
General Structural Operational Semantics through Categorical Logic
(Extended Abstract)

Sam Staton
Computer Laboratory, University of Cambridge

Abstract

Certain principles are fundamental to operational se-
mantics, regardless of the languages or idioms involved.
Such principles include rule-based definitions and proof
techniques for congruence results. We formulate these prin-
ciples in the general context of categorical logic. From this
general formulation we recover precise results for partic-
ular language idioms by interpreting the logic in partic-
ular categories. For instance, results for first-order cal-
culi, such as CCS, arise from considering the general re-
sults in the category of sets. Results for languages involving
substitution and name generation, such as the π-calculus,
arise from considering the general results in categories of
sheaves and group actions. As an extended example, we de-
velop a tyft/tyxt-like rule format for open bisimulation in the
π-calculus.

1. Introduction

Questions about structural operational semantics. In
this paper we are concerned with the semantics of pro-
gramming languages in the structural style introduced by
Plotkin [38]. One can reason in this style by induction on
the language syntax, in terms of the steps that programs may
make. Thus a structural operational semantics is given by
a transition system specification involving a rule-based in-
ductive definition.

When working in this style, it is often infeasible to com-
mence reasoning about particular programs before basic
lemmas have been established about the whole language.
One must prove, firstly, that the transition system speci-
fication indeed gives rise to a transition system, and, sec-
ondly, that compositional reasoning is permitted. The sec-
ond lemma usually involves a proof that bisimilarity, a nat-
ural equivalence on programs, is a congruence.

One must reprove these basic results for every language
that is encountered. For many languages, though, the defi-
nition principles and proof outlines have a lot in common.
Thus the following questions arise. Practically speaking, is

there some general machinery that could save work when
specifying semantics and proving basic lemmas? More
philosophically, is there a precise sense in which the proofs
‘have a lot in common’? Perhaps structural operational se-
mantics is too permissive. Is there a general concept of
‘good’ structural operational semantics?

We now summarize two approaches to answering these
questions. Rule formats are concrete, but, we argue, not
general enough. Functorial Operational Semantics is gen-
eral, but we argue that it is obscured by abstraction. In the
present paper we bring the two approaches together, provid-
ing rule formats in a general categorical setting.

Concrete answers: rule formats. In a first attempt to an-
swer the questions above, de Simone [11] introduced a rule
format: a list of syntactic conditions about rules, stipulat-
ing which variables and operators may appear in the var-
ious parts of the rule. Any language specified according
to this rule format will have, among other things, the prop-
erty that bisimilarity is a congruence. Further work on more
elaborate rule formats has continued since then (see surveys
[3; 36]). In this paper we focus on the tyft/tyxt format [20].

We argue that the questions above are not entirely an-
swered by this research programme. Most rule formats ac-
count for languages like CCS [33] and various extensions
thereof, but many languages are not simple enough to fit
into these formats. Consider the π-calculus [34] — a rela-
tively simple language by some standards. The syntax in-
volves variable binding, as in the λ-calculus, so there are
concerns about α-equivalence and capture-avoiding substi-
tution. There are various definitions of bisimulation, some
involving substitution and quantification of fresh names.

What kind of structure is a proof for a π-calculus tran-
sition? Which kinds of bisimilarity are congruences? The
formalization of these kinds of concerns has been a matter
of several recent investigations [e.g. 7; 15; 16; 21; 32; 43],
including rule formats for the π-calculus [e.g. 9; 12; 45].

Putting these complications aside, though, the specifica-
tions of CCS and the π-calculus are not dissimilar, and the
proofs of congruence of bisimilarity for the two languages
do have a lot in common. To properly answer the above

questions, and to have a chance at tackling increasingly so-
phisticated languages, we must identify the commonality.

Abstract answers: Functorial Operational Semantics.
Functorial Operational Semantics [44] provides answers to
the questions at an abstract level. Good operational seman-
tics is seen categorically as a distributive law of a monad
over a comonad, or equivalently as a lifting of a monad to
a category of coalgebras. The initial work [44] illustrated
the general framework with congruence results for CCS-
like languages, but subsequent work demonstrated the ideas
in various different settings (see [28] for a survey).

A potential criticism of much of this work is that it is too
abstract. One must really squint hard to view a distributive
law as a collection of rules, and to view the naturality con-
ditions of a distributive law as the conditions imposed by a
concrete rule format. For every new language idiom, these
naturality constraints have to be translated into a new rule
format, and this is often an intricate and difficult task.

Methodology. We advocate the following general
methodology for answering the questions. First, the results
and techniques must be understood at a concrete, syntactic
level, for a particular language, or language idiom. In this
paper, we consider the tyft/tyxt rule format.

The second step is to find a categorical model theory
within which this concrete work can be understood. For
CCS-like languages, this model theory would involve sets,
free algebras, and transition systems.

The third step is to reconsider the concrete results in
the setting of the categorical model theory. In this devel-
opment, it becomes clear that some aspects of the model
theory are not necessary for the results. Here, we find that
we are able to formulate results about the tyft/tyxt format
in any ΠW-pretopos. Such categories arise as models of
first-order logic, dependent type theory, and well-founded
induction [35; 18; 5]. From a logical perspective, then, we
develop a meta-theory for tyft/tyxt specifications in a con-
structive logic.

Finally, once the concrete results are understood in gen-
eral, categorical terms, the connections with Functorial Op-
erational Semantics can be clarified.

To evaluate the generality of the work, we change the
model theory, and work in a different ΠW-pretopos from
the category of sets. By considering the categorical results
in a category of ‘nominal substitutions’, we arrive at results
that are suitable for the idioms of the π-calculus. Consid-
ering the categorical results in a more elaborate presheaf
category gives an analysis of a more elaborate notion of
bisimulation. In the course of this evaluation we discover
further generalizations at the categorical level, for instance
working with monoidal rather than cartesian structure.

A matter for current and future work is the study of in-
creasingly sophisticated language idioms, such as encryp-
tion in applied π-calculi [e.g. 1; 2; 8]. One must first find
appropriately sophisticated model categories, and the cate-
gorical results of this paper can then be considered in them.

Synopsis and summary. We recall the properties of
ΠW-pretoposes and W-types in Sec. 2. In this setting, we
introduce a categorical version of the tyft/tyxt rule format
in Sec. 3.

The remainder of the paper, Secs. 4, 5, and 6, can be read
in any order. In Sec. 4, inspired by Functorial Operational
Semantics, we consider the congruence and conservativity
results for tyft/tyxt in a more general setting.

The illustrations in Sec. 3 involve constructions from
CCS, in the category of sets. In Secs. 5 and 6 we apply
the categorical rule format to more sophisticated calculi by
working in more elaborate categories. In Sec. 5 we study
the categorical format in a category of nominal substitu-
tions, achieving congruence results for a simplification of
open bisimilarity [39]. In Sec. 6, we work with (genuine)
open bisimilarity by studying the format in a category of
presheaves. The resulting format is essentially that of [45].

