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Abstract. Non-locality and contextuality are among the most counter-
intuitive aspects of quantum theory. They are difficult to study using
classical logic and probability theory. In this paper we start with an ef-
fect algebraic approach to the study of non-locality and contextuality.
We will see how different slices over the category of set valued functors
on the natural numbers induce different settings in which non-locality
and contextuality can be studied. This includes the Bell, Hardy and
Kochen-Specker-type paradoxes. We link this to earlier sheaf theoretic
approaches by defining a fully faithful embedding of the category of effect
algebras in this presheaf category over the natural numbers.

1 Introduction

This paper is about generalized theories of probability that allow us to analyze
the non-locality and contextuality paradoxes from quantum theory. Informally,
the paradoxes have to do with the idea that it might not be possible to explain the
outcomes of measurements in a classical way. We proceed by using now-standard
techniques for local reasoning in computer science. Partial monoids play a crucial
role in ‘separation logic’ which is a basic framework of locality especially relevant
to memory locality (e.g. [3,4]). Presheaves on natural numbers have already been
used to study local memory (e.g. [16]) and also to study contexts in abstract
syntax (e.g. [7]).

The paper is in two parts. In the first we establish new relationships between
two generalized theories of probability. In the second we analyze the paradoxes of
contextuality using our theories of probability, and we use this to recover earlier
formulations of them in different frameworks.

1.1 Generalized probability measures

Recall that a finite measurable space (X,Ω) comprises a finite set X and a
sub-Boolean algebra Ω of the powerset Ω ⊆ P(X), and recall:

Definition 1 A probability distribution on a finite measurable space (X,Ω) is
a function p : Ω → [0, 1] such that p(X) = 1 and if A1 . . . An are disjoint sets
in Ω, then

∑n
i=1 p(Ai) = p(

⋃n
i=1Ai).

We now analyze this definition to propose two general notions of probability
measure. (NB. We will focus on finite probability spaces, because this is sufficient
for our examples. We intend to return to infinite spaces in future work.)



2 S. Staton & S. Uijlen

Partial monoids. Our first generalization involves partial monoids. Notice that
the conditions on the probability distribution p : Ω → [0, 1] do not involve the
space P(X). We only used the disjoint union structure of Ω. More generally,
we can define a pointed partial commutative monoid (PPCM) to be a structure
(E,>, 0, 1) where > : E × E → E is a commutative, associative partial binary
operation with a unit 0. Then (Ω,], ∅, X) and the interval ([0, 1],+, 0, 1) are
PPCMs. A probability distribution is now the same thing as a PPCM homo-
morphism, (Ω,], ∅, X) → ([0, 1],+, 0, 1). Thus PPCMs are a candidate for a
generalized probability theory. (This is a long-established position; see e.g. [6].)

Functors. Our second generalization goes as follows. Every finite Boolean algebra
Ω is isomorphic to one of the form P(N) for a finite set N , called the atoms
of Ω. Now, a probability distribution p : Ω → [0, 1] is equivalently given by a
function q : N → [0, 1] such that

∑
a∈N q(a) = 1. Let

D(N) = {q : N → [0, 1] |
∑
a∈N q(a) = 1} (1)

be the set of all distributions on a finite set N . It is well-known that D ex-
tends to a functor D : FinSet→ Set. The Yoneda lemma gives a bijection be-
tween distributions in D(N) and natural transformations FinSet(N,−)→ D.
Thus we are led to say that a generalized finite measurable space is a func-
tor F : FinSet→ Set (aka presheaf), and a probability distribution on F is a
natural transformation F → D. (This appears to be a new position.)

Relationship. Our main contribution in Section 2 and 3 is an adjunction be-
tween the two kinds of generalized measurable spaces: PPCMs, and presheaves
FinSet → Set. ‘Effect algebras’ are a special class of PPCMs [5, 9]. We show
that our adjunction restricts to a reflection from effect algebras into presheaves
FinSet → Set, which gives us a slogan that ‘effect algebras are well-behaved
generalized finite measurable spaces’.

