪D ×Q
(
(C ∪D)⊕ 1

)
where

f ′(d) =




Q(C ↪→C ∪D)(f(d)) , if d ∈ C
Q
(
(C ∪ {d} ↪→C ∪D) ◦ (d/νC)

)
q , otherwise

and

q′ = Q
(
(C ↪→C ∪D)⊕ 1

)
q .

For disjoint C,D ∈ I and p ∈ PC, we must show that:

(1) For c ∈ C ∪ D, π1

(
~hC∪D([C ↪→ C ∪ D]p)

)
c is defined iff c is in C and

π1(~hCp)c is defined.

(2) For c, d ∈ C we have p′ ∈ π1(π1

(
~hC∪D([C ↪→C ∪D]p)

)
c)d iff there exists

p′′ ∈ π1(π1(~hC p)c)d ∈ ℘+PC such that [C ↪→C ∪D]p′′ = p′.
(3) For c ∈ C and d ∈ D we have

p′ ∈ π1(π1

(
~hC∪D([C ↪→C ∪D]p)

)
c)d ∈ ℘+P (C ∪D)

iff there exists p′′ ∈ π2(π1(~hC p)c) ∈ ℘+P (C ⊕ 1) such that

[C ∪ {d} ↪→C ∪D][d/νC]p′′ = p′ .

(4) For c ∈ C, we have

p′ ∈ π2(π1

(
~hC∪D([C ↪→C ∪D]p)

)
c) ∈ ℘+P

(
(C ∪D)⊕ 1

)

iff there exists p′′ ∈ π2(π1(~hCp)c) ∈ ℘+P (C ⊕ 1) such that

[(C ↪→C ∪D)⊕ 1]p′′ = p′ .

29

First, we show (1). Suppose that π1

(
~hC∪D([C ↪→ C ∪ D]p)

)
c is defined for

c ∈ C ∪D. Then, by definition and Condition I1, there is a transition of the
form

C ∪D ` [C ↪→C ∪D]p
c?d−→ C ∪D ∪ {d} ` p′ .

Since C ∪ D = C ∪ (D ∩ {d}) ∪ (D \ {d}), Condition I6 ensures that there
exists p′′ ∈ P (C ∪ {d}) such that [C ∪ {d} ↪→C ∪ {d} ∪D]p′′ = p′ and

C ∪ (D ∩ {d}) ` [C ↪→C ∪ (D ∩ {d})]p c?d−→ C ∪ {d} ` p′′ .

If d 6∈ D, or otherwise by Condition I4a, C ` p
c?d−→ C ∪ {d} ` p′′. Thus,

by Condition I1, we have c ∈ C and, by definition, π1(~hCp)c is defined. Con-

versely, suppose that π1(~hCp)c is defined for c ∈ C. Then, by definition and
Condition I1, there is a transition of the form

C ` p c?d−→ C ∪ {d} ` p′

where, because of Condition I2, we can assume that d = c without loss of
generality. Thus, by Condition I5, the above transition induces the following
one

C ∪D ` [C ↪→C ∪D]p
c?c−→ C ∪D ` [C ↪→C ∪D]p′

from which it follows by definition that π1

(
~hC∪D([C ↪→C ∪D]p)

)
c is defined.

We now show (2). Suppose we have p′ ∈ π1(π1

(
~hC∪D([C ↪→C ∪D]p)

)
c)d for

c, d ∈ C. As above, there is a transition C ∪D ` [C ↪→C ∪D]p
c?d−→ C ∪D ` p′

and, by Condition I6, we have p′′ ∈ PC such that [C ↪→C ∪D]p′′ = p′ and

C ` p c?d−→ C ` p′′. Thus, we obtain p′′ ∈ π1(π1(~hC p) c) d as required. Con-

versely, suppose we have p′′ ∈ π1(π1(~hCp)c)d for c, d ∈ C. Again as above,

there is a transition C ` p c?d−→ C ` p′′ and, by Condition I5, we have the

transition C ∪D ` [C ↪→C ∪D]p
c?d−→ C ∪D ` [C ↪→C ∪D]p′′ showing that

[C ↪→C ∪D]p′′ ∈ π1(π1

(
~hC∪D([C ↪→C ∪D]p)

)
c)d as required.

Case (4) can be shown in a similar manner.

Case (3) is particularly specific to the input behaviour. Suppose we have

p′ ∈ π1(π1

(
~hC∪D([C ↪→C ∪D]p)

)
c)d

for c ∈ C and d ∈ D. This must have been induced by a transition

C ∪D ` [C ↪→C ∪D]p
c?d−→ C ∪D ` p′ .