Acknowledgements. Many thanks to Marcelo Fiore for
his guidance. It was helpful to be able to discuss Prop. 6
with Thorsten Altenkirch, Nicola Gambino and Thomas
Streicher, and to discuss [45] with its authors. Andy Pitts
first suggested investigating the tyft/tyxt format. Thanks
also to the anonymous reviewers. Financial support
has been provided by EPSRC grants GR/T22049/01 and
EP/E042414/1.

2. Categorical logic

ΠW-pretoposes are categories that arise as of models
of first-order logic, dependent type theory, and also well-
founded induction, through W-types. This is the right struc-
ture for investigating rule-based inductive definitions, as is
shown in Sec. 3. In this section, we survey the rudiments of
ΠW-pretoposes. A standard text for categorical logic is [23,
Part D].

2.1. Locally cartesian closed pretoposes

A pretopos is a regular category with effective equiv-
alence relations and stable disjoint coproducts. A locally
cartesian closed pretopos, then, is both a Heyting pretopos,
and hence a model for intuitionistic first order logic, and
also a locally cartesian closed (lcc) category, and hence a
model for dependent type theory [see e.g. 6; 29; 37].

Note that every topos, including the category of sets, is
a lcc pretopos. There is no harm in restricting attention

2

to toposes, and indeed the pretoposes that we consider in
this paper are all toposes (assuming a classical treatment of
the underlying theory of sets). In the categories of nomi-
nal substitutions (Sec. 5) and presheaves (Sec. 6), though,
the powerobjects are clumsy to describe explicitly, and it is
easiest to work directly with relations instead.

Notation. For a morphism f : X Ñ Y in a lcc category,
we have adjoint functors

Π

f % ∆f % Πf : C{X Ñ C{Y ,
where ∆f : C{Y Ñ C{X is pullback along f . In an lcc
pretopos, we also have adjoint functors Df % f� % @f :
SubCpXq Ñ SubCpY q, when restricting to the subobjects.

Technicality: internal projectivity. Recall that in a lcc
category C, a morphism f : X Ñ Y is said to be in-
ternally projective if the product functor preserves epi-
morphisms. In a lcc pretopos, internal projectivity gives
rise to a tighter relationship between the first-order and
dependent-type structure. For instance, consider morphisms
X

f
Ñ Y

g
Ñ Z. If g is internally projective then, writing

ImX : C{X Ñ SubCpXq for the image functor [e.g. 6],

@g � Df � ImX � ImZ �Πg �

Π

f : C{X Ñ SubCpZq .

Note the following properties of internally projectives in an
lcc pretopos [e.g. 24, Sec. IV.5]: they are closed under com-
position and coproducts; they are stable under pullback; the
canonical morphisms 0 Ñ 1, 1 Ñ 1, and 1� 1 Ñ 1 are in-
ternally projective; if gf is internally projective, then so
is f . The ‘internal axiom of choice’ is the statement that
every morphism is internally projective.

2.2. W-types, free algebras, and ΠW-pretoposes

An important aspect of Martin-Löf’s dependent type the-
ory is W-types, which describe well-founded induction and
recursion [30]. W-types are central to our development, and
we now summarize the important ideas in the categorical
setting, following [35; 18; 5].

Signatures in categories, and their algebras.

Definition 1 A signature in a category is a morphism
arΣ : ArΣ Ñ Σ.

In such a signature, Σ is to be thought of as the ‘object of
operators’, and ArΣ as ‘the object of arities’. An operator
is a generalized point of Σ, i.e. an object I together with a
morphism σ : I Ñ Σ. The arity of such an operator found
by pulling it back along arΣ : ArΣ Ñ Σ.

For an example from process algebra, we fix a set of
actions A, and define a signature in the category Set
of sets, for a variant of CCS [33]. It has operators
ΣCCS � nil : 1� par : 1� act : A� �act : A, and arities

ArΣCCS
� nil : H�par : 2�act : A��act : A. (Here we are

labelling the components of the coproducts.) The function
arΣCCS

: ArΣCCS
Ñ ΣCCS is the evident one. This signature

provides, for instance, a binary parallel operator par, and a
unary prefix operator acta for each a P A.

Any signature pArΣ
arΣÝÝÑ Σq in a lcc category C gives

rise to an endofunctor on C:

Σp�q � C ∆!ÝÑ C{ArΣ

ΠarΣÝÝÝÑ C{Σ

Π

!ÝÑ C .

An algebra for a signature pArΣ Ñ Σq is an algebra for the
corresponding endofunctor. For signatures in Set, such as
ΣCCS above, these algebras are same as the algebras for sig-
natures studied in universal algebra. The free ΣCCS-algebra
is the set of all CCS terms.

W-types, ΠW-pretoposes, and free monads. A lcc cat-
egory C is said to be have W-types if there is a free alge-
bra WΣ for every signature Σ. A lcc pretopos with W-types
is called a ΠW-pretopos. Note that every topos with a natu-
ral numbers object is a ΠW-pretopos [35].

In the setting of ΠW-pretoposes, the category of Σ-alge-
bras is monadic over C. We write WΣ for the corresponding
monad, the “free monad on Σ”.

Multi-sorted signatures. It is useful to consider algebras
for multi-sorted signatures.

Definition 2 A sorting for a signature arΣ : ArΣ Ñ Σ
is an object S with a pair of morphisms sΣ : Σ Ñ S,
sArΣ : ArΣ Ñ S. (No diagrams are required to commute.)

Every S-sorted signature in a ΠW-pretopos C gives rise to
an endofunctor on C{S :

Σp�q � C{S
∆sArΣÝÝÝÝÑ C{ArΣ

ΠarΣÝÝÝÑ C{Σ

Π

sΣÝÝÝÑ C{S .

The category of S-sorted Σ-algebras, viz. algebras for this
endofunctor, is monadic over C{S [18].

3. Operational semantics with categorical logic

The tyft/tyxt format has been proposed as a format for
well-behaved rule-based inductive definitions [20]. In this
section we reformulate the tyft/tyxt requirements in an arbi-
trary ΠW-pretopos, and state the congruence results in this
setting.

Concrete version. Before moving to the categorical set-
ting, we recall the tyft/tyxt rule format from [20]. We say a
rule is in pre-tyft format if it is of the form

t1
l1ÝÑ w1 t2

l2ÝÑ w2 . . .

oppv1, . . . , vnq
l
ÝÑ t

3

where: op is an operator in the signature; the vis and wis
are all variables, possibly the same; and t and the tis are
all terms, possibly involving free variables. If a rule has
a single variable in the left-hand side of the conclusion, in
place of an operator, it is in the pre-tyxt format.

A pre-tyft/tyxt rule is a tyft/tyxt rule if the variables on
the left-hand side of the conclusion and the right-hand sides
of the premises are all different from each other.

A (pre-)tyft/tyxt transition system specification (TSS) is
given by an algebraic signature (for the syntax), a set of
labels, and a set of (pre-)tyft/tyxt rules.

3.1. tyft/tyxt TSSs in a ΠW-pretopos

We now explain how transition system specifications in
the tyft/tyxt format can be understood as structures in a
ΠW-pretopos. This can be seen as a reformulation of the
introduction to this section in dependent type theory.

