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Abstract—We investigate the connections between computa-
tional effects, algebraic theories, and monads on functor cate-
gories. We develop a syntactic framework with variable binding
that allows us to describe equations between programs while
taking into account the idea that there may be different instances
of a particular computational effect. We use our framework to
give a general account of several notions of computation that
had previously been analyzed in terms of monads on presheaf
categories: the analysis of local store by Plotkin and Power; the
analysis of restriction by Pitts; and the analysis of the pi calculus
by Stark.

I. INTRODUCTION

This paper is about a framework for axiomatizing equations
between effectful computer programs. We are particularly
concerned with effects that can be understood in terms of
many parametric instances of a simpler effect. For example,
when reasoning about local store we can think of the different
memory cells each as different instances of the same notion
of memory cell. When reasoning about the π-calculus we can
think of the many communication channels each as different
instances of a single communication channel. Over the past 15
years, several authors have investigated these phenomena in an
algebraic way in order to define computational monads. This
paper provides a formal algebraic framework which allows us
to analyze these kinds of effect in a modular way.

A. Algebraic theories, monads and computational effects

Consider the simple effect of reading a binary digit from
memory. This can be described algebraically by saying that
the set of computations M is equipped with a binary operation
? : M×M→M satisfying two equations:

x ? x ≡ x (v ? x) ? (y ? z) ≡ v ? z. (1)

The idea is that x ? y is a computation that first reads the bit
and then proceeds as x or as y depending on the result. The
first equation says that if you ignore the result then the read
is not observable. The second equation says that you get the
same result no matter how many times you test.

This theory (1) has been studied by universal algebraists
under the name ‘rectangular band’. But its relevance to com-
putation is made especially clear when we follow Plotkin and
Power [49] in recalling that the free models of the algebraic
theory form a monad on the category of sets, and hence a
notion of computation in the sense of Moggi [42]. Recall that
the free model of an algebraic theory over a set X can be
built by first forming the set of all formal expressions built
from the operation ? and elements of X , and then taking

equivalence classes modulo the equations (1). In particular
the free rectangular band on a set X is isomorphic to the
set of all functions {0, 1} → X: the ‘reader monad’. Thus
algebra arises as a technique for defining monads. Moreover,
algebra provides a way to explore the space of computational
effects, by considering different equations and different ways
of combining computational effects.

Instances of computational effects: In this paper we
extend the algebraic approach to computational effects to the
situation where there are many instances of a particular com-
putational effect. For example, there may be many memory
cells: each one is an instance of the theory of reading a
bit. We may also build a theory of reading a bit from a
communication channel by omitting the two equations (1), so
that multi-channel communication can be understood in terms
of many instances of the theory for one channel. There are
often facilities for creating new instances: allocating a new
memory cell or defining a new private communication channel.

The problem of providing an axiomatic account of local
instances of effects dates back to Moggi’s initial writings
about monads [41, §4.1.4]. Over the last 15 years authors
have given explanations of local store [49], restriction [47]
and the π-calculus ([55], [57]) in ways that are ad hoc but
informally inspired by algebra. We put these analyses on a
formal foundation by exhibiting an algebraic framework with
the following properties:

1) our framework is syntactic, with a deduction system;
2) each algebraic theory determines an enriched monad, so

we can build models of Moggi’s metalanguage;
3) there are mechanisms for reasoning about different in-

stances of theories and introducing new instances;
4) the framework encompasses earlier analyses of local

store [49], restriction [47] and the π-calculus [55].
The development of the framework is guided by the categorical
foundation of enriched algebraic theories [30], building on
recent developments by Lack and Rosický [32], Melliès et
al. ([37], [38], [8]), Power [51] and others.

B. Algebraic theories for instances of effects

If we have many instances of the notion of reading a bit
from memory, then we have a binary operation ?a param-
eterized in the instance a. A model of the theory now has
an operation ? : M × α × M → M, where M is a set
of all computations and α is a set of memory cells. Similar
parameterization can be done for reading from communication
channels. We call this a parameterized algebraic theory.



In the setting of memory cells, it is reasonable to add a law
asserting that different instances commute with each other:

(u ?a v) ?b (x ?a y) ≡ (u ?b x) ?a (v ?b y)

In Standard ML this would be written
let val c = !a in let val d = !b in (c,d) end end

≡ let val d = !b in let val c = !a in (c,d) end end

In general, commutativity of instances requires some care.
Consider the effect of writing to memory: our set of com-
putations has two operations w0,w1 : α × M → M, so
that w0(a, x) and w1(a, x) are interpretations of the ML
expressions a:=0 ;x and a:=1 ;x respectively. Assignments to
different locations commute, but assignments to the same
location do not: (a:=0 ; b:=1 ;x) ≡ (b:=1 ; a:=0 ;x) provided
a 6= b. We can write this as an unconditional program equation

a:=0 ; b:=1 ;x ≡ if a==b then a:=1 ;x else b:=1 ; a:=0 ;x

provided that our set α of instances permits equality testing.
a) Axiomatization of equality types (§IV): The idea of

an equality type is built in to Standard ML and described via
type classes in Haskell. Informally it is achieved by a function
== : α × α → bool , or expressed in continuation passing style
as ?= : M× α × α ×M→M, with the idea that x ?a=b y is
the computation that first tests whether a and b are equal; if
so, continue as x, but if not, continue as y.