1.2 Relating non-locality and contextuality arguments

In the second part of the paper we investigate three paradoxes from quantum
theory, attributed to Bell, Hardy and Kochen-Specker. We justify our use of
effect algebras and presheaves by establishing relationships with earlier work by
Abramsky and Brandenburger [1] and Hamilton, Isham and Butterfield [10]. For
the purposes of introduction, we focus on the Bell paradox, and we focus on the
mathematics. (Some physical intuitions are given in Section 4.)

The Bell paradox in terms of effect algebras and presheaves. As we show, the

Bell scenario can be understood as a morphism of effect algebras E
t−→ [0, 1], i.e.,

a generalized probability distribution. The paradox is that although this has a
quantum realization, in that it factors through Proj (H), the projections on a
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Hilbert space H, it has no explanation in classical probability theory, in that
there it does not factor through a given Boolean algebra Ω. Informally:

E

&&

t // [0, 1]

but

E

""

t // [0, 1]

Proj (H)

77

Ω
|
::

(2)

Relationship with earlier sheaf-theoretic work on the Bell paradox. In [1], Abram-
sky and Brandenburger have studied Bell-type scenarios in terms of presheaves.
We recover their results from our analysis in terms of generalized probability
theory. Our first step is to notice that effect algebras essentially fully embed in
the functor category [FinSet→ Set]. We step even closer by recalling the slice
category construction. This is a standard technique of categorical logic for work-
ing relative to a particular object. As we explain in Section 4, the slice category
[FinSet → Set]/Ω is again a presheaf category. It is more-or-less the category
used in [1]. Moreover, our non-factorization (2) transports to the slice category:
Ω becomes terminal, and E is a subterminal object. Thus the non-factorization
in diagram (2) can be phrased in the sheaf-theoretic language of Abramsky and
Brandenburger: ‘the family t has no global section’.

Other paradoxes Alongside the Bell paradox we study two other paradoxes:

– The Hardy paradox is similar to the Bell paradox, except that it uses possi-
bility rather than probability. We analyze this by replacing the unit interval
([0, 1],+, 0, 1) by the PPCM ({0, 1},∨, 0, 1) where ∨ is bitwise-or. Although
this monoid is not an effect algebra, everything still works and we are able to
recover the analysis of the Hardy paradox by Abramsky and Brandenburger.

– The Kochen-Specker paradox can be understood as saying that there is no
PPCM morphism

Proj (H)→ ({0, 1},>, 0, 1) (3)

with dim.H ≥ 3 and where > is like bitwise-or, except that 1>1 is undefined.
Now, the slice category [FinSet→ Set]/Proj (H) is again a presheaf cate-
gory, and it is more-or-less the presheaf category used by Hamilton, Isham
and Butterfield. The non-existence of a homomorphism (3) transports to this
slice category: Proj (H) becomes the terminal object, and ({0, 1},>, 0, 1) be-
comes the so-called ‘spectral presheaf’. We are thus able to rephrase the
non-existence of a homomorphism (3) in the same way as Hamilton, Isham
and Butterfield [10]: ‘the spectral presheaf does not have a global section’.

Summary Motivated by techniques for locality in computer science, we have
developed a framework for generalized probability theory based on effect alge-
bras and presheaves. The relevance of the framework is demonstrated by the
paradoxes of non-locality and contextuality, which arise as diagrams in one fun-
damental adjunction. Different analyses in the literature use different presheaf
categories, but these all arise from our analysis by taking slice categories.
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2 Pointed Partial Commutative Monoids

Definition 2 A pointed partial commutative monoid (PPCM) (E, 0, 1,>) con-
sists of a set E with a special element 0 ∈ E, a chosen point 1 ∈ E and a partial
function > : E × E → E, such that for all x, y, z ∈ E we have:

1. If x> y is defined, then y > x is also defined and x> y = y > x.
2. x> 0 is always defined and x = x> 0.
3. If x> y and (x> y) > z are defined, then y > z and x> (y > z) are defined

and (x> y) > z = x> (y > z).