Labels as operators. A pre-tyft/tyxt TSS is used to spec-
ify a labelled transition system. To be precise, let L be a
set of labels, and recall that a labelled transition system is a
set X equipped with a relation p Xq � X � L�X . Infix

notation is common, writing x
l
 X x1 to mean “x evolves

to x1, through l”.
Here, we will generalize, considering the labels as a col-

lection of operators that may take arbitrary arities. Follow-
ing the developments of Sec. 2, we have a signature L of
labels giving rise to an endofunctor Lp�q An L-labelled
transition system, then, is an object X together with a re-
lation p Xq � X � LpXq.

This definition subsumes the conventional one, where la-
bels are to be thought of as being unary: in that situation
one might use the notation x X lpx1q. On the other hand,
a nullary label can be thought of as a predicate on states.
(More complex arities are crucial in Sec. 5.)

Categorical pre-tyft/tyxt.

Definition 3 A categorical pre-tyft/tyxt TSS in a ΠW-pre-
topos is given by the following data. Notation is explained
below.

1. Signatures ArΣ Ñ Σ, ArL Ñ L for syntax and for
labels, respectively.

2. An object R of all the rules in the TSS; an object P of
all the premises in the TSS; and an object V of all the
variables in the TSS.

3. A morphism V Ñ R, assigning to each variable the
rule in which it appears.

4. A morphism ρ : P Ñ R, assigning to each premise the
rule for which it is a premise.

5. A morphism pp : P q Ñ WΣpV rρppqsq, assigning to
each premise the term appearing in its left-hand side.
(The free variables in that term must be variables for
that rule.)

6. A morphism P Ñ L, assigning to each premise the
label of its right-hand side.

7. A morphism P �L ArL Ñ V over R, assigning a vari-
able to each parameter of the right-hand side of each
premise.

8. A morphism R Ñ pΣ� 1q. If a rule maps into 1, then
it is thought of as a tyxt rule; otherwise it is a tyft rule
and it is assigned to the operator on the left-hand side
of the conclusion.

9. A morphism pr : Rq Ñ LpWΣpV rrsqq, assigning to
each rule the labelled term appearing on the right-
hand side of its conclusion.

10. A morphism R�Σ�1 pArΣ � 1q Ñ V over R, assign-
ing a variable to each parameter of the left-hand side
of each conclusion.

Notation. In item (7), by ‘a morphism over R’, is meant a
morphism in C{R, when the domain and codomain are con-
sidered as objects of C{R as a result of items (4) and (3)
respectively. Terminology in item (10) is analogous.

A signature arΣ : ArΣ Ñ Σ in C gives rise to a signature
pR � arΣq : R � ArΣ Ñ R � Σ in C{R. The free monad
WR�Σ on this signature can be thought of as a localization
of WΣ to C{R. The notation in item (5) means that a mor-
phism is given in C{R:

P

ρ $$IIIIII // WR�ΣpV q

wwnnnnnnnn

R

The notation in item (9) is analogous.

Categorical tyft/tyxt. A categorical pre-tyft/tyxt TSS is a
categorical tyft/tyxt TSS if the morphism

pR�Σ�1 pArΣ � 1qq � pP �L ArLq Ñ V

is a complemented mono. That is, there is an object sV of
“variables that don’t appear in the left-hand side of the con-
clusion or the right-hand side of premises”, and

V � sV � pR�Σ�1 pArΣ � 1qq � pP �L ArLq.

Well-founded and pure tyft/tyxt. Two additional proper-
ties of tyft/tyxt rules are important. We reformulate notions
from [20].

A categorical pre-tyft/tyxt TSS is well-founded if there
is a morphism V Ñ N, assigning a ‘depth’ to each variable,
which is such that all the variables on the right-hand side of

4

a premise are of higher depth than all the variables on its
left-hand side.

A well-founded tyft/tyxt TSS is said to be pure if all the
variables that appear in the rules appear either on the left-
hand side of a conclusion, or on the right-hand side of a
premise. Formally, a pure categorical TSS is one for which
the morphism pR�Σ�1 pArΣ � 1qq� pP �L ArLq Ñ V is
an isomorphism.

3.2. The meaning of TSSs, as proof trees

One way to describe the meaning of a TSS is to formally
define its proof trees. We will consider proof trees for a cat-
egorical pre-tyft/tyxt TSS as syntax for a multi-sorted sig-
nature. The operators in this signature are the nodes of the
proof tree: they are instances of rules, i.e., rules paired with
valuations of the variables. The parameters taken by a rule
instance, considered as an operator, are the premises of the
rule.

The sorting discipline ensures that the premises assigned
to a rule indeed prove the appropriate transitions. The sorts
for the signature are pairs WΣ � LpWΣq, i.e. they are pos-
sible transitions. The sort of a rule instance, considered as
an operator, is the transition that it proves. The sorts of its
parameters, i.e. the premises of the rule, are the transitions
that those premises must prove.

Formally, the signature PT for proof trees is the pro-
jection

²
r:RppWΣq

V rrs � P rrsq Ñ
²

r:RpWΣq
V rrs. The

sorting for the ‘arities’ is given by the composite

º
r:R

�
pWΣq

V rrs � P rrs
	

(5,6,7)
ÝÝÝÝÑ

º
r:R

�
pWΣq

V rrs �WΣpV rrsq � LpV rrsq
	

str, eval
ÝÝÝÝÑ WΣ � LpWΣq.

The first morphism is derived from data (5,6,7). The second
one uses the evaluation of the exponential together with the
strengths of WΣ and L [18, Prop. 6, 20]. The sorting for
the operators is derived from data (8,9,10) in an analogous
manner.

Because the ambient category has W-types, this multi-
sorted signature has a free algebra, WPT, which is the object
of proof trees. The sorting for the free algebra gives a map
WPT Ñ WΣ � LpWΣq, and the image of this map is the
labelled transition relation induced by the TSS.

3.3. Illustrations from CCS

We considered a signature for the syntax of CCS in
Sec. 2.2. We now explain how the TSS for CCS from [33]
can be seen as a categorical tyft TSS in the sense of Def. 3.

Consider, for example, the communication rule in CCS.

v
a
ÝÑ v1 w

ā
ÝÑ w1

v|w
τ
ÝÑ v1|w1

This should be viewed as a family of rules, one for each
action a P A. Removing the syntactic sugar, we can rewrite
the rules as follows.

rule-coma :
va a : v1a wa ā : w1

a

parpva, waq τ : parpv1a, w1
aq

(1)

It is now a matter of transcribing these rules into the
style of Def. 3. There is one rule, rule-coma, for each
action a, so R � A. There are two premises for each
rule: P � 2�R. There are four variables, va, v1a, wa, w1

a

in each rule rule-coma, so V � 4�R. The remaining data
for Def. 3 is extracted straightforwardly from (1). For exam-
ple, for item (5) we need a function P Ñ L. This function
assigns the label a to the premise p1, rule-comaq, and the
label ā to the premise p2, rule-comaq.