Now, D = (D \ {d})∪{d}, so by Condition I6, we have p′′ ∈ P (C ∪{d}) with

[C ∪ {d} ↪→C ∪D]p′′ = p′ and C ∪ {d} ` [C ↪→C ∪ {d}]p c?d−→ C ∪ {d} ` p′′. By

30

Condition I4a, we have C ` p c?d−→ C ∪ {d} ` p′′. This yields [νC/d]p′′ ∈ π2(π1(~hCp)c)
with

[C ∪ {d} ↪→C ∪D][d/νC][νC/d]p′′ = [C ∪ {d} ↪→C ∪D]p′′ = p′

as required. Conversely, let p′′ ∈ π2(π1(~hCp)c) for c ∈ C. This must have been
induced by a transition

C ` p c?z−→ C ∪ {z} ` [z/νC]p′′

with z 6∈ C. For any d ∈ D, applying Condition I3 with respect to the bijection

(d/νC) ◦ (νC/z) : C ∪ {z} ∼→ C ∪ {d}, we have C ` p c?d−→ C ∪ {d} ` [d/νC]p′′.
By Condition I4a, we can know the fresh name d and the transition will still

occur. That is, C ∪ {d} ` [C ↪→C ∪ {d}]p c?d−→ C ∪ {d} ` [d/νC]p′′. Finally, by
Condition I5, we have

C ∪D ` [C ↪→C ∪D]p
c?d−→ C ∪D ` [C ∪ {d} ↪→C ∪D][d/νC]p′′ .

This yields

[C ∪ {d} ↪→C ∪D][d/νC]p′′ ∈ π1(π1

(
~hC∪D([C ↪→C ∪D]p)

)
c)d

as required.

Turning now to output transitions, we will prove (A.3) for inclusions (C ↪→C ∪D),
where C and D are disjoint. For c ∈ C, suppose that

(
℘+(N × P)

)
(C ↪→C ∪D)(π2(~hCp)c)

is defined and let (d, p′) be in it. Then, also π2(~hCp)c is defined, and p′ =

[C ↪→ C ∪ D]p′′ for (d, p′′) ∈ π2(~hCp)c. It follows that C ` p c!d−→ C ` p′′. By
Condition I1, d ∈ C, so that d 6∈ D. Further Condition I5 gives

C ∪D ` [C ↪→C ∪D]p
c!d−→ C ∪D ` [C ↪→C ∪D]p′′ .

Hence π2(~hC∪D([C ↪→C ∪D]p))c is defined and (d, p′) = (d, [C ↪→C ∪D]p′′) is
in it as required by (A.3). Conversely, for c ∈ C ∪D, suppose that

π2(~hC∪D([C ↪→C ∪D]p))c

is defined with (d, p′) in it. This must be because

C ∪D ` [C ↪→C ∪D]p
c!d−→ C ∪D ` p′ .

By Condition I6 we have p′′ ∈ P (C ∪{d}) with [C ∪ {d} ↪→C ∪D]p′′ = p′ and

C ∪ {d} ` [C ↪→C ∪ {d}]p c!d−→ C ∪ {d} ` p′′. By Condition I4b, then, d ∈ C.

31

So π2(~hCp)c is defined with (d, p′′) in it. Thus, also

(
℘+(N × P)

)
(C ↪→C ∪D)(π2(~hCp)c)

is defined with (d, p′) = (N ×P)(C ↪→C ∪D)(d, p′′) in it as required by (A.3).

One establishes (A.4) and (A.5) with respect to inclusions in a similar manner.

Thus, our definition yields a Be-coalgebra ~h : P
.→ BeP in SetI.

B Proof of Theorem 10

B.1 The I-LTS induced by a B-LTS

For a B-LTS 99K over a sheaf P ∈ Sh(Iop), we note that 99K! ⊆
∫
P ×Lab× ∫P

satisfies Conditions I1–I6 of Figure 1.

Condition B1 ensures that the channel is known beforehand, and the defini-
tion ensures that exactly the data is learnt. Thus Condition I1 is satisfied.
Condition B2 guarantees that a resumption exists for every input if it exists
for one, and Condition B1 ensures that the resumption is at the correct stage.
Thus Condition I2 is satisfied. Condition B3 implies Condition I3.

Conditions I4–I6 are guaranteed by the use of minimal supports in the defi-
nition in conjunction with Condition B1, as we now illustrate.