We write x ⊥ y (say x is perpendicular to y), if x> y is defined. When we write
x> y, we tacitly assume x ⊥ y. We refer to x> y as the sum of x and y.

A morphism f : E → F of PPCMs is a map such that f(0) = 0, f(1) = 1
and f(a> b) = f(a) > f(b) whenever a ⊥ b. This entails the category PPCM.

Definition 3 An effect algebra (E, 0,>, 1) is a PPCM (E, 0,>, 1) such that

1. For every x ∈ E there exists a unique x⊥ such that x ⊥ x⊥ and x> x⊥ = 1.
2. x ⊥ 1 implies x = 0.

We call x⊥ the ‘orthocomplement of x’. PPCM morphisms between effect
algebras always preserve orthocomplements. We denote by EA the full subcat-
egory of PPCM whose objects are effect algebras.

Example 4 – We will consider the set 2 = {0, 1} as a PPCM in two ways.
• The initial PPCM (2,>, 0, 1) has 0 > 0 = 0 and 1 > 0 = 0 > 1 = 1; this

is an effect algebra.
• The monoid (2,∨, 0, 1) with 0∨ 0 = 0 and 1∨ 0 = 0∨ 1 = 1∨ 1 = 1; this

is not an effect algebra.
– Any Boolean algebra (B,∨,∧, 0, 1) is an effect algebra (B,>, 0, 1) where x ⊥
y iff x∧ y = 0, and then x> y

def
= x∨ y. A function between Boolean algebras

is a Boolean algebra homomorphism iff it is a PPCM morphism.
– The projections on a Hilbert space form an effect algebra (Proj (H),+, 0, 1)

where p ⊥ q if their ranges are orthogonal.
– The unit interval ([0, 1],+, 0, 1) is an effect algebra when x ⊥ y iff x+y ≤ 1.

3 Presheaves and tests

In this section we consider a different notion of generalized probability space. Re-
call that for any finite set N we have a set D(N) of distributions (Equation (1)).
This construction is functorial in N . Consider the category N, the skeleton of
FinSet, whose objects are natural numbers considered as sets, N = {1, . . . , n},
and whose morphisms are functions. Then D : N → Set, with ((Df)(q))(i) =∑
j∈f−1(i) q(j).
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This leads us to a notion of generalized probability space via the Yoneda
lemma. Write SetN for the category of functors N→ Set (aka ‘covariant presheaves’)
and natural transformations. The Yoneda lemma saysD(N) ∼= SetN(N(N,−), D).
More generally we can thus understand natural transformations F → D as ‘dis-
tributions’ on a functor F ∈ SetN.

To make a connection between presheaves and PPCMs and effect algebras
we recall the notion of test.

Definition 5 Let E be a PPCM. An n-test in E is an n-tuple (e1, . . . , en) of
elements in E such that e1 > . . .> en = 1.

The tests of a PPCM E form a presheaf T (E) ∈ SetN, where T (E)(N) is the
set of n-tests in E, and if f : N →M is a function then

T (E)(f)(e1, . . . , en) = (>i∈f−1(j)ei)j=1,...,m

This extends to a functor T : PPCM → SetN. If ψ : E → A is a PPCM
morphism, then we obtain the natural transformation T (ψ) with components
T (ψ)N (e1, . . . , en) = (ψ(e1), . . . , ψ(en)). (See also [12, Def. 6.3].)

Example 6 – T (2,>, 0, 1) ∈ SetN is the inclusion: (T (2,>, 0, 1))(N) = N .
– T (2,∨, 0, 1) ∈ SetN is the non-empty powerset functor: (T (2,∨, 0, 1))(N) =
{S ⊆ N | S 6= ∅}.

– Any finite Boolean algebra (B,∨,∧, 0, 1) is of the form P(N) for a finite set
N ; we have T (B,>, 0, 1) = N(N,−), the representable functor.

– For the unit interval, T ([0, 1],+, 0, 1) = D, the distribution functor.

Our main result in this section is that the test functor essentially exhibits effect
algebras as a full subcategory of SetN.