In this paper we study program equations for equality
testing. There are four laws, including x ?a=a y ≡ x
(equality testing of identical instances always succeeds) and
x(a) ?a=b y ≡ x(b) ?a=b y (equality is substitutive). Notice that
the second law is higher order. The idea of using an axiom-
atization of equality testing in this way stems from the work
of Stark [57] and others.

b) Restriction and instance generation (§V): We also
study the program equations for restricting and generating
instances. This includes allocating a new memory cell or a
new communication channel. We do this algebraically us-
ing a second-order function symbol ν : Mα →M, so that
ν(a.x(a)) is a computation that first allocates a new in-
stance a and then proceeds as x. In Standard ML it would
be written let val a=ref(0) in x a end, and in Haskell
newSTRef 0 >>= x. We can axiomatize the property that
‘the allocated cell is fresh’ in an equational way by using
the equality testing operation: νb.(x(b) ?a=b y(b)) ≡ νb.y(b).

C. Analysis of models of algebraic theories
We analyze the notions of program equivalence that we have

axiomatized in three ways: by giving an account of model
theory; by studying representations; and by giving a precise
comparison with earlier work.

c) Model theory: We provide a notion of model for
parameterized algebraic theories (§VI). As we demonstrate,
classical set theory is not a good way to understand parame-
terized algebraic theories, and so we develop model theory in
a more general categorical setting. We then focus on models
in functor categories which have been recognized as a good
way to analyze local effects since the early 1980s (e.g. [43]).

d) Clones, monads and representations: In §VII we
discuss abstract clones, which are presentation-invariant de-
scriptions of terms-in-context modulo the equational theory.
For example, the terms involving equality testing (?=) can be
enumerated by using Stirling numbers of the second kind. We
use the abstract clones to produce an enriched monad, i.e. a
notion of computation in the sense of Moggi [42].

e) Recovering earlier models of local store, restriction
and π-calculus: Other researchers have investigated monads
for local store ([49], [38]), restriction [47], and π-calculus [55].
We demonstrate the power of our framework by showing
that our theories of local store, restriction and π respectively
determine the local store monad, the restriction monad, and
the monad for the π-calculus.

Our algebraic framework makes clear the design choices in-
volved in this earlier monadic work, explaining the similarities
and differences between these notions of computational effect.
It is a convenient framework for exploring the variations and
combinations of instances of computational effects.

II. PARAMETERIZED ALGEBRAIC THEORIES

We now introduce a variant of the framework of parameter-
ized algebraic theories [59]. In §III–V we use this framework
to describe instances of computational effects.

A. A type theory for parameterized computation

Our principal objective is to reason about effectful com-
putation. We are not interested in the results of computa-
tions, rather in the effects that are occur during computation.
However, a computation may depend on various parameters
or indeed on another computation. We introduce a simple
type system to analyze this. We assume a collection of base
types, ranged over by α, β etc (informally, types of instances).
We also have types such as [α, β] which is the type of a
computation that depends on two instances, of type α and β
respectively. We have the following general grammar of types:

τ ::= α, β, . . . | [τ1, . . . , τn] (n ≥ 0)

so that a type is a tree with leaves labelled by base types.
As usual, a context is a list of types annotated by distinct
variables. There are two kinds of judgement: judgements of
a computation in context (Γ ` t) and judgements of a typed
expression in context (Γ ` t : τ). The inhabitants of these
judgements are defined inductively by the following five rules:

Γ, x : α,Γ′ ` x : α
(α is a base type)

Γ, x1 : τ1, . . . , xn : τn ` t
Γ ` x1, . . . , xn.t : [τ1, . . . , τn]

(n > 0)
Γ ` t

Γ ` t : []

Γ, x : [τ1 . . . τn],Γ′ ` t1 : τ1

. . . Γ, x : [τ1 . . . τn],Γ′ ` tn : τn

Γ, x : [τ1 . . . τn],Γ′ ` x(t1 . . . tn)
(n > 0)

−
Γ, x : [],Γ′ ` x

One can define a substitution operation: given Γ, x : τ ` t
and Γ ` u : τ , we can build Γ ` t[u/x]. (It is not trivial
but quite standard; see e.g. [5].) Because of the assumption



that variables in a context are all different, substitution avoids
implicit variable capture.