Suppose that C ∪ {d} ` [C ↪→C ∪ {d}]p c!d99K! C ∪ {d} ` p′, as in the premise

of Condition I4b. This must have been because C0 ` p0
c!d99K C ′0 ` p0

′ for some
C0, C ′0 and p0 ∈ 〈P 〉(C0), p0

′ ∈ 〈P 〉(C ′0) with d ∈ C0 ⊆ C ∪ {d} ⊇ C ′0 and
[C0 ↪→C ∪ {d}]p0 = [C ↪→C ∪ {d}]p, [C ′0 ↪→C ∪ {d}]p0

′ = p′. By definition of
〈P 〉, C0 = supp(p0). Also, supp(p0) = supp([C0 ↪→C∪{d}]p0). Now C supports
[C0 ↪→C ∪ {d}]p0, but C0 is the minimal such and so C0 ⊆ C. Thus d ∈ C,
and Condition I4b is satisfied.

Suppose that C ∪D ` [C ↪→C ∪D]p
`99K! C ′ ∪D ` p′, as in the premise of

Condition I6. Suppose that ` = c!d and that d 6∈ C ∪ D. Then we must
have C ′ ∪ D = C ∪ D ∪ {d}, and there must exist C0, C ′0 and p0 ∈ 〈P 〉(C0),
p0
′ ∈ 〈P 〉(C ′0) with C0 ⊆ C ∪D, and C ′0 ⊆ C ∪D ∪ {d}, and

[C0 ↪→C ∪D]p0 = [C ↪→C ∪D]p, [C ′0 ↪→C ∪D ∪ {d}]p0
′ = p′

and such that C0 ` p0
c!d99K C ′0 ` p0

′. By definition of 〈P 〉, C0 = supp(p0) =
supp([C0 ↪→C ∪D]p0). We know C supports [C0 ↪→C∪D]p0; C0 is the minimal

32

such and so C0 ⊆ C. So, by Condition B1, C ′0 ⊆ C ∪ {d}. Since d 6∈ C, we
have, by definition and the fact that [C0 ↪→C]p0 = p, that

C ` p c!d99K! C ∪ {d} ` [C ′0 ↪→C ∪ {d}]p′0 .

Thus Condition I6 is satisfied in this case.

B.2 The B-LTS induced by an I-LTS

For an I-LTS −→ over a sheaf P ∈ Sh(Iop), we note that 〈−→〉 ⊆ ∫〈P 〉 ×
Lab × ∫〈P 〉 satisfies Conditions B1–B3 of Figure 3.

Suppose that C0 ` p0 〈 `−→〉 C ′0 ` p′0. Then there must exist C, C ′ and p ∈ P (C),
p′ ∈ P (C ′) with C0 = supp(p), C ′0 = supp(p′), p0 = seed(p), p′0 = seed(p′), and

such that C ` p `−→ C ′ ` p′. Let C ′′ = C0 ∪ (C ∩ dat(`)) and D = C \ C ′′.
So D ∩ dat(`) = ∅ and C = C ′′ ∪ D. By Condition I1, C ′ = C ∪ dat(`) =
C ′′ ∪D ∪ dat(`). By Condition I6, we have p′′ ∈ P (C ′′ ∪ dat(`)) with

C ′′ ` [C0 ↪→C ′′]p0
`−→ C ′′ ∪ dat(`) ` p′′

and [C ′′ ∪ dat(`) ↪→C ′]p′′ = [C ′0 ↪→C ′]p′0. So C ′′ ∪ dat(`) supports p′, but C ′0
is the least support, so C ′0 ⊆ C ′′ ∪ dat(`). Since P is a sheaf we have p′′ =
[C ′0 ↪→C ′′ ∪ dat(`)]p′0. In summary, we have

C ′′ ` [C0 ↪→C ′′]p0
`−→ C ′′ ∪ dat(`) ` [C ′0 ↪→C ′′ ∪ dat(`)]p′0 .

Clearly C ′0 ⊆ C ′′ ∪ dat(`) = C0 ∪ (C ∩ dat(`)) ∪ dat(`) = C0 ∪ dat(`). So
it remains for us to show that ch(`) ⊆ C0. By Condition I1, ch(`) ⊆ C ′′,
i.e., ch(`) ⊆ C0 ∪ (C ∩ dat(`)). If ch(`) 6= dat(`), then ch(`) ⊆ C0 as re-
quired. Suppose that ch(`) = dat(`); our reasoning will depend on the form
of `. If ` = τ , then the result is trivial. If ` = d?d, then, by Condition I4a,

C0 ` p0
`−→ C0 ∪ dat(`) ` [C ′0 ↪→C0 ∪ dat(`)]p′; so by Condition I1, ch(`) ⊆ C0.