Theorem 7 The induced function TA,B : PPCM(A,B)→ SetN(TA, TB) is a
bijection when A is an effect algebra.

Proof (summary). Since A is an effect algebra, every element a ∈ A is part of a
2-test (a, a⊥). It is then clear that TA,B is injective. Now suppose we have some
natural transformation µ : T (A) → T (B). The map ψµ : A → B defined by
ψµ(a) = x, where (x, x⊥) = µ2(a, a⊥) has the property that T (ψµ) = µ.

Corollary 8 The restriction to effect algebras, T : EA → SetN, is full and
faithful.

We remark that a more abstract way to view the test functor is through the
framework of nerves and realizations. For any natural number N the powerset
P(N) is a Boolean algebra and hence an effect algebra. This extends to a functor
P : Nop → PPCM. The test functor T has a left adjoint, which is the left Kan
extension of P along the Yoneda embedding. (This follows from Theorem 2
of [15, Ch. I.5]; PPCM is cocomplete by [2, Theorem 3.36].) Theorem 7 can be
phrased ‘the counit is an isomorphism at effect algebras’, and Corollary 8 can
be phrased ‘finite Boolean algebras are dense in effect algebras’.
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4 Non-locality and contextuality

In probability theory, questions of contextuality arise from the problem that the
joint probability distribution for all outcomes of all measurements may not exist.
We suppose a simple framework where Alice and Bob each have a measurement
device with two settings. For simplicity we suppose that the device will emit 0
or 1, as the outcome of a measurement. We write a0:0 for ‘Alice measured 0 with
setting a0’, b1:0 for ‘Bob measured 0 with setting b1’, and so on. To model this
in classical probability theory we would consider a sample space SA for Alice
whose elements are functions {a0, a1} → {0, 1}, i.e., assignments of outcomes to
measurements. Similarly we have a sample space SB for Bob. We would then
consider a joint probability distribution on SA and SB.

In this model, we implicitly assume that Alice and Bob can not signal to
each other. That is to say, for any joint distribution we can define marginal
distributions each for Alice and Bob. However, the classical model does include
an assumption: that Alice is able to record the outcome of the measurement
in both settings. In reality, and in quantum physics, once Alice has recorded an
outcome using one measurement setting, she cannot then know what the outcome
would have been using the other measurement setting. Effect algebras provide a
way to describe a kind of probability distribution that takes this measure-only-
once phenomenon into account.

The non-locality ‘paradox’ is as follows: there are probability distributions in
this effect algebraic sense (without signalling), which are physically realizable,
but cannot be explained in a classical probability theory without signalling.

The main purpose of this section is not to study non-locality and contextu-
ality in different systems, but rather to give a general framework to study them.
We use this to recover earlier frameworks.

4.1 Bimorphisms, joint distributions, and tables

It is convenient to first introduce a notion of bimorphism, which captures the
notion of a probability distribution on joint measurements. Later we will see
that bimorphisms are classified by a tensor product.

Definition 9 Let A,B and C be pointed partial commutative monoids. A bi-
morphism A,B → C is a function f : A×B → C such that for all a, a1, a2 ∈ A
and b, b1, b2 ∈ B with a1 ⊥ a2 and b1 ⊥ b2 we have

f(a, b1 > b2) = f(a, b1) > f(a, b2) f(a1 > a2, b) = f(a1, b) > f(a2, b)
f(a, 0) = f(0, b) = 0 f(1, 1) = 1

We now describe the scenario in the introduction to this section using bimor-
phisms. Let EA be the effect algebra {0, a0:0, a0:1, a1:0, a1:1, 1} with 0 > x = x
and ai:0>ai:1 = 1. This is the algebra for Alice’s measurements. Similarly, let EB

be the algebra for Bob’s measurements. A distribution on the joint measurements
of Alice and Bob is a bimorphism EA, EB → [0, 1]. We now give an elementary
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description of these bimorphisms. Each bimorphism t : EA, EB → [0, 1] restricts
to a function