As a functional programming language, the type [τ1, . . . , τn]
can be thought of as a function type into an unspecified
return type (say, ρ): τ1 → · · · → τn → ρ; the inhabitants
are η-long β-normal forms. From the perspective of logic,
our type [τ1, . . . , τn] could be written ¬(τ1 ∧ · · · ∧ τn). This
perspective suggests that we can simulate a general function
type via continuation passing style (CPS) (see e.g. [33]):

(τ1 → · · · → τn → α)
def
= [τ1, . . . , τn, [α]].

For illustration, let α be a base type of memory cells. We
can think of the term ? : [[], α, []], a:α, x:[], y:[] ` ?(x, a, y)
as a computation that reads location a; if it is 0, we continue
as x, and if it is 1, we continue as y. We might also think of
the term ν0 : [[α]], x : [α] ` ν0(a.x(a)) as a computation that
allocates a new memory cell a and continues as x. We can
form computations such as ν0(a.?(x, a, y)) which allocates a
new memory cell and then reads it, continuing as either x or y.

One can investigate algebraic effects in the context of an
elaborate type system (e.g. [27]) or indeed Haskell [22]. Here
we use a restricted type system to emphasise the algebraic
nature of the framework.

B. Parameterized algebraic theories

We now provide a system for axiomatizing equations
between terms in the simple type theory. To maintain a
connection with enriched monads (§VII) we focus on equa-
tions in contexts of order < 2. The order of a type is
given by the height of its syntax tree: order(α) = 0, and
order([τ1, . . . , τn]) = 1+max{order(τ1), . . . , order(τn)}. We
say that a context (x1 : τ1, . . . , xn : τn) is order i (resp. (i/j))
if the types τk are all exactly order i (resp. i or j).

Definition 1. Let α, β, . . . be base types. A parameterized sig-
nature Σ comprises a collection of function symbols equipped
with order (1/2) types. The terms over Σ in context Γ are terms
in context (Σ,Γ) (we will elide Σ when writing the context).

An equation over a signature Σ is an order (0/1) context
Γ and two computation terms in the context (Σ,Γ), written
Γ ` t ≡ u. A presentation of a parameterized algebraic the-
ory comprises a parameterized signature Σ together with a
collection of equations over Σ.

From a presentation we form a deduction system by closing
the equality relation under reflexivity, symmetry, transitivity,
congruence and substitution.

Similar notions of algebraic theory have been investigated
elsewhere. In [59], I use this framework to describe predicate
logic and the effects associated with logic programming.
In [40], we use the same framework but from the perspective of
‘generic effects’. The ideas originate from the work of Plotkin
and Power ([50], [48]) who develop a model theory rather
than an equational deduction system. Moving slightly further
afield, this kind of syntactic formalism dates back to Aczel’s
formalism [2] which is the basis of the second-order equational
logic of Fiore et al. ([16], [23]).

III. CLASSICAL ALGEBRAIC THEORIES

When there are no base types, a parameterized algebraic
theory (Def. 1) is just an algebraic theory in the sense of
universal algebra (e.g. [13]).

A. Algebraic effects associated with reading a binary digit

We begin by considering various notions of computation
related to reading a binary digit of some form, whether from
a network, from a memory cell, or from a random generator.
We consider a function symbol ? : [[], []], written infix, with
the understanding that x ? y is the computation that reads a
bit and proceeds either as x or as y depending on the result.

(We have not assumed a boolean type bool , but if we had
done we would have a type isomorphism [[], []] ∼= [[bool ]], so
? can be thought of as a CPS version of read : unit → bool .)

We consider the following equations that can be imposed:

u, v, x, y : [] ` (u ? v) ? (x ? y) ≡ (u ? x) ? (v ? y) (?/?)
x : [] ` x ≡ x ? x (idem-?)

u, v, x, y : [] ` (u ? v) ? (x ? y) ≡ u ? y (dup-?)

The ‘medial’ law (?/?) says that the bits that we are reading
come from a pool. Idempotence (idem-?) says that reading
is not observable. The law (dup-?) implies (?/?): it says that
there is only one digit in the pool, i.e., it is a memory cell.
These kinds of equation provide a guide for reasoning about
programs [22] and compiler optimizations [27].

1) Writing the bit: We can describe the effect of writing
to a bit of memory by adding two unary function symbols
w0 : [[]], w1 : [[]]. The idea is that wi(x) sets the bit to i and
continues as x. It is subject to three equation schemes:

x : [] ` wi(wj(x)) ≡ wj(x) (wiwj)
x0, x1 : [] ` wi(x0 ? x1) ≡ wi(xi) (wi?)

x : [] ` x ≡ w0(x) ? w1(x) (?w)

Laws (idem-?) and (dup-?) follow from these three [37].
(We can think of wi as a CPS version of a command writei :

unit → unit , and with a boolean type we could combine w0

and w1 to get write : bool → unit .)
2) Probability and non-determinism: We can describe ran-

dom computation using a binary function symbol ⊕ : [[], []]
that is medial, idempotent and symmetric: x⊕ y ≡ y ⊕ x. The
idea is that x⊕ y is the computation that behaves as either x
or y, with equal probability ([24], [1]). If ⊕ is also associative
(e.g. has a unit) then it is a semilattice, and it describes non-
deterministic rather than probabilistic choice.