If ` = d!d, then, by Condition I4b, d ∈ C0; so ch(`) = {d} ⊆ C0. Thus Condi-
tion B1 holds.

Condition B2 follows from Condition I2. Condition B3 follows from Condi-
tion I3.

B.3 The bijective correspondence between B-LTSs and I-LTSs

First, we show that −→= 〈−→〉!. To see that −→⊆ 〈−→〉!, suppose that

C ` p `−→ C ′ ` p′. We will concentrate on the case ` = c!d. Then, by defi-

33

nition, supp(p) ` seed(p) 〈 c!d−→〉 supp(p′) ` seed(p′). If d ∈ supp(p), then, since

supp(p) ⊆ C, we have d ∈ C and, by Condition I1, C ′ = C; so C ` p 〈 c!d−→〉! C ` p′.
Otherwise, if d 6∈ supp(p), in order to check that C ` p 〈 c!d−→〉! C ′ ` p′ is in-
duced we must show that d 6∈ C. Suppose that d ∈ C; then by Condition I1,

C ` [C \ {d} ↪→C][supp(p) ↪→C \ {d}](seed(p))
c!d−→ C ∪ {d} ` p′

so by Condition I4b, d ∈ C \ {d}, which is absurd; so d 6∈ C. The cases for
input and silent actions are proved in a similar manner; thus −→⊆ 〈−→〉!.

Conversely, to see that −→⊇ 〈−→〉!, suppose that C ` p 〈 `−→〉! C ′ ` p′. By
definition of 〈−→〉! and of 〈P 〉, no matter what form ` takes, we must have
C ′ = C ∪ dat(`) and

supp(p) ` seed(p) 〈 `−→〉 supp(p′) ` seed(p′) .

This, in turn, must have been induced by some D, D′, q ∈ P (D), q′ ∈ P (D′)

with D ` q `−→ D′ ` q′ and

supp(p) = supp(q), seed(p) = seed(q)

supp(p′) = supp(q′), seed(p′) = seed(q′) .

We consider the case ` = c!d for d 6∈ C, so that d 6∈ supp(p) ⊆ C. By
Condition I4b, d 6∈ D. So, by Condition I6, and since P is a sheaf,

supp(p) ` seed(p)
c!d−→ supp(p) ∪ {d} ` [supp(p′) ↪→supp(p) ∪ {d}]seed(p′) .

By Condition I5, considering d 6∈ C, we have C ` p c!d−→ C ∪ {d} ` p′. The
cases for ` = τ and ` = c!d with d ∈ C are proved in a similar way. The
case for ` = c?d requires separate attention, however. In this case, since d 6∈
(D \ (D ∩ {d})) and P is a sheaf, Condition I6 gives

supp(p) ∪ (D ∩ {d}) ` [supp(p) ↪→supp(p) ∪ (D ∩ {d})]seed(p)
c?d−→ supp(p) ∪ {d} ` [supp(p′) ↪→supp(p) ∪ {d}]seed(p′) .

Now, either d ∈ D or Condition I4a applies; either way,

supp(p) ∪ {d} ` [supp(p) ↪→supp(p) ∪ {d}]seed(p)
c?d−→ supp(p) ∪ {d} ` [supp(p′) ↪→supp(p) ∪ {d}]seed(p′) .

Whether d ∈ C or d 6∈ C, Condition I5 gives, by considering C \ {d},
C ∪ {d} ` [C ↪→C ∪ {d}][supp(p) ↪→C]seed(p)

c?d−→ C ∪ {d} ` p′. Hence, by Con-

dition I4a, C ` p c?d−→ C ∪ {d} ` p′ as required.

34

Finally, we note that 99K= 〈99K!〉. Indeed, suppose that C0 ` p
`99K C ′0 ` p′.

Then, by definition, no matter what form ` takes,

C0 ` p `99K! C0 ∪ dat(`) ` [C ′0 ↪→C0 ∪ dat(`)]p′ .

Thus, we have C0 ` p 〈
`99K!〉 C ′0 ` p′. The converse is equally simple to prove.

C Proof of Theorem 13

Throughout this appendix we use the formulation of Conditions i1–I3 pre-
sented in Proposition 12.

C.1 The I-LTS induced by an i-LTS

First, we show Condition I1. We will focus on output transitions; Condition I1
is shown for other modes of communication in a very similar manner. Suppose

that C ` p c!d
;I C ′ ` p′. If d ∈ C, then we have C ′ = C and C ` p out(c,d)

; p′.
Thus, as out(c, d) ∈ L(C), we have that c, d ∈ C, as required. On the other

hand, if d 6∈ C, then we have C = C ′ \ {d} and C ′ ` [C ↪→C ′]p
out(c,d)

; p′.
Thus, as out(c, d) ∈ L(C), we have c, d ∈ C ′ and so C ′ = C ∪ {d}. Moreover,
by Condition i1, c ∈ C as required.