τ : {a0:0, a0:1, a1:0, a1:1} × {b0:0,b0:1,b1:0,b1:1} → [0, 1]

which we call a probability table, and we characterize these:

Proposition 10 A table τ : {a0:0, a0:1, a1:0, a1:1}×{b0:0,b0:1,b1:0,b1:1} → [0, 1]
arises as the restriction of a bimorphism EA, EB → [0, 1] if and only if

– it is a probability:
∑
o,o′∈{0,1} τ(ai:o,bj :o

′) = 1, for i, j ∈ {0, 1}.
– it has marginalization, aka no signalling: for all i, j ∈ {0, 1},

τ(ai:j,b0:0) + τ(ai:j,b0:1) = τ(ai:j,b1:0) + τ(ai:j,b1:1),

τ(a0:0,bi:j) + τ(a0:1,bi:j) = τ(a1:0,bi:j) + τ(a1:1,bi:j).

The standard Bell table is as below, and by Proposition 10 it extends to a
bimorphism EA, EB → [0, 1]. In this simple scenario we have two observers, each
with two measurement settings, each with two outcomes, but it is straightforward
to generalize to more elaborate Bell-like settings.

t a0:0 a0:1 a1:0 a1:1
b0:0 1

2 0 3
8

1
8

b0:1 0 1
2

1
8

3
8

b1:0 3
8

1
8

1
8

3
8

b1:1 1
8

3
8

3
8

1
8

(4)

4.2 Realization and Bell’s paradox

Quantum realization. A table has a ‘quantum realization’ if there is a way to
obtain it by performing quantum experiments. Recall that a quantum system is
modelled by a Hilbert space H, and a yes-no question such as “is the outcome
of measuring a0 equal to 1” is given by a projection on this Hilbert space. The
projections form an effect algebra Proj (H).

Definition 11 A quantum realization for a distribution on joint measurements
t : E,E′ → [0, 1] is given by finite dimensional Hilbert spaces H,H′, two PPCM
maps r : E → Proj (H) and r′ : E′ → Proj (H′), and a bimorphism p :
Proj (H),Proj (H′) → [0, 1], such that for all e ∈ E and e′ ∈ E′ we have
p(r(e), r′(e′)) = t(e, e′).

The Bell table (4) has a quantum realization, with H = H′ = C2.

Classical realization. Classically, every time Alice and Bob perform a measure-
ment, nature determines an assignment of outcomes for all measurements, which
determines the outcomes for Alice and Bob. In such a deterministic theory we
can calculate a probability for things like a0:0∧ a1:1∧ b0:1∧ b1:1, in which case
if Alice chose a0 and Bob chose b1, they would get the outcome 0 and 1, respec-
tively. It can be shown (e.g., see [1]), that this is not the case for the standard
Bell table.
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Definition 12 A classical realization for a distribution t : E,E′ → [0, 1] is
given by two Boolean algebras B,B′, two effect algebra morphisms r : E → B,
r′ : E′ → B′ and a bimorphism p : B,B′ → [0, 1] such that for all e ∈ E and
e′ ∈ E′ we have p(r(e), r′(e′)) = t(e, e′).

Consider the Boolean algebra, BA, with atoms {a1:i ∧ a2:j | i, j ∈ {0, 1}}.
Note that BA is a free completion of the effect algebra EA to a Boolean algebra,
in that, under identification of (a1:0 ∧ a2:0) ∨ (a1:0 ∧ a2:1) with a1:0, we have
EA ⊆ BA and every morphism EA → B, with B a Boolean algebra, must factor
through BA. Similarly, we have the algebra BB for Bob.

Proposition 13 The canonical maps rA : EA → BA and rB : EB → BB cannot
be completed to a classical realization of Table 4. Therefore, Table 4 has no
classical realization.

4.3 Tensor products

Definition 14 The tensor product of two PPCMs E, E′ is given by a PPCM
E ⊗ E′ and a bimorphism i : E,E′ → E ⊗ E′, such that for every bimorphism
f : E,E′ → F there is a unique morphism g : E ⊗ E′ → F such that f = g ◦ i.