When reading (?) is combined with choice ⊕, one usually
assumes that the data is ready before the choice (‘early’, [45])

u, v, x, y : [] ` (u ? v)⊕(x ? y) ≡ (u ? y)⊕(x ? v) (early-?)

IV. PARAMETERIZING A CLASSICAL THEORY

We now develop the idea of introducing many instances of
a classical algebraic theory, using parameters. For example, to
create a theory of reading many bits, one for each inhabitant
of a parameter type α, we replace the read operation ? : [[], []]



by a parameterized read operation ? : [[], α, []] which we write
infix as x ?a y. We parameterize the equations too:

a : α, x : [] ` x ≡ x ?a x (idem-?a)
a : α, u, v, x, y : [] ` (u ?a v) ?a (x ?a y) ≡ u ?a y (dup-?a)

We can now understand α as a type of memory cells, and the
operation ? takes a parameter specifying which cell to read.

The reader can imagine how to apply the same process
to any classical algebraic theory. There are often additional
equations that, informally, specify that different instances of
the theory do not affect each other. To make this precise we
recall the idea of commutativity (e.g. [35],[15]).

A. Commutativity

Informally, two terms t and u are said to commute if it
doesn’t matter which one is executed first. We make this
precise by defining a kind of sequential composition. If Γ
and ∆ are order 1 contexts, let (Γ×∆) be the order 1 context
with a variable xy : [α1, . . . , αm, β1, . . . , βn] for every variable
x : [~αm] in Γ and every variable y : [~βn] in ∆. If Ξ is any
context, and Ξ,Γ ` t and Ξ,∆ ` u, we define sequential
composition Ξ,Γ×∆ ` t ; u by setting

x(~tm) ; y(~un)
def
=


x(t1;y(~u) , . . , tm;y(~u)) if x ∈ Ξ

y(x(~t);u1 , . . , x(~t);un) if x ∈ Γ, y ∈ Ξ

xy(t1, . . , tm, u1, . . , un) if x ∈ Γ, y ∈ ∆

where a ; u
def
= a if a : α, and (~x.t) ; u

def
= ~x.(t ; u), and

similarly t ; a
def
= a if a : α, and t ; (~x.u)

def
= ~x.(t ; u).

Definition 2 (c.f. [35],[15]). Let Γ and ∆ be order 1 contexts
and let Ξ be a context. Two terms Ξ,Γ ` t and Ξ,∆ ` u are
said to commute (w.r.t. Ξ) if Ξ,Γ×∆ ` t ; u ≡ u ; t.

A parameterized algebraic theory is commutative if all
terms commute. For example, the theory of reading a bit is
commutative if we assume the medial law (?/?). But reading
does not commute with writing: w0(x ? y) ≡ w0(x) ? w0(y)
is not derivable and indeed it is inconsistent.

B. Options for parameterization

When parameterizing a classical algebraic theory there are
three options regarding additional commutativity laws:

1: No further equations: instances of the theory do not
commute with each other. When reading from a network chan-
nel, different instances are different channels, and the order of
reads is often important even across different channels.

2: If the starting theory is commutative then we can add
equations saying that all instances of the theory commute with
each other. For the effect of reading from memory, the different
instances are different memory locations, and the results are
not dependent on the order of access (an ‘abide’ law: [9, §4])

a, b : α, u, v, x, y : [] ` (u?
b
v)?
a

(x?
b
y) ≡ (u?

a
x)?

b
(v ?
a
y) (?a/?b)

There is an instance where a=b, but that is the medial law.

3: We may say that different instances of the parame-
terized theory commute with each other using the theory
of equality testing to be introduced in §IV-C. For a non-
commutative theory we need to be careful. For example,
the parameterized theory of writing a bit has two func-
tion symbols, w0,w1 : [α, []]. The commutativity equation
a, b : α, x : [] ` w0(a,w1(b, x)) ≡ w1(b,w0(a, x)) is inappro-
priate because of the instance where a = b.

(We note that options (1)–(3) can be explained from a
categorical perspective in terms of (1) coproducts of theories,
(2) coproducts of commutative theories, and (3) a monoidal
structure on theories, following Power [52].)