Proof trees. An example proof of a transition for CCS is
the following.

a.ā.0 a
ÝÑ ā.0 ā.a.0 ā

ÝÑ a.0 (rule-coma)
a.ā.0 | ā.a.0 τ

ÝÑ ā.0 | a.0
This arises as an element of the set of proof trees, WPT. The
outermost ‘operator’ is the root of the tree; it is given by the
rule name rule-coma together with the function

va ÞÑ a.ā.0 wa ÞÑ ā.a.0 v1a ÞÑ ā.0 w1
a ÞÑ a.0

assigning terms to the variables of the rule. This operator
takes two parameters, describing the left and right branches
of the tree.

3.4 Congruence of bisimilarity

In this subsection we state the congruence result, and a
conservativity result, for categorical tyft/tyxt. To begin, we
define notions of congruence and bisimilarity in this setting.

Congruence.
Definition 4 For any signature Σ, a relation
R � WΣ �WΣ is a congruence if it satisfies the fol-
lowing formula in the internal logic of the pretopos.

@σ : Σ, ~t, ~t1 : pWΣq
ArΣrσs.

@n : ArΣrσs. tn R t1n ùñ σp~tqR σp~t1q

(We are perhaps breaking with tradition by not requiring
congruences to be equivalence relations.)

5

Bisimulation. We define bisimulation for the general case
of L-labelled transition systems, by rephrasing the usual no-
tion in the present setting.

Definition 5 Consider two L-labelled transition systems,
pX, Xq and pY, Y q. A relation R � X � Y is a simu-
lation if it satisfies the formula

@x : X, y : Y, l : L, ~x : XArLrls. x X lp~xq ^ xR y

ùñ D~y : Y ArLrls. y Y lp~yq ^ @n : ArLrls. xn R yn

in the internal logic. A simulation is a bisimulation if the
opposite R� � Y �X is also a simulation.

We say that an L-labelled transition system pX, Xq is pro-
jectively branching if the projection map p Xq Ñ X is in-
ternally projective.

Proposition 6 Let L be a signature in a ΠW-pretopos. Be-
tween every pair of projectively branching L-labelled tran-
sition systems, there is a greatest simulation (called simi-
larity), and a greatest bisimulation (called bisimilarity).

The requirement of internal projectivity is not needed if the
ambient ΠW-pretopos is a topos, as is the case in all our
examples. In this setting, the result can be proved using
Tarski’s fixed point theorem.

Congruence theorem.
Theorem 7 Consider a pure well-founded categorical
tyft/tyxt TSS with an internally projective premises map,
P Ñ R. For the initial labelled transition system that is in-
duced, the similarity and bisimilarity are both congruences.

We demonstrate why the internal-projectivity requirement
is necessary in Sec. 5.2. It is implicit in [20], because the
axiom of choice is assumed.

Combining TSSs and conservativity. Categorical TSSs
can be combined in a straightforward way, by taking co-
products of the corresponding objects and morphisms. We
thus have a generalization of an elementary conservativity
property of tyft TSSs [20, Thm. 7.6; 3, Sec. 4].

Theorem 8 If a pure, well-founded tyft/tyxt TSS with an in-
ternally projective premise map (P Ñ R) is combined with
a tyft TSS with no common operators, then every term in
the first TSS is bisimilar to the same term considered in the
combined TSS.

4. Good semantics and monad morphisms

In Sec. 3, we reformulated the tyft/tyxt congruence for-
mat in the setting of ΠW-pretoposes. We now investi-
gate operational semantics and congruence results in a even
more general setting. We state general definitions and re-
sults in the setting of categories of monads.

A category of monads. We follow [42] in defining the
category Mnd of monads as follows. The objects are
pairs pC, T q of a category C and a monad T ; a morphism
pF, φq : pC, T q Ñ pD, Sq is a functor F : C Ñ D together
with a natural transformation φ : SF Ñ FT that respects
the monad unit and multiplication.

A lifting of a monad S on a category D along a func-
tor F : C Ñ D is given by a monad T on C together
with an isomorphism φ, making pF, φq a monad morphism
pC, T q Ñ pD, Sq.

Monad liftings and operational semantics. Let
Systems be a category, thought of as a category of models,
and let States be another category, whose objects are
thought of as state spaces. Suppose that there is a ‘for-
getful’ functor Systems Ñ States , taking a model to its
state space. In this section we develop the following thesis:
a good semantics defines a lifting of a monad on States
along the forgetful functor Systems Ñ States .

(The Functorial Operational Semantics of [44] is recov-
ered when Systems is a category of coalgebras for a weak-
pullback-preserving comonad.)

4.1. Monad liftings induced by tyft/tyxt TSSs

We begin by showing that every categorical pre-tyft/tyxt
TSS (Def. 3) for a signature Σ induces a lifting of the
monad WΣ to a category of labelled transition systems.

Categories of transition systems. Recall that an L-la-
belled transition system, for a signature L in a ΠW-pre-
topos C, is a pair pX, Xq of an object X and a relation
p Xq � X � LpXq. A morphism of L-labelled transition
systems, pX, Xq Ñ pY, Y q, is a morphism X Ñ Y in C
for which there exists a morphism p Xq Ñ p Y q making
the evident diagram commute. We write L-LTS for the re-
sulting category.

Monad liftings. Let Σ and L be a signatures on a
ΠW-pretopos C. A categorical pre-tyft/tyxt TSS for Σ
and L gives rise to a lifting �WΣ of the free monad WΣ

along the forgetful functor L-LTS Ñ C, as we now explain.
The lifted monad takes an L-labelled transition system,
pX, Xq to a new transition system with carrier WΣpXq
and whose relation is found by augmenting the ambient
TSS. We add X as constant operators of the signature, and
we introduce a rule with no premises for each element of
p Xq. Formally, then, the signature PTpX, Xq for proof
trees for this augmented TSS is as follows.

0�
º
r:R

pWΣpXqqV rrs�P rrsq Ñ p Xq�
º
r:R

ppWΣpXqqV rrsq

6

The sorts for this signature are WΣpXq � LpWΣpXqq,
and they are assigned analogously to Sec. 3.2. We
thus form an object WPTpX, X q

of proof trees for this
augmented TSS. The image of the sorting projection
WPTpX, X q

Ñ WΣpXq � LpWΣpXqq gives the transition
system component of �WΣpX, Xq.

The forgetful functor L-LTS Ñ C is faithful, and so
the action of the lifted monad on objects, thus defined, is
enough data to define the entire lifted monad. All that re-
mains is to verify that the functorial action, the unit and the
multiplication of WΣ on C lift to a functorial action, unit
and multiplication for�WΣ on L-LTS. This follows directly
from the universal properties.

Example. TSS for CCS. Our simple example is the TSS
for CCS. In the tradition of first-order logic, we can under-
stand the TSS as a first-order theory TCCS with a relation
symbol for each label and an operator symbol for every op-
erator in the signature ΣCCS. The axioms of this theory are
the rules in the specification.

In model theoretic terminology, a structure for TCCS is a
labelled transition system together with a ΣCCS-algebra. A
structure is a model if the interpretations of the rules hold.