Condition I2 follows from Condition i3 in a straightforward manner.

Conditions I3 and I5 are satisfied because ; is a subfunctor.

Suppose C ` p c?z
;I C ∪ {z} ` p′, as in the left hand side of Condition I4a.

This must have been induced by C ∪ {z} ` [C ↪→C ∪ {z}]p in(c,z)
; p′. Let C ′ =

C ∪ {z}. Then we have

C ′ ∪ {z} ` [C ′ ↪→C ′ ∪ {z}][C ↪→C ′]p
in(c,z)
; p′ .

So C ∪ {z} ` [C ↪→C ∪ {z}]p c?z
;I C ∪ {z} ` p′ is induced. The other direc-

tion of Condition I4a is also a result of the definition; thus Condition I4a is
satisfied. Similarly, suppose that

C ∪ {d} ` [C ↪→C ∪ {d}]p c!d
;I C ∪ {d} ` p′

as in the premise of Condition I4b. This must be because

C ∪ {d} ` [C ↪→C ∪ {d}]p out(c,d)
; p′

35

and d ∈ supp([C ↪→C∪{d}]p); since C supports [C ↪→C∪{d}]p we have d ∈ C
and Condition I4b is satisfied.

We will show that Condition I6 is satisfied for input transitions; other modes
of communication are handled in a similar way. Suppose that

C ∪D ` [C ↪→C ∪D]p
c?d
;I C ′ ∪D ` p′

is induced, and d 6∈ D. It follows that C ′ ∪ D = C ∪ {d} ∪ D and that

C ∪ {d} ∪D ` [C ↪→C ∪ {d} ∪D]p
in(c,d)
; p′. By Condition i1 we have c ∈ C,

and so in(c, d) ∈ L(C ∪ {d}). By Condition i2, then, we have p′′ ∈ P (C ∪ {d})
with [C ∪ {d} ↪→C ∪ {d} ∪D]p′′ = p′ and, as ; is a subsheaf, it follows that

C ∪ {d} ` [C ↪→C ∪ {d}]p in(c,d)
; p′′. So C ` p c?d

;I C ∪ {d} ` p′′ by definition.
Thus Condition I6 is satisfied.

C.2 The i-LTS induced by an I-LTS

We now show that the induced i-LTS −→i is indeed a subsheaf satisfying
Conditions i1–i3.

To see that −→i is a subfunctor of P × L × P , suppose that C ` p `−→i p
′.

This transition must be induced by the I-LTS, and by Condition I1 we have
C = C ′ ∪ dat(`) with q ∈ P (C ′) such that p = [C ′ ↪→C]q and that

C ′ ` q `−→ C ` p′ .

Consider ı : C → D in I, and observe that ı = (C
ı|C // ı(C) � � //D). By

Condition I3,

ı(C ′) ` [ı|C′]q [ı|C]`−→ ı(C ′) ∪ ı(dat(`)) ` [ı|C]p′ .

Let D′ = D \ ı(C); so ı(dat(`)) ∩D′ = ∅. Note that dat([ı]`) = ı(dat(`)), and
that [ı|C]` = [ı]`. By Condition I5,

ı(C ′) ∪D′ ` [ı(C ′) ↪→ ı(C ′) ∪D′][ı|C′]q [ı]`−→
ı(C ′) ∪D′ ∪ ı(dat(`)) ` [ı(C ′) ∪ ı(dat(`)) ↪→ ı(C ′) ∪D′ ∪ ı(dat(`))][ı|C]p′

and so

ı(C ′) ∪D′ ∪ ı(dat(`)) ` [ı(C ′) ↪→ ı(C ′) ∪D′ ∪ ı(dat(`))][ı|C′]q
[ı]`−→i [ı(C ′) ∪ ı(dat(`)) ↪→ ı(C ′) ∪D′ ∪ ı(dat(`))][ı|C]p′

36

is induced. But ı(C ′) ∪D′ ∪ ı(dat(`)) = D, so

D ` [ı][C ′ ↪→C]q
[ı]`−→i [ı]p′ .

Since [C ′ ↪→C]q = p, we have D ` [ı]p
[ı]`−→i [ı]p′, and so −→i is a subfunctor

of P × L× P .