C. Equality testing

The theory of equality testing has one function symbol
?= : [[], α, α, []] which takes two parameters and two argu-
ments. It is written infix: x ?a=b y. There are four laws:

a, b : α, x : [] ` x ≡ x ?a=b x (idem-?=�)
a, b, c, d : α, u, v, x, y : [] ` (u ?c=d v) ?a=b (x ?c=d y)

≡ (u ?a=b x) ?c=d (v ?a=b y) (?=�/?=�)
a, b : α, x : [α], y : [] ` x(a) ?a=b y ≡ x(b) ?a=b y (sub-?=�)

a : α, x, y : [] ` x ?a=a y ≡ x (?=�)

Each instance ?a=b satisfies (dup-?). First, note that

(u ?
a=b
v) ?
a=b
x

(sub)
≡ (u ?

a=a
v) ?
a=b
x

(?=)
≡ (u ?

a=a
y) ?
a=b
x

(sub)
≡ (u ?

a=b
y) ?
a=b
x

and (dup-?) follows from this:

(u ?
a=b
v) ?
a=b

(x ?
a=b
y) ≡ (u ?

a=b
y) ?
a=b

(x ?
a=b
y)

(?=�/?=�)≡ (u ?
a=b
x) ?
a=b

(y ?
a=b
y)

≡ (u ?
a=b
u) ?
a=b

(y ?
a=b
y)

(idem)
≡ u ?

a=b
y.

Symmetry of equality (x?a=by ≡ x?b=ay) can also be derived.

D. Combining equality testing with other theories

We can use the theory of equality testing to for-
malize a conditional equation “a6=b : α, Γ ` t ≡ u” by
a, b : α, Γ ` t ≡ t ?a=b u, provided we also ensure that equal-
ity testing commutes with all terms. In this way we can
make precise option (3) in §IV-B, that different instances of
the classical theory commute. If we also have an equation
a : α, Γ ` t[a/b] ≡ t′ then we can simplify the presentation by
replacing the two equations by one: a, b : α,Γ ` t ≡ t′ ?a=b u.

For example, the parameterized theory of reading/writing
memory has four function symbols ? : [[], α, []], w0 : [α, []],
w1 : [α, []], ?= : [[], α, α, []], subject to the laws for equality
(idem-?=�, ?=�/?=�, ?=�, sub-?=�), commutativity of reading (?a/?b) and
parameterized versions of the laws for writing a bit which are
combined with commutativity of different instances of reading
and writing (we write a:=i ;x for wi(a, x)) as follows:

a,b:α, x:[] ` a:=i ; b:=j ;x ≡ (a:=j ;x) ?
a=b

(b:=j ; a:=i ;x) (W/W )

a, b : α, x0, x1 : [] ` a:=i ; (x0 ?b x1) (W/?)
≡ (a:=i ;xi) ?a=b ((a:=i ;x0) ?b (a:=i ;x1))

a : α, x : [] ` x ≡ (a:=0 ;x) ?a (a:=1 ;x) (?W )



We also require equality to commute with all the terms:

a,b,c:α, u,v,x,y:[] ` (u ?
a=b
v)?

c
(x ?
a=b
y) ≡ (u?

c
x) ?
a=b

(v ?
c
y) (?/?=�)

a,b,c:α, x,y:[] ` c:=i ; (x ?
a=b
y) ≡ (c:=i ;x) ?

a=b
(c:=i ; y) (W/?=�)

V. ARGUMENTS WITH PARAMETERS AND RESTRICTION

A. Arguments with parameters

Instead of the operation ? : [[], []] that reads a binary digit
(§III-A), we can consider an operation r : [[α]] that reads an
instance. The idea is that r(a.x(a)) first reads something of
type α, binds it to a and continues as x. The laws (idem-?)
and (?/?) in §III-A can be revisited in this setting:

x : [] ` x ≡ r(a.x) (idem-r)
x : [α, α] ` r(a.r(b.x(a, b))) ≡ r(a.r(b.x(b, a))) (r/r)

We can also have different instances of this theory, accom-
modated by two base types (α, β) and an operation r : [β, [α]].

B. Restriction

We now consider a restriction operator ν : [[α]]. The idea is
that ν(a.x(a)) first generates an instance a and then continues
as x (shorthand: νa.x(a)). We can think of restriction as
reading an instance from a pool of instances; indeed we
consider the following two equations (e.g. [39]):

x : [] ` νa.x ≡ x (idem-ν)
x : [α, α] ` νa.νb.x(a, b) ≡ νa.νb.x(b, a) (ν/ν)

The restriction operator can be combined with other function
symbols, and we require it to commute with them. For
example, we combine the parameterized theory of reading a bit
(? : [[], α, []]; idem-?a, dup-?a, ?a/?b) with restriction (ν : [[α]];
idem-ν, ν/ν) using the following commutativity law:

a:α, x, y:[α] ` νb.(x(b)?
a
y(b)) ≡ (νb.x(b))?

a
(νb.y(b)) (ν/?)