This gives a bijective correspondence between morphisms E ⊗ E′ → F and
bimorphisms E,E′ → F . In fact, all tensor products of effect algebras exist (see
e.g. [11]; but they can be trivial [8]). We return to the example of Alice and Bob.

Proposition 15 – The tensor product of Boolean algebras, BA ⊗ BB, is the
free Boolean algebra on the four elements {a1, a2,b1,b2}, where we identify,
for example, a1:1 with a1 and a1:0 with ¬a1.

– The tensor product of effect algebras EA⊗EB is the effect algebra generated by
the 16 elements ai:0∧bj :0, ai:0∧bj :1, ai:1∧bj :0, ai:1∧bj :1, for i, j ∈ {0, 1},
such that each 4-tuple (ai:0 ∧ bj :0, ai:0 ∧ bj :1, ai:1 ∧ bj :0, ai:1 ∧ bj :1) with
i, j ∈ {0, 1} is a 4-test. (For elements in such a 4-test we have that the effect
algebra sum > is the Boolean join, ∨. Elements in different 4-tests are not
perpendicular.)

The statement of Bell’s paradox can now be written in terms of homomor-
phisms, rather than bimorphisms:

Corollary 16 Table 4, t : EA⊗EB → [0, 1], does not factor through the embed-
ding EA ⊗ EB → BA ⊗BB.

4.4 Sheaf theoretic characterization

Since the test functor T : EA → SetN is full and faithful from effect algebras
(Cor. 8), we can apply it to our effect algebra formulation of the Bell scenario, and
arrive at a similar statement in terms of presheaves. Recall that T ([0, 1]) = D,
the distributions functor, and so the Bell table yields a natural transformation
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T (EA⊗EB)→ D. Recall that T (BA⊗BB) = N(16,−), the representable functor,
and so the non-existence of a classical realization (Cor. 16) amounts to the non-
existence of a natural transformation as in the following diagram:

T (EA ⊗ EB)

Ti
++

Tt // D

N(16,−)

|
55 (5)

We can thus phrase Bell’s paradox in the language of Grothendieck’s sheaf
theory. Since i : (EA ⊗ EB) → (BA ⊗ BB) is a subalgebra and T preserves
monos, T (EA ⊗ EB) is a subpresheaf of N(16,−), aka a ‘sieve’ on 16. A map
T (EA ⊗ EB) → D out of a sieve is called a ‘compatible family’, and a map
N(16,−) → D amounts to a distribution in D(16) (by the Yoneda lemma).
Bell’s paradox now states: “the compatible family T (t) has no amalgamation”.

4.5 Relationship with the work of Abramsky and Brandenburger

Abramsky and Brandenburger [1] also phrase Bell’s paradox in terms of a com-
patible family with no amalgamations. We now relate our statement with theirs.

Transferring the paradox to other categories. We can use adjunctions to transfer
statements of non-factorization (such as Corollary 16) between different cate-
gories. Let C be a category and let R : EA→ C be a functor with a left adjoint
L : C → EA. Let j : X → Y be a morphism in C, and let f : L(X) → A be
a morphism in EA. Then f factors through L(j) if and only if f ] : X → R(A)
factors through j, where f ] is the transpose of f .

L(X)

L(j)
))

f // A

L(Y )
|
66 X

j ''

f]

// R(A)

Y
|
55

We use this technique to derive several equivalent statements of Bell’s paradox.
To start, the equivalence of the non factoring of the triangles (5) and (2) is
immediate from the adjunction between the test functor and its left adjoint.