Now we show that −→i is in fact a subsheaf of P × L × P . Suppose that

D ⊆ C supports C ` p `−→i p
′. So we have q, q′ ∈ P (D) with p = [D↪→C]q,

p′ = [D↪→C]q′, and we know that ch(`) ∪ dat(`) ⊆ D. We must show that

D ` q `−→i q
′. By Condition I1, we must have C ′ with C = C ′ ∪ dat(`) such

that this transition is induced by C ′ ` p′′ `−→ C ` p′ for some p′′ ∈ P (C ′) with
[C ′ ↪→C]p′′ = p. Since both C ′ and D support p, we have r ∈ P (C ′ ∩D) with
[C ′ ∩D↪→C]r = p, and [C ′ ∩D↪→D]r = q and [C ′ ∩ D ↪→ C ′]r = p′′. So we
have

C ′ ` [C ′ ∩D↪→C ′]r
`−→ C ` p′ .

Since dat(`) ⊆ D ⊆ C = C ′ ∪ dat(`), we have D = (C ′ ∩ D) ∪ dat(`). Since
(C ′ \ (C ′∩D))∩dat(`) = ∅, Condition I6 gives r′ ∈ P (D) with [D↪→C]r′ = p′

and

C ′ ∩D ` r `−→ D ` r′ .

Now r′, q′ present two gluings of p′ at D; the sheaf condition requires a unique

such and so r′ = q′. So D ` q `−→i q
′ is induced, and it follows that −→i is a

subsheaf.

We now show that Conditions i1–i3 are satisfied.

Suppose that C ∪D ` [C ↪→C ∪D]p
`−→i p

′ is induced, as in the premise of
Condition i1, and suppose that ` = in(c, d). By definition, and by Condition I1,
we have C ′′ and q ∈ P (C ′′) with C ∪D = C ′′ ∪ {d}, and

[C ↪→C ∪D]p = [C ′′ ↪→C ∪D]q and C ′′ ` q c?d−→ C ′′ ∪ {d} ` p′ .

By Condition I4a,

C ′′ ∪ {d} ` [C ′′ ↪→C ′′ ∪ {d}]q c?d−→ C ′′ ∪ {d} ` p′ .

Now, both C and C ′′ support [C ↪→ C ∪ D]p; since P is a sheaf we have
p′′ ∈ P (C∩C ′′) with [C ∩ C ′′ ↪→C ′′ ∪ {d}]p′′ = [C ′′ ↪→C ′′ ∪ {d}]q. Condition I6
gives us q′′ ∈ P ((C ∩ C ′′) ∪ {d}) for which

(C ∩ C ′′) ∪ {d} ` [C ∩ C ′′ ↪→(C ∩ C ′′) ∪ {d}]p′′ c?d−→ (C ∩ C ′′) ∪ {d} ` q′′ .

Applying Condition I4a again gives C ∩ C ′′ ` p′′ c?d−→ (C ∩ C ′′) ∪ {d} ` q′′, and
by Condition I1, c ∈ C ∩ C ′′, so c ∈ C as required.

37

Condition i1 is proved for the other modes of communication in a similar way;
for output, Condition I4b is required.

Turning now to Condition i2; suppose that C ∪D ` [C ↪→C ∪D]p
[C↪→C∪D]`−→i p′.

For clarity, we suppose that ` = out(c, d), but the other cases are handled in
a very similar manner. By assumption we must have d ∈ C, and by defini-
tion (using Condition I1) there must exist C ′′ and q ∈ P (C ′′) with C ∪D =

C ′′ ∪ {d}, [C ↪→C ∪D]p = [C ′′ ↪→C ∪D]q, and C ′′ ` q c!d−→ C ′′ ∪ {d} ` p′. Now,
both C and C ′′ support [C ↪→C∪D]p; since P is a sheaf, we have p′′ ∈ P (C ∩ C ′′)
with [C ∩ C ′′ ↪→C]p′′ = p and [C ∩ C ′′ ↪→C ′′]p′′ = q. Since d ∈ C, we know that
d 6∈ C ′′ \ (C ∩ C ′′); thus Condition I6 gives us q′ ∈ P ((C ∩ C ′′) ∪ {d}) such
that [(C ∩C ′′)∪{d} ↪→C ∪D]q′ = p′. For q′′ = [(C ∩C ′′)∪{d} ↪→C]q′ ∈ P (C)
we have [C ↪→C ∪D]q′′ = p′, and so Condition i2 holds.