We thus build a theory of instantiating and reading bits.

C. Initialization

When we combine the theory of reading a bit with the theory
of restriction, the meaning of νa.(x ?a y) is not determined.
What is the initial value of the new bit a? We consider two
possibilities: random initialization and specified initialization.

1) Random initialization: If we impose a symmetry axiom
x,y:[] ` νa.(x ?a y) ≡ νa.(y ?a x) then we can think of α
as a type of random boolean variables, so that ν randomly
initializes with 0 or 1 with equal probability. We can define a
choice operator, ⊕ def

= x, y.νa.(x ?a y) : [[], []], as in §III-A2.
2) Specified initialization: The second option is to have

two restriction operations ν0 : [[α]], ν1 : [[α]] that initialize
the parameter with 0 and 1 respectively. They are subject to
laws (idem-ν, ν/ν, ν/?) and

x, y : [α] ` ν0a.(x(a) ?a y(a)) ≡ ν0a.x(a) (ν0)
x, y : [α] ` ν1a.(x(a) ?a y(a)) ≡ ν1a.y(a) (ν1)

We occasionally require that α is actually a boolean type:

a : α, x : [α] ` x(a) ≡ (ν0b.x(b)) ?a (ν1b.x(b)) (η-?)

We can then think of ν0 and ν1 as CPS forms of the constants
0 and 1 respectively, and that ? is if-then-else (see §VI-D).

D. Combining restriction with equality

When we combine the theory of restriction with the theory
of equality testing (?= : [[], α, α, []]; idem-?=�, ?=�/?=�, ?=�, sub-?=�),
we ask that restriction commutes with equality testing but also
that the new instantiation is indeed new:

a,b:α, x,y:[α] ` νc.(x(c) ?
a=b
y(c)) ≡ (νc.x(c)) ?

a=b
(νc.y(c))(ν/?=�)

a:α, x,y:[α] ` νb.(x(b) ?
a=b
y(b)) ≡ νb.y(b) (new-ν)

E. Example: local store

We achieve a full theory of local store by carefully com-
bining the theories of reading and writing a bit of memory,
equality testing, and restriction. The function symbols are

? : [[], α, []] w0,w1 : [α, []] ?= : [[], α, α, []] ν0, ν1 : [[α]].

We impose the laws for reading and writing a bit (W/W , W/?,
?W ), for equality (idem-?=�, ?=�/?=�, ?=�, sub-?=�), for restriction
(idem-ν, ν/ν), the commutativity laws (?/?=�, W/?=�, ν/?, ν/?=�), the
interaction laws (ν0, ν1, new-ν) and two additional schemes:

a : α, x : [α] ` wi(a, νj b.x(b)) ≡ νj b.wi(a, x(b)) (wi/νj)
x : [α] ` νia.wj(a, x(a)) ≡ νja.x(a) (νw)

We do not include (η-?) since it is inconsistent with (new-ν).

F. Example: algebraic presentation of the π-calculus

Milner’s π-calculus [39] is a system that describes sending
and receiving messages on named channels. In its simplest
form, the only messages that can be sent are the channel
names themselves. Thus we are in the setting of §V-A but
with only one base type α = β, which is a type of channel
names. We can equip our computations with the primitives
of the π-calculus since the axiomatization of early congru-
ence ([45],[57]) can be made formal using the framework
of parameterized algebraic theories. We consider seven func-
tion symbols: equality testing (?= : [[], α, α, []]), restriction
(ν : [[α]]), choice (⊕ : [[], []]), deadlock (⊥), output prefix
(Out : [α, α, []], shorthand āb.x), input prefix (In : [α, [α]],
shorthand a(b).x(b)), and silent prefix (Tau : [[]]).

We have the laws of equality testing and restriction (idem-?=�,
?=�/?=�, ?=�, sub-?=�, idem-ν, ν/ν, ν/?=�, new-ν); laws saying that ⊕
is medial, idempotent and symmetric; the unit law ⊥⊕x ≡ x;
laws asserting that ν and ?= commute with everything; and the
following laws for early input (c.f. §III-A2) and laws asserting
that communication on a hidden channel is unobservable:

a,b:α, u,x:[], v,y:[α] ` a(c).(u ?b=c v(c))⊕ a(c).(x ?b=c y(c))

≡ a(c).(u ?b=c y(c))⊕ a(c).(x ?b=c v(c))

b:α, x:[α] ` νa.āb.x(a) ≡ ⊥ x:[α] ` νa.āa.x(a) ≡ ⊥
x:[α, α] ` νa.a(b).x(a, b) ≡ ⊥



VI. MODELS

Model theory is a powerful tool for investigating theories.
It is widely recognized that classical set theory is not a perfect
place to model syntax with binding – a point that we illustrate
in §VI-B–C. For this reason we jump to a notion of model
that works in many categories. We find a complete notion of
model through interpretations in a functor category (§VI-E).