The tyft/tyxt TSS for CCS gives rise to a lifting of the
monad WΣCCS

along the forgetful functor L-LTS Ñ Set.
Every algebra for the lifted monad contains a structure for
the theory TCCS: the carrier of the algebra is a labelled tran-
sition system, and the forgetful functor induced by the lift-
ing morphism associates every algebra with a ΣCCS-algebra.
In fact, the algebras for this lifted monad are precisely the
models of TCCS. Moreover, morphisms of algebras are the
same thing as morphisms of models. The theory TCCS has
a free model, the usual semantics of CCS, which is the free
algebra on the empty transition system, as in Sec. 3.3.

4.2. General congruence results

We now move back to the general setting of categories
of monads. We define notions of congruence and bisimilar-
ity, and establish congruence results in this generality, with
illustrations building on Sec. 3.

Congruence.

Definition 9 Let T be a monad (on an arbitrary category),
and let pX, xq and pY, yq be T -algebras. We say that a span
X Ð R Ñ Y is a T -congruence if there is a T -algebra
structure T pRq Ñ R such that the morphisms in the span
define algebra homomorphisms.

For instance, let Σ be a signature in a ΠW-pretopos. The
requirement of congruence for a relation on WΣ is that of
Def. 4.

Bisimulation from open maps. To define bisimulation in
a general setting, we consider the following situation, gen-
eralizing the work of [4; 26]. In a category Systems , we
consider a class of ‘open’ morphisms. There are various
properties that might be expected of this class. We do not
require anything of the morphisms for now, but the follow-
ing axioms (from [25; 24]) will be referred to in this devel-
opment.

• A1. Isomorphisms are open, and open maps are closed
under composition.

• A3 (Descent). In a pullback square

Y 1 //

f 1

��

Y

f
��

X 1
g

// // Y

if g is epi and f 1 is open, then f is also open.

• A5. An I-indexed coproduct of open maps is again
open.

Definition 10 Consider a functor U : Systems Ñ States ,
and a class of ‘open’ morphisms in Systems . A bisim-
ulation between two ‘models’, M,N P Systems , is a
span UpMq Ð R Ñ UpNq in States for which there is a
span M Ð Ñ N of open morphisms in Systems , whose
U -image is R. Simulation is defined analogously.

Open morphisms of transition systems. The general
definition of bisimulation specializes to the definition for
L-labelled transition systems (Def. 5), as follows. We say
that a morphism f : pX, Xq Ñ pY, Y q between L-la-
belled transition systems is open if the canonical morphism
(dotted) is epic.

p Xq

''

))))
∆f p Y q //

��

p Y q

��
X

f // Y

Given two L-labelled transition systems, pX, Xq,
pY, Y q, and a relation between X and Y , the conditions
for (bi)simulation of Def. 5 are equivalent to the conditions
of Def. 10, with this notion of openness. Moreover, every
(bi)simulation span, in the sense of Def. 10, factors through
a (bi)simulation relation, and so the final (bi)similarity is
the greatest (bi)simulation relation, (bi)similarity.

When C is a topos, the open morphisms can be seen as
coalgebra homomorphisms in the sense of [4]. When C �
Set and L � A� p�q, the open morphisms are exactly the
open maps of transition systems as defined in [26]. We have
the following result.

7

Proposition 11 Let ArL Ñ L be a signature in a ΠW-pre-
topos C with universal I-indexed coproducts, for some set I .
The category L-LTS has pullbacks and universal I-in-
dexed coproducts, and the open maps in L-LTS satisfy Ax-
ioms A1, A3 and A5 above.

Congruence theorem. We can now state the congruence
theorem in full generality.
Theorem 12 Let pSystems, T q Ñ pStates, Sq be a monad
lifting, and consider a class of ‘open’ morphisms in
Systems that satisfies Axiom A1. Suppose that T pre-
serves open morphisms. Let pX, x : T pXq Ñ Xq and
pY, y : T pY q Ñ Y q be T -algebras.

If x is open, then the final simulation between pX, xq and
pY, yq, if it exists, is an S-congruence on the underlying S-
algebras.

If x and y are both open, then the final bisimulation be-
tween pX, xq and pY, yq, if it exists, is an S-congruence.

In particular, if the multiplication of T is open, then the
final bisimulation is a congruence for the free T -algebra.

Relevance of tyft/tyxt. The congruence theorem for cat-
egorical tyft/tyxt (Thm. 7) can be understood in the context
of Thm. 12, through the following result.
Theorem 13 Consider the monad lifting induced by a well-
founded categorical tyft/tyxt TSS.

1. The multiplication of the lifted monad is component-
wise open.

2. If the TSS is pure and pP Ñ Rq is internally projective
then the functorial action of the lifted monad preserves
open maps.

In [14; 20] it is argued that the purity and well-foundedness
conditions can be eliminated from the congruence theorem,
because the initial labelled transition system induced by any
tyft/tyxt TSS can also be induced by a pure well-founded
tyft/tyxt TSS. However, these kinds of results do not fit well
into the general framework of this section, because two dif-
ferent TSSs may have different categories of models, even
though their initial models coincide.

4.3. Limits of monads and conservativity

Combining TSSs can be seen as taking limits of monads.
The category Mnd does not have all limits, but those limits
that it has are preserved by the construction of categories of
algebras, Mnd Ñ CAT.

Suppose, for example, that we want to add a left-merge
operation to our fragment of CCS [e.g. 3, Sec. 5.4.5]. One
way to do this is to consider the TSS for the merge operation
alone: it has one operator and one rule. This TSS gives
rise to a monad TL-MERGE on the category LTS of transition
systems. The following pullback exists in Mnd.

pLTS, TCCS � TL-MERGEq

��

// pLTS, TL-MERGEq

��
pLTS, TCCSq // pLTS, idq

(We write pTCCS � TL-MERGEq because some authors [e.g.
27; 22] refer to this monad as the sum of TCCS and TL-MERGE.)
Algebras for pTCCS � TL-MERGEq are models of the combina-
tion of the theory for CCS with the theory of left-merge.

We have the following general conservativity result.

Theorem 14 Let Systems be a locally presentable cate-
gory with universal ω-sums, and with a class of open mor-
phisms satisfying axioms A1, A3, A5. Let T1, T2 be finitary
monads on Systems . If T1 preserves open morphisms and
the unit of T2 is componentwise open, then the natural in-
jection T1 Ñ pT1 � T2q is componentwise open.

Here, we have assumed that Systems is locally presentable
and that the monads are finitary because the result can then
be proved using an inductive characterization of the sum
pT1 � T2q, following [27].

Relevance of tyft/tyxt. The conservativity result for
tyft/tyxt (Thm. 8) can be understood in the context of
Thm. 14, through Thm. 13 and the following result.

Proposition 15 If all the rules in a categorical pre-tyft/tyxt
TSS are in tyft format, i.e. if R Ñ pΣ � 1q factors through
Σ Ñ pΣ � 1q, then the unit of the lifted monad is compo-
nentwise open.

5. Advanced examples I: name-passing calculi

We now apply the developments of the previous sec-
tions to the π-calculus [34; 40], a simple calculus for de-
scribing the communication of channel names along named
channels. The semantics of the π-calculus involves variable
binding and substitution, and so we investigate the categor-
ical tyft/tyxt format in the setting of nominal sets [17] and
nominal substitutions [12].