No global section. Recall that if X is an object of a category C then the ob-
jects of the slice category C/X are pairs (C, f) where f : C → X. Morphisms
are commuting triangles. The slice category C/X always has a terminal object,
(X, idX). The projection map ΣX : C/X → C, with ΣX(C, f) = C, has a right
adjoint ∆X : C → C/X with ∆X(C) = (C ×X,π2). First, notice that, using the
adjunction ΣN(16,−) a ∆N(16,−) we can rewrite diagram (5) in the slice category

(SetN)/N(16,−) as:

(T (EA ⊗ EB), T i)
,,

〈Tt,T i〉 // (D × N(16,−), π2)

(N(16,−), id)
| 22

(6)

Since (N(16,−), id) is terminal, we can phrase Bell’s paradox as “the local section
〈Tt, T i〉 : (T (EA ⊗ EB), T i)→ (D × N(16,−), π2) has no global section”.
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Measurement covers. The analysis of Abramsky and Brandenburger is based on
a ‘measurement cover’, which corresponds to our effect algebra EA ⊗ EB.

Fix a finite set X of measurements. In our Bell example, X = {a0, a1,b0,b1}.
Also fix a finite set of O of outcomes. In our example, O = {0, 1}, so OX = 16.
Abramsky and Brandenburger work in the category of presheaves P(X)op → Set
on the powerset P(X) (ordered by subset inclusion). They explain Bell-type
paradoxes as statements that a certain compatible family for the presheaf
D(O(−)) : P(X)op → Set does not have a global section:

M
''

// D(O(−))

1
|
55

(7)

Here 1 is the terminal presheaf. The ‘measurement cover’ M ⊆ 1 is defined by
M(S) = ∅ if {a0, a1} ⊆ S or {b0,b1} ⊆ S, and M(S) = {∗} otherwise. In
general, M(S) is inhabited, i.e., non-empty, if the measurement context S is
allowed in the Bell situation.

We now relate this diagram (7) with our diagram (2) by using an adjunc-

tion between EA and SetP(X)op . We construct this adjunction as the following
composite:

EA
T

>
//
SetNoo

∆OX

>
//
SetN/N(OX ,−)

ΣOX

oo ' Set(N
op/(OX))op

I∗

>
//
SetP(X)op

I!

oo (8)

The first two adjunctions in this composite have already been discussed. The
categorical equivalence SetN/N(16,−) ' Set(N

op/16)op is an instance of a general
fact about slices by representable presheaves (e.g. [13, Prop. A.1.1.7, Lem. C2.2.17]):

in general, SetD
op

/D(−, d) ' Set(D/d)
op

.

It remains to explain I! a I∗. The functor I∗ : Set(N
op/16)op → SetP(X)op

is induced by precomposing with the functor I : P(X) → Nop/OX that takes
a subset U ⊆ X to the pair (OU , OiU : OX → OU ) where iU : U → X is
the set inclusion function. It has a left adjoint, I!, for general reasons (e.g. [13,
Prop. A.4.1.4]).

Corollary 17 The right adjoint in (8) takes the effect algebra [0, 1] to the

presheaf D(O(−)) : SetP(X)op . The left adjoint in (8) takes the measurement
cover M⊆ 1 to the effect algebra EA ⊗ EB ⊆ BA ⊗BB.

Thus the adjunction (8) relates the effect algebra formulation of Bell’s para-
dox (2), with the formulation of Abramsky and Brandenburger (7).

4.6 Hardy paradoxes

We now briefly consider a different kind of distribution. Not one where the entries
are probabilities in the interval [0, 1], but where they are possibilities, i.e., either 1
for “this outcome is possible” or 0 for “this outcome is not possible”. The pointed
monoid ({0, 1},∨, 0, 1) is built from these two possibilities. For an effect algebra
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A, a possibility distribution is a morphism A→ ({0, 1},∨, 0, 1), and a possibility
distribution on joint measurements is a bimorphism A,B → ({0, 1},∨, 0, 1).

The PPCM morphism s : ([0, 1],+, 0, 1)→ ({0, 1},∨, 0, 1) given by s(0) = 0,
s(x) = 1 for (x 6= 0) takes a probability distribution to its support, and by
composing this with a probability distribution we get a possibility distribution.

The Hardy paradox concerns possibility, rather than probability. We can
analyze it using PPCMs in a similar way to the way we analyzed the Bell paradox
in Section 4.2. We can also relate our analysis with the analysis of Abramsky
and Brandenburger [1], by embedding it in the presheaf category SetN. Here the
situation is slightly more subtle: we cannot use Corollary 8 since ({0, 1},∨, 0, 1)
is not an effect algebra, but we can still use Theorem 7, since it only appears on
the right-hand-side of arrows.