A. Models in categories: definition and examples

Recall that a category C is cartesian closed if it has finite
products and each hom-functor C(− × A,B) : Cop → Set is
representable: there is an object BA and a natural isomorphism
C(C,BA) ∼= C(C × A,B) (“currying”, e.g. [7, §5.4]). The
category of sets and functions is cartesian closed: categorical
products are cartesian products of sets, and the representation
of Set(−×A,B) is the set of functions BA.

Consider a cartesian closed category C with a chosen
object JαK for each base type α. Given an object X of C
we interpret a type τ (as in §II-A) as an object JτKX , by
induction on the structure of types: let JαKX

def
= JαK and

let J[τ1 . . . τn]KX
def
= X(Jτ1KX×···×JτnKX). We also interpret

contexts (x1:τ1 . . . xn:τn) as objects Jτ1KX × · · · × JτnKX .

Definition 3. Let Σ be a parameterized signature (Def. 1). A
Σ-structure in a cartesian closed category C is given by an ob-
ject M and a morphism JF KM : Jτ1KM × · · · × JτnKM →M
for each symbol F : [τ1, . . . , τn] in Σ. A homomorphism
between Σ-structures M, N in C is a morphism f : M → N
in C that commutes with the interpretations of Σ.

For example, a structure for equality testing has a morphism
J?=K : M×JαK×JαK×M→M, and a structure for restriction
has a morphism JνK : MJαK →M.

In a structure we can interpret a judgement Γ ` t as a
morphism JtKM : JΓKM → M. This interpretation is defined
straightforwardly by induction on derivations.

Definition 4. A structure M satisfies an equation Γ ` t ≡ u if
the morphisms JtKM, JuKM : JΓKM →M are equal. A model
of a theory is a structure in which all equations are satisfied.

Examples: If C = Set and there are no base types then a
model is the same thing as a model in the classical sense [13]:
a set M together with an n-ary function Mn → M for each
n-ary function symbol, satisfying the equations. In §VI-E we
investigate models in functor categories. Before that, we look
briefly at set-theoretic models in more detail.

B. Set-theoretic models of equality testing

Proposition 5. For any sets JαK and M there is a unique
function J?=K : M× JαK× JαK×M→M making M a model
of the theory of equality testing (§IV-C) in the category of sets.

Proof: Given sets JαK and M we have a model satisfying
J?=KM(x, a, a, y) = x and J?=KM(x, a, b, y) = y for a 6= b.
In fact, all models are of this form. Consider a set M with a
function ?= : M× JαK× JαK×M→M satisfying the axioms
of equality testing. For all a, b ∈ JαK, either a = b or a 6= b.

If a = b then x ?a=b y = x by axiom (?=�). The interesting case
is where a 6= b. We have a function z : JαK → M satisfying
z(a) = x and z(c) = y if a 6= c, so that

x ?a=b y = z(a) ?a=b y
(sub)
= z(b) ?a=b y = y ?a=b y

(idem)
= y.

C. No set-theoretic models of restriction

Proposition 6. Let JαK be a countable set. There are no non-
trivial set-theoretic models of restriction and equality (§V-D).

Proof: We consider a model M with two arbitrary el-
ements, x and y, and show that x = y. By Prop. 5, J?=K is
uniquely determined. We have the following consequence of
axiom (new-ν): for any f : JαK→M,

if {a ∈ JαK | f(a) = x} is cofinite then ν(f) = x. (2)

Since JαK is countable, there is a total order ≤ on it
such that every down-set is finite. We define a function
fx,y : JαK× JαK→M such that fx,y(a, b) = x if a ≤ b and
fx,y(a, b) = y if a > b. Note that for fixed a, fx,y(a,−) is
cofinitely x, and for fixed b, fx,y(−, b) is cofinitely y. Thus

x
(idem)

= ν(λa.x)
(2)
= ν(λa.ν(λb.fx,y(a, b)))

(ν/ν)
= ν(λb.ν(λa.fx,y(a, b)))

(2)
= ν(λb.y)

(idem)
= y.

In Section VI-E we consider a functor category in which
there is an object JαK supporting non-trivial models of re-
striction (see also Prop. 13; Thm. 15). For another example,
the atoms of the FM model of set theory support non-trivial
models of restriction (e.g. [47], [20]). It remains to be seen
whether there is an uncountable set JαK in classical ZFC that
supports non-trivial models of restriction.

D. Models of specified initialization with η

In any category, the theory of restriction with specified
initialization and η (§V-C2) can be seen as a theory that asserts
that the parameter type α is a type of booleans (1 + 1).