5.1. Nominal sets, nominal substitutions and wide-
open bisimulation

We recall some definitions from the theory of nominal
sets [e.g. 17]. For the remainder of this paper we fix an
infinite set N of names. We write SympN q for the group of
permutations on N .

Recall that a permutation set is a set X equipped with a
function �X : SympN q � X Ñ X that respects the iden-
tity and group action appropriately. Equivariant functions
between permutation sets are functions between the under-
lying sets that preserve the permutation action structure.

A finite set of names is said to support an element of a
permutation set if every permutation that fixes those names

8

also fixes that element. If an element x P X has a finite
support, then it also has a minimal one, supppxq, which is
the intersection of all other supports.

A nominal set is a permutation set in which every ele-
ment has a finite support. The category Nom of nominal
sets and equivariant functions has a lot of structure: it is a
Grothendieck topos. The set N of names, equipped with
the obvious permutation action, is a nominal set. For every
nominal set X there is a nominal set rN sX , the quotient
of N �X by the equivalence relation (‘α-equivalence’):

pa, xq �α pb, yq ðñ

Dc P N . c R supppx, yq and pa cq � x � pb cq � y .

We write xayx for the equivalence class containing pa, xq.
An example of a nominal set is the set of terms of

the π-calculus. The permutation action permutes the free
names of terms.

Nominal substitutions. A nominal substitution [12; 41,
Sec. 7.3] is a nominal set X equipped with an equivariant
function subX : N � rN sX Ñ X subject to four condi-
tions. For clarity, we write rb{asx for subXpb, xayxq.

1. Identity: ra{asx � x.

2. Weakening: rb{asx � x, whenever a#x.

3. Contraction: rc{bsrb{asx � rc{bsr
c{asx.

4. Permutation: rd{bsrc{asx � rc{asr
d{bsx, when c�b�a�d.

A homomorphism between nominal substitutions is an
equivariant function that respects the substitution structure.
We write NSub for the category of nominal substitutions
and homomorphisms between them. The category of nom-
inal substitutions is a Grothendieck topos. Indeed, it is a
sheaf subcategory of the category SetF, studied by [13] (see
[41, Sec. 7.3.1]). The forgetful functor NSub Ñ Nom
preserves products, and we can lift the additional structure
of Nom along it. The nominal set of names has an ev-
ident nominal substitution structure. For any nominal sub-
stitution X , the exponential XN has underlying nominal set
rN sX . As a result of axioms 1–4, the equivariant function
subX : N � rN sX Ñ X is, in fact, a homomorphism of
nominal substitutions; indeed, it is the evaluation map for
the exponential.

Syntax of the π-calculus. The operators of the π-calculus
form the nominal substitution

Σπ � nil:1� par:1� res:1� inp:N � out:pN �N q

and the arities form the nominal substitution

ArΣπ
� nil:0� par:2� res:N

� inp:pN �N q � out:pN �N q.

For instance, the arity of the res operator, for restriction,
is N . By the isomorphism XN � rN sX , we see that res
is a binding operator. There is one inp operator for every
name, representing input on that named channel. Fixing a
name a, the arity of inpa, is N , for it takes one parameter,
with a name bound in it, specifying what to do once a name
is input. The free algebra WΣπ

is the set of π-calculus terms
up-to α-equivalence and subject to the evident substitution
action.

Labels of the π-calculus. The labels of the π-calculus
form the nominal substitution

Lπ � tau :1� inp :pN �N q � out :pN �N q � bout :N

and the arities form the nominal substitution

ArLπ � tau :1� inp :pN �N q
� out :pN �N q � bout :pN �N q.

Thus there is a unary silent label, and, for every pair of
names, there is a unary input label and a unary output la-
bel. For every channel name, there is a bound output label,
bouta, describing the output of new names. It has arity N ,
for it is a binding label.

Here we are considering the labels for the early seman-
tics, but the late semantics is handled in much the same way.

Labelled transition systems. An Lπ-labelled transition
system is a nominal substitution X of states with a nominal
substitution p Xq � X � LπpXq. Relations in NSub are
relations in Set that are substitution-closed, in the sense
that

x X l : ~x ùñ rb{asx X rb{aspl : ~xq . (2)

A first example of a labelled transition system is the one
with carrier WΣπ , and with relation p πq � X � LπpXq
derived from the standard semantics [e.g. 40, Def 1.3.2]:

p π tau : q ðñ p
τ
ÝÑ q

p π inpa,b : q ðñ p
ab
ÝÑ q

p π outa,b : q ðñ p
āb
ÝÑ q

p π bouta : xbyq ðñ p
āpbq
ÝÝÑ q.

The substitution closure condition, (2), is a standard theo-
rem of the π-calculus [40, Lem. 1.4.8].

Wide-open bisimulation. An Lπ-bisimulation relation
on this transition system, in the sense of Def. 5, is an early
bisimulation [40, Def. 2.2.1] that is a relation in NSub, i.e.,
is substitution-closed. The greatest Lπ-bisimulation is thus
the greatest substitution-closed early bisimulation. We re-
fer to substitution-closed early bisimulations as wide-open
bisimulations. (The term ‘open’ here has nothing to do with
Sec. 4.2.)

9

5.2. A tyft TSS for name-passing

We now proceed to demonstrate how the specification of
the π-calculus, as originally given in [34], can be seen as
a categorical tyft TSS in the category of nominal substitu-
tions. The categorical tyft format in this category guaran-
tees that wide-open bisimilarity is a congruence.

Definition of the π-calculus: input. Consider the input
rule of the π-calculus.

apcqv
ab
ÝÑ rb{csv

(3a)

We assert that, in terms of conventional logic, this rule, as it
stands, does not have a clear meaning. We will consider it
as a family of rules, indexed by pairs of names, and we will
rewrite it as follows.

rule-inpa,b :
inpaxcyva,b,c inpa,b : va,b,b

(3b)

The purpose of this rewriting is to remove ‘syntactic sugar’:
we have still not given the rule family a precise meaning.
However, it is not difficult to derive a tyft TSS, in the sense
of Def. 3, from this revised presentation. There is a rule
for each pair of names: R � N � N . There are no
premises: P � 0. There is a variable for every rule and
every possible binding name: V � R � N . We write the
variables as va,b,c, as in (3b).

Notice that the substitution in the right-hand side of (3a)
has become implicit by the modification of the variable
in (3b). To use a rule rule-inpa,b in a proof tree, one must
provide an valuation for the variables. A value must be
given for va,b,c, for every name c. By the isomorphism
pWΣq

N � rN sWΣ, this amounts to giving a name bound in
a term, i.e., a value for the parameter of the left-hand side.