Condition i3 results from Condition I2, as follows. Suppose that

C ` p in(c,d)−→i p
′

is induced. By definition, and by Condition I1, we have C ′ and q ∈ P (C ′)

with C = C ′ ∪ {d}, p = [C ′ ↪→C]q, and C ′ ` q c?d−→ C ` p′. By Condition I2,

for every e ∈ N we have p′′ ∈ P (C ′∪{e}) such that C ′ ` q c?e−→ C ′ ∪ {e} ` p′′.
If d ∈ C ′, or otherwise by Condition I5,

C ` p c?e−→ C ∪ {e} ` [C ′ ∪ {e} ↪→C ∪ {e}]p′′

and hence

C ∪ {e} ` [C ↪→C ∪ {e}]p in(c,e)−→i [C ′ ∪ {e} ↪→C ∪ {e}]p′′

is induced, as required.

C.3 The bijective correspondence between i-LTSs and I-LTSs

The equality ; = (;I)i follows straightforwardly from the definitions and
Condition I1. To prove −→ = (−→i)I, Conditions I4a and I4b are also needed.

For instance, suppose that C ` p c!d−→ C ∪ {d} ` p′ with d 6∈ supp(p). In this
case, then, C \ {d} supports p, so, since P is a sheaf, we have p′′ ∈ P (C \ {d})
with [C\{d} ↪→C]p′′ = p. If d ∈ C, Condition I4b gives d ∈ C\{d}, which is ab-

surd; so d 6∈ C. Now, by definition, we have C ∪ {d} ` [C ↪→C ∪ {d}]p out(c,d)−→i p
′.

So, by definition, C ` p c!d−→iI C ∪ {d} ` p′, as required.

38

D Proof of Theorem 16

We start by showing that Σ! : fsNSet → Sh(Iop) is essentially surjective.
Recalling that every P ∈ Sh(Iop) decomposes up to isomorphism as 〈P 〉!
with 〈P 〉 ∈ SetB, we need only show that for every Q ∈ SetB there exists∮
Q ∈ fsNSet such that Σ

∮
Q ∼= Q.

Define |∮ Q | to be the quotient set (
∫
Q)/≈ where ≈ is the equivalence relation

with (C, p) ≈ (D, q) if and only if there exists β : C
∼→ D in B such that

[β]p = q.

To each (D, q) ∈ ∫
Q associate the subgroup S(D,q) of Sym(N) consisting of

all the permutations that restrict to automorphisms on D and fix q ∈ QD.
That is,

S(D,q) =




σ ∈ Sym(N)

σ|D is an automorphism

such that [σ|D]q = q





.

For a section s : | ∮ Q | → ∫
Q of the quotient map

∫
Q � | ∮ Q |, define a

named-set with symmetries
∮
sQ by

∮
sQ =

(
|∮ Q | , Ss = {Ssx}x∈|∮ Q|

)
.

This named-set is finitely supported. Indeed,

for s[C, p] = (D, q), we have that D is least among the finite supports of
[C, p] in

∮
sQ

as we now show:

(1) D supports [C, p] because every σ ∈ Sym(N) such that σ|D = idD is
clearly in S(D,q).

(2) Assume that E ⊆ N is a finite set supporting [C, p] in
∮
sQ, and suppose

that there is a d ∈ N which is in D but not in E. Then, there is σ ∈
Sym(N) such that (i) σ|E = idE and (ii) σ(d) 6∈ D. By assumption
and (i), it follows that σ ∈ S(D,q). Hence, σ|D is an automorphism,
contradicting (ii).

We now exhibit an isomorphism between Q and Σ
∮
sQ in SetB.

Define a mapping QC → Σ(
∮
sQ)C as follows

p 7→
(

[C, p] , σS(D,q)

)
(D.1)

39

where (D, q) = s[C, p] and σ ∈ Sym(N) is such that σ(D) = C and [σ|D]q = p.
(Note that, as (D, q) ≈ (C, p), such a σ always exists. Note also that, for
τ ∈ Sym(N) such that τ(D) = C and [τ |D]q = p, we have that (σ−1τ)|D =
σ−1|C τ |D is an automorphism on D that fixes q, so that σS(D,q) = τS(D,q).
Further recall from above that σ−1(C) = D is least among the finite supports
of [C, p] in

∮
sQ.)

We show that (D.1) is injective. To this end, let p, p′ ∈ QC be such that

(
[C, p] , σS(D,q)

)
=
(

[C, p′] , σ′S(D,q)

)

where (D, q) = s[C, p] = s[C, p′], and σ(D) = σ′(D) = C and [σ|D]q = p,
[σ′|D]q = p′. Then, σ−1σ′ ∈ S(D,q) and so σ−1|C σ′|D = (σ−1σ′)|D is an auto-
morphism such that [σ−1|C][σ′|D]q = q. Hence,

p = [σ|D]q = [σ′|D]q = p′

as required.