4.7 Kochen-Specker systems

A Kochen-Specker system is represented by a sub-effect algebra E of Proj (H)
such that there is no effect algebra morphism E → ({0, 1},>, 0, 1). This means
we cannot assign a value 0 or 1 to every element of E in such a way that whenever
p1, . . . pn ∈ E with p1 + . . . pn = 1, exactly one of the pi is assigned 1 and this
assignment does not depend on the other pj , j 6= i. (NB here we use partial join
>, with 1 > 1 undefined, whereas we used the total join ∨ in §4.6.)

We now view this in the presheaf category SetN. Since there is no morphism
Proj (H)→ ({0, 1},>, 0, 1), there is also no natural transformation T (Proj (H))→
T ({0, 1},>, 0, 1), by Corollary 8. We now explore this more explicitly.

The bounded operators onH form a C*-algebra, B(H). An n-test in the effect
algebra Proj (H) can be identified with a unital *-homomorphism Cn → B(H)
from the commutative C*-algebra Cn, by looking at the images of the character-
istic functions on single points. So T (Proj (H)) ∼= C∗(C−, B(H)). On the other
hand, T ({0, 1},>, 0, 1)(N) = N .

There is another way to view this, via a restricted Gelfand duality. Let CC∗f
be the category of finite dimensional commutative C*-algebras. The functor
C− : Nop → CC∗f is an equivalence of categories. Under this equivalence we have

presheaves T (Proj (H)), T ({0, 1},>, 0, 1) ∈ SetCC∗f
op

with

T (Proj (H))(A) = C∗(A,B(H)) T ({0, 1},>, 0, 1)(A) = Spec(A)

where Spec(A) is the Gelfand spectrum of A. Thus the Kochen-Specker paradox

says that there is no natural transformation C∗(−, B(H))→ Spec in SetCC∗f
op

.
We can use adjunctions to transport this statement to other categories. If

a functor R : SetCC∗f
op

→ C has a left adjoint L : C → SetCC∗f
op

and L(X) =
C∗(−, B(H)) then the paradox says there is no morphism X → R(Spec) in C.

In particular, we transport the paradox to the setting of Hamilton et al. [10],
who were concerned with presheaves on the poset C(B(H)) of commutative
subalgebras of B(H). We do this using the following composite adjunction:

SetCC∗f
op
∆C∗(−,B(H))

>
//
SetCC∗f

op

/C∗(−, B(H))
ΣC∗(−,B(H))

oo ' Set(CC∗f ↓B(H))op
J∗

>
//
SetC(B(H))op

J!

oo
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The first adjunction between slice categories is as in Section 4.5. The middle
equivalence is standard (e.g. [13, Prop. A.1.1.7]); here (CC∗f ↓ B(H)) is the cat-
egory whose objects are pairs (A, f : A→ B(H)) where A is a finite-dimensional
commutative C*-algebra and f is a *-homomorphism. The adjunction J! a J∗ is
induced by the evident embedding J : C(B(H))→ (CC∗f ↓ B(H)).

The left adjoint of this composite takes the terminal presheaf on C(B(H)) to
the presheaf C∗(−, B(H)) on CC∗f . The right adjoint takes the spectral presheaf
on CC∗f to the spectral presheaf on C(B(H)). Thus our statement of the paradox
is equivalent to the statement of [10]: the spectral presheaf has no global section.

Summary. We have exhibited a crucial adjunction between two general ap-
proaches to finite probability theory: effect algebras and presheaves (Corollary 8).
We have used this to analyze paradoxes of non-locality and contextuality (Sec-
tion 4). There are simple algebraic statements of these paradoxes in terms of
partial commutative monoids, but these transport across the adjunction to state-
ments about presheaves on N. By taking slice categories of the presheaf category,
we recover earlier analyses of the paradoxes (e.g. Corollary 17).
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