Definition of the π-calculus: scope opening. For a sec-
ond example, consider the scope opening rule from the
π-calculus.

v
āb
ÝÑ v1

νννb. v
āpbq
ÝÝÑ v1

(a � b) (4a)

The syntactic sugar can be removed, and the rule can be
rewritten with fresh variables as follows. We have a family
of rules, one for each name a.

rule-opena :

�
va,c outa,c : v1a,c

�
cPN

resxbyva,b bouta : xdyv1a,d

(4b)

Again, one can derive a categorical tyft TSS, in the sense
of Def. 3, from this revised presentation. There is a
rule rule-opena for each name a P N , so R � N . For
each rule, there is an N -indexed family of premises, be-
cause there is a premise for every possible choice of binder

for the left-hand side of the conclusion. Thus P � N �R.
There are two variables, va,b, v1a,b, for every pair pa, bq of
names: so V � 2�N �N .

The side-condition (a � b) in the right-hand side of the
conclusion of (4a) has become implicit in (4b). To use a
rule rule-opena in a proof tree, one must fulfil the premises
for every possible value of b, in a parametric manner. Thus
the premises must be fulfilled for every b � a, and also
for b � a. This one extra premise does no harm, because the
transition relations are closed under substitution (see (2)).

Internal projectivity. The congruence theorem (Thm. 7)
requires that the premise map P Ñ R is internally pro-
jective. This is not a problem for the π-calculus, because
the homomorphism N Ñ 1 is internally projective. Some
homomorphisms in NSub are not internally projective,
though, and we use this fact to illustrate the necessity of
the internal projectivity condition in Thm. 7.

Let ListpN q and PfpN q be respectively the set of lists of
names, and the set of finite sets of names. We equip these
sets with the evident nominal substitution structure. The ob-
ject PfpN q is not internally projective in NSub: consider
the epi homomorphism | � | : ListpN q Ñ PfpN q, taking
a list of names to its set of members, and observe that the
morphism | � |PfpN q : ListpN qPfpN q

Ñ PfpN qPfpN q is not
an epimorphism.

Consider a TSS with a unary label for every finite set of
names, and a constant label ok. The syntax is formed from
a constant setA and listL for each set A and each list L,
together with two constants, gen-sets and gen-lists, and a
unary operator check. The rules are as follows.

gen-sets A : setA
A P PfpN q

gen-lists |L| : listL
L P ListpN q

pv A : v1AqAPPfpN q

checkpvq ok

Notice that the rule for check has a PfpN q-indexed fam-
ily of premises. In the induced transition system, the con-
stants gen-sets and gen-lists are bisimilar. Bisimilarity is
not a congruence, though, since the context checkp�q dis-
tinguishes them. The term checkpgen-listsq is stuck. An
appropriate valuation of the variables would amount to an
element of the set ListpN qPfpN q, which contains only the
constant functions.

6. Advanced example II: Open bisimulation

For a more sophisticated example, we consider categor-
ical tyft/tyxt TSSs in a presheaf category. This presheaf
category has much in common with the category studied
in [19; 31]. In this category, the categorical tyft/tyxt for-
mat is essentially the format proposed by [45]. Indeed, fol-

10

lowing [8] we arrive at a treatment of the open bisimilarity
of [39].

Pragmatic motivation. Wide-open bisimilarity can be
criticised for being too discriminating. Suppose that we add
a name-equality check to the π-calculus. Wide-open bisim-
ilarity distinguishes the processes

νννa. b̄a. if a � b then āa and νννa. b̄a. (5)

This distinction contradicts our intuitions about name gen-
eration in the π-calculus: the name a generated in the left-
hand term should never be equal to the pre-existing b.

Open bisimilarity has been proposed as a remedy to such
problems [39, Sec. 6]. Roughly speaking, open bisimilar-
ity works by considering processes within environments to
keep track of which names should be kept distinct.

Once we work with open bisimilarity, the treatment of
rules in Sec. 5 appears rather primitive. There is nothing
to stop us from adding a unary operator bout-to-inp to the
π-calculus, and the following rule.

v
āpbq
ÝÝÑ v1

bout-to-inppvq ac
ÝÑ rc{bsv1

(6)

This semantics breaks the congruence of genuine open
bisimilarity. The processes of (5) are open bisimilar, but
are distinguished in the context bout-to-inpp�q.

Environments. A distinction relation is a finite irreflexive
and symmetric binary relation on N . An environment is
a triple pA,A1,#Aq: A is a set of names; A1 is a subset
of A; #A is a distinction relation on A. An environment
is to be thought of as a specification of which names are
known, which names have been generated through a bound
output transition, and which names are known to be distinct.
Considering the left-hand process of (5), we might write
transitions with environments, as

tbu,H,H $ νννa. b̄a. if a � b then āa
b̄paq
ÝÝÑ ta, bu, tau, ta � bu $ if a � b then āa. (7)

After one step, the environment records that the names a
and b are known to be distinct, and that the name a has been
introduced through a bound output.

A category of presheaves. A morphism between en-
vironments, pA,A1,#Aq Ñ pB,B1,#Bq is a function
f : A Ñ B, such that fpA1q � B1 and fp#Aq � #B . Thus
the collection of environments forms a category, Env.

Given this category Env of environments, the category
of presheaves SetEnv is a standard setting for considering
sets of elements in environments.

Every nominal substitution X can be considered as a
presheaf: we let XpA,A1,#Aq be the set of elements of X
that are supported by A. The functorial action is derived
from the substitution action. This embedding preserves col-
imits, finite limits, and exponentials.

The nominal substitution of names, N , thus gives rise to
a presheaf: we have N pA,A1,#Aq � A. We also define
a presheaf of name-constants, NC : Env Ñ Set as the
subpresheaf of N satisfying NCpA,A1,#Aq � A1.

The category of environments has an asymmetric
monoidal structure: the tensor is given by

pA,A1,#Aq
 pB,B1,#Bq ��
AZB,A1 ZB1,

#A Z#B Y tpa, bq | a P A1, b P Bu§

where p�q§ indicates symmetric closure. Following [10],
this monoidal structure induces a biclosed monoidal struc-
ture on SetEnv. We write
 for the monoidal product,
and rXsp�q for the right adjoint of X
 p�q. The
functor rN sp�q introduces new binding names, as before,
whereas rNCsp�q introduces new distinct names.

The unit of
 is terminal, and so there is a natural trans-
formation from
 to the cartesian product. As a result, the
monoidal closed structure arises in all the slice categories.

Syntax and labels revisited. The signatures for π-calcu-
lus syntax and labels, introduced in Sec. 5, can be reinter-
preted in this setting. It is important, however, to modify the
arities: the restriction operator and the bound output label
must be of arity NC, rather than N .

 ArΣπ
� nil : 0� par : 2� res : NC

� inp : pN �N q � out : pN �N q .

The free algebra WΣπ for this revised signature is the same
as the presheaf version of the nominal substitution of π-cal-
culus terms.

 ArLπ � tau : 1� inp : pN �N q
� out : pN �N q � bout : pN �NCq.

An Lπ-labelled transition system is a presheaf X together
with a subpresheaf of X � LπpXq. Externally, this can be
seen as a transition relation over states-in-environments, as
indicated in (7).

An Lπ-bisimulation for such labelled transition systems,
in the sense of Def. 5, is a bisimulation that is a subpresheaf
in SetEnv. Thus it is a “T -open bisimulation” in the sense
of [8]. The correspondence between T -open bisimilarity
and open bisimilarity is explained in loc. cit..