We show that (D.1) is surjective. Let
(

[D, q] , σSs[D,q]

)
∈ Σ(

∮
sQ)C, so

that σ−1(C) is least among the finite supports of [D, q] in
∮
sQ. If (D′, q′) =

s[D, q] then, as D′ is the least support of [D, q] in
∮
sQ, it follows that D′ =

σ−1(C). Thus, we have σ|D′ : D′
∼→ C in B, and [σ|D′]q′ ∈ QC maps to([

C, [σ|D′]q′
]
, σS(D′,q′)

)
=
(

[D′, q′] , σS(D′,q′)

)
=
(

[D, q] , σSs[D,q]

)
.

We show that (D.1) is natural. For (C, p) ∈ ∫Q, (D, q) = s[C, p], and β : C
∼→ C ′

in B we need to show that

([
C ′, [β]p

]
, σ′S(D,q)

)
=
(

[C, p] , τσS(D,q)

)

where σ′(D) = C ′ and [σ′|D]q = [β]p, σ(D) = C and [σ|D]q = p, and τ |C = β.

Clearly,
[
C ′, [β]p

]
= [C, p]. As for the identity σ′S(D,q) = τσS(D,q), note that

the automorphism

(σ−1τ−1σ′)|D =
(
D

σ′|D
∼ //C ′

τ−1|C′ =β−1

∼ //C
σ−1|C
∼ //D

)

is such that

[(σ−1τ−1σ′)|D]q = [σ−1|C][τ−1|C′][σ′|D]q

= [σ−1|C][β−1][β]p

= [σ−1|C]p

= q

Thus, σ−1τ−1σ′ ∈ S(D,q) and we are done.

40

We have thus established that the functor Σ! : fsNSet→ Sh(Iop) is essentially
surjective. It remains to be shown that it is also full and faithful.

To see that Σ! is full, consider some α : Σ!(X,H) → Σ!(X
′, H ′) in Sh(Iop),

and let (x′, Jx) = αsuppH(x)(x,Hx) for each x ∈ X; define m(x) = x′ and let
Kx = Jx. We must show that the pair (m,K) is a valid morphism of named-
sets. Suppose Kx = σxH

′
mx; we will show thatHx ⊆ σxH

′
mxσ

−1
x . Consider some

σ ∈ Hx. Then ασ(suppH(x))(x, σHx) = αsuppH(x)(x,Hx). The action of Σ!(X,H)
and naturality of α gives αsuppH(x)(x,Hx) = [σ|suppH(x)](αsuppH(x)(x,Hx)). That
is to say, [σ|suppH(x)](mx,Kx) = (mx,Kx). We know that σ extends σ|suppH(x),
and so (mx, σxH

′
mx) = (mx, σσxH

′
mx). So σxH

′
mx = σσxH

′
mx. Thus σ−1

x σσx ∈
H ′mx, and we have shown that Hx ⊆ σxH

′
mxσ

−1
x . Thus the pair (m,K) is a

valid morphism of named-sets.

We still have to show that Σ!(m,K) = α. Consider (x, σHx) ∈ Σ!(X,H)C.
We have Σ!(m,K)C(x, σHx) = (mx, σKx). Since σ extends σ|σ−1(C), we have
Σ!(m,K)C(x, σHx) = [σ|σ−1(C)](mx,Kx). Since Σ!(X,H) maps inclusions to
inclusions, and suppHx ⊆ C, and α is natural with respect to the inclu-
sion maps, we have Σ!(m,K)C(x, σHx) = [σ|σ−1(C)](ασ−1(C)(x,Hx)). Since α is
natural with respect to the bijection σ|σ−1(C), we have Σ!(m,K)C(x, σHx) =
αC([σ|σ−1(C)](x,Hx)). The action of Σ!(X,H) gives us Σ!(m,K)C(x, σHx) =
αC(x, σHx). So Σ!(m,K) = α, and Σ! is full.

To see that Σ! is faithful, consider two maps of named-sets (m,K), (m′, K ′) :
(X,H) → (X ′, H ′) and suppose that Σ!(m,K) = Σ!(m

′, K ′). That is, for all
C ∈ I and (x, σHx) ∈ Σ!(X,H)C, we have (mx, σKx) = (m′ x, σK ′x). In
particular, by taking σ = idN , we have (mx,Kx) = (m′ x,K ′x) for all x ∈ X.
So m = m′ and K = K ′, and Σ! is faithful.

Thus, the category fsNSet of finitely supported named-sets with symmetries
is equivalent to the Schanuel topos Sh(Iop), and Theorem 16 is proved.

41