11

TSSs for open bisimulation. By considering the categor-
ical tyft/tyxt TSSs of Sec. 3 in the category SetEnv, we
arrive at a categorical treatment of the semantics of open
bisimulation. The theory of Sec. 3 must be modified to use
the local monoidal closed structure of SetEnv, rather than
the local cartesian closed structure, where relevant.

TSSs in this setting can be understood as the TSSs of
Sec. 5, for wide-open bisimilarity, subject to certain con-
straints. These constraints are very similar to the typing
constraints in [45]. We have that NC � N and, by con-
travariance, rN sX � rNCsX , for each X . There is a sub-
stitution morphism, N
 rN sX Ñ X , but not a morphism
N
 rNCsX Ñ X in general. As a consequence, the ma-
lign rule (6) is not a valid TSS in this category.

References
[1] M. Abadi and C. Fournet. Mobile values, new names, and

secure communication. In POPL’01, pages 104–115, 2001.
[2] M. Abadi and A. D. Gordon. A calculus for cryptographic

protocols: The spi calculus. Inform. and Comput., 148(1):
1–70, 1999.

[3] L. Aceto, W. Fokkink, and F. Vaandrager. Structural oper-
ational semantics. In Bergstra, Ponse, and Smolka, editors,
Handbook of Process Algebra. Elsevier, 2001.

[4] P. Aczel and N. Mendler. A final coalgebra theorem. In
CTCS’89, volume 389 of Lecture Notes in Comput. Sci.,
pages 357–365. Springer, 1989.

[5] T. Altenkirch, N. Ghani, P. Hancock, C. McBride, and
P. Morris. Indexed containers. Available online, 2006.

[6] S. Awodey and A. Bauer. Propositions as [types]. J. Log.
Comput., 14(4):447–471, 2004.

[7] J. Bengtson and J. Parrow. Formalising the pi-calculus using
nominal logic. In FoSSaCS’07, pages 63–77, 2007.

[8] S. Briais and U. Nestmann. Open bisimulation, revisited.
Theoret. Comput. Sci., 386:236–271, 2007.

[9] A. Corradini, R. Heckel, and U. Montanari. Compositional
SOS and beyond: a coalgebraic view of open systems. The-
oret. Comput. Sci., 280:163–192, 2002.

[10] B. Day. On closed categories of functors. In Reports of the
Midwest Category Seminar, IV, volume 137 of Lecture Notes
in Math., pages 1–38. Springer, 1970.

[11] R. de Simone. Higher-level synchronising devices in Meije-
SCCS. Theoret. Comput. Sci., 37:245–267, 1985.

[12] M. P. Fiore and S. Staton. A congruence rule format for
name-passing process calculi from mathematical structural
operational semantics. In LICS’06, pages 49–58, 2006.

[13] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and
variable binding (extended abstract). In LICS’99, 1999.

[14] W. Fokkink. The tyft/tyxt format reduces to tree rules. In
TACS’94, pages 440–453, 1994.

[15] W. J. Fokkink and C. Verhoef. A conservative look at opera-
tional semantics with variable binding. Inform. and Comput.,
146(1):24–54, 1998.

[16] M. J. Gabbay. The π-calculus in FM. In Thirty Five Years of
Automating Mathematics. Kluwer, 2003.

[17] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing,
13:341–363, 2001.

[18] N. Gambino and M. Hyland. Wellfounded trees and depen-
dent polynomial functors. In TYPES’03, 2003.

[19] N. Ghani, K. Yemane, and B. Victor. Relationally staged
computations in calculi of mobile processes. In CMCS’04,
pages 105–120, 2004.

[20] J. F. Groote and F. Vaandrager. Structured operational se-
mantics and bisimulation as a congruence. Inform. and Com-
put., 100(2):202–260, 1992.

[21] F. Honsell, M. Miculan, and I. Scagnetto. π-calculus in
(co)inductive-type theory. Theoret. Comput. Sci., 253:239–
285, 2000.

[22] M. Hyland, G. D. Plotkin, and J. Power. Combining effects:
Sum and tensor. Theoret. Comput. Sci., 357:70–99, 2006.

[23] P. T. Johnstone. Sketches of an elephant: A Topos Theory
Compendium. Oxford University Press, 2003.

[24] A. Joyal and I. Moerdijk. Algebraic set theory. Cambridge
University Press, 1995.

[25] A. Joyal and I. Moerdijk. A completeness theorem for open
maps. Ann. Pure Appl. Logic, 70(1):51–86, 1994.

[26] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from
open maps. Inform. and Comput., 127(2):164–185, 1996.

[27] G. M. Kelly. A unified treatment of transfinite constructions
for free algebras, free monoids, colimits, associated sheaves,
and so on. Bull. Austral. Math. Soc., 22:1–83, 1980.

[28] B. Klin. Bialgebraic methods in structural operational se-
mantics. In SOS’06, pages 33–43, 2006.

[29] M. E. Maietti. Modular correspondence between dependent
type theories and categorical universes including pretopoi
and topoi. Math. Structures Comput. Sci., 15(6), 2005.

[30] P. Martin-Löf. Intuitionistic type theory. Bibliopolis, Napoli,
1984.

[31] M. Miculan and K. Yemane. A unifying model of variables
and names. In FoSSaCS’05, pages 170–186, 2005.

[32] C. A. Middelburg. Variable binding operators in transition
system specifications. J. Log. Algebr. Program., 47:15–45,
2001.

[33] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[34] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, I and II. Inform. and Comput., 100(1):1–77, 1992.

[35] I. Moerdijk and E. Palmgren. Wellfounded trees in cate-
gories. Ann. Pure Appl. Logic, 104:189–218, 2000.

[36] M. R. Mousavi, M. A. Reniers, and J. Groote. SOS formats
and meta-theory. Theoret. Comput. Sci., 373:238–272, 2007.

[37] E. Palmgren. A categorical version of the Brouwer-Heyting-
Kolmogorov interpretation. Math. Structures Comput. Sci.,
14:57–72, 2004.

[38] G. D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI-FN-19, Aarhus, 1981.

[39] D. Sangiorgi. A theory of bisimulation for the pi-calculus.
Acta Inform., 33(1):69–97, 1996.

[40] D. Sangiorgi and D. Walker. The π-calculus: a theory of
mobile processes. Cambridge University Press, 2001.

[41] S. Staton. Name-Passing Process Calculi: Operational Mod-
els and Structural Operational Semantics. PhD thesis, Cam-
bridge, 2007. Technical Report UCAM-CL-TR-688.

[42] R. Street. The formal theory of monads. J. Pure Appl. Alge-
bra, 2:149–168, 1972.

[43] A. Tiu and D. Miller. A proof search specification of the
π-calculus. In FGUC’04, pages 79–101, 2004.

[44] D. Turi and G. D. Plotkin. Towards a mathematical opera-
tional semantics. In LICS’97, pages 280–291, 1997.

[45] A. Ziegler, D. Miller, and C. Palamidessi. A congruence
format for name-passing calculi. In Proc. SOS’05.

12