Proposition 7. Consider the theory of specified initialization
with η (§V-C2). Let C be a cartesian closed category with a
specified object JαK. The following are equivalent:

1) Every object of C can be assigned a model structure in
such a way that every morphism is a homomorphism.

2) The object JαK is a coproduct of the terminal object with
itself (JαK = (1 + 1)).

E. Models in a category of functors

1) Category of contexts: We begin by defining a cate-
gory Ctx0. The objects are order 0 contexts. A morphism
(a1 : α1, . . . , ap : αp) → (bn : β1, . . . , bq : βq) is a renaming,
i.e. a function f : p→ q such that αi = βf(i) (1 ≤ i ≤ p).

2) Presheaf category: We form the category [Ctx0,Set ]
of functors Ctx0 → Set . The objects of this category are
functors X : Ctx0 → Set , i.e., for each order 0 context Γ
a set X(Γ) is given, and for each renaming f : Γ→ Γ′,
a function Xf : X(Γ)→ X(Γ′) is given, such that identi-
ties and composition are respected. The morphisms between
functors are natural transformations, i.e. families of functions



{φΓ : X(Γ)→ Y (Γ)}Γ that respect the renamings. We call
the functors Ctx0 → Set ‘presheaves’.

For example, consider an order 1 context ∆ and let
Terms(∆|Γ) be the set of terms in context (∆,Γ) modulo
the equations. With the evident renaming structure, this yields
a presheaf Terms(∆|−) : Ctx0 → Set .

3) Base types: Let JαK be the representable presheaf
JαK(Γ) = Ctx0((α),Γ).

4) Cartesian closed structure: The functor category
[Ctx0,Set ] has products given pointwise: (X × Y )(p) =
X(p)×Y (p). The cartesian closed structure satisfies Y X(Γ) ∼=
[Ctx0,Set ](JΓK×X,Y ). In particular Y JΓK(Γ′) = Y (Γ,Γ′).

5) Models: We can now study models in [Ctx0,Set ]. An
important first result is that for any order 1 context ∆ we
have a term model M = Terms(∆|−) : [Ctx0,Set ]. For each
function symbol F : [τ1, . . . , τn] in Σ, we have a morphism
JF KM : Jτ1KM × · · · × JτnKM →M given by term formation.

Proposition 8 (Completeness). Let Γ be an order 0 context
and let ∆ be an order 1 context. An equation Γ,∆ ` t ≡ u
is satisfied in the model Terms(∆|−) (in [Ctx0,Set ]) if and
only if it is derivable in the theory.

VII. REPRESENTATIONS OF THEORIES

Two different presentations, with different function symbols
or equations, may induce the same notion of model. In classi-
cal universal algebra, abstract clones provide a presentation-
invariant description of theories [13, Ch. III]. We now discuss a
theory of abstract clones for parameterized algebraic theories.

Roughly speaking, an abstract clone is given by the set
of terms modulo equations. Often there is a non-syntactic
description of the terms modulo equations. As a starting
point we recall a result for the classical theory for reading
a bit of memory (§III-A: idem-?, dup-?). Every term can be
uniquely rewritten to one of the form x ? y, so there are n2

terms in n variables. In the theory of reading/writing memory
(§III-A1) every term can be uniquely rewritten to the form
wi(x) ? wj(y) for i, j ∈ {0, 1}, so there are 4n2 terms in
n variables ([37],[49]). We characterize equality testing and
restriction in a similar way (§VII-C–E).

Abstract clones are well-known to be equivalent to Lawvere
theories and finitary monads. Other authors have proposed
indexed Lawvere theories (Power, [51]) and graded Lawvere
theories (Melliès, [38]) to study instances of effects. The
development in this section takes inspiration from those ideas
but is tailored to (a) a precise connection with parameterized
algebraic theories and (b) enrichment in a cartesian closed
structure.

A. Enriched abstract clones and monads

Definition 9 ([59], [30]). Let C be a cartesian closed category.
Let F be a dense full subcategory. An abstract clone is given
by
• for each object A of F an object TA of C;
• a morphism η : A→ TA for each object A of F;
• a morphism >>= : TA × (TB)A → TB for objects A,B

of F

such that the following equations hold in the internal language
of cartesian closed categories, where we write >>= infix:

x >>= η = x (ηx) >>= f = f(x)

(x >>= f) >>= g = x >>= (λa. (f(a) >>= g)).

When F comprises all the objects of C, an abstract clone is
simply an enriched monad (i.e. a strong monad, e.g. [42]).

When C is the category of sets and F comprises the natural
numbers considered as sets, then we have the original defini-
tion of abstract clone, attributed to P Hall [13, Ch. III]. Any
classical algebraic theory induces an abstract clone, where TA
is the set of all A-ary derived operations, or equivalently the
set of all terms in a context with A variables, modulo the equa-
tions; every abstract clone arises in this way. Classical abstract
clones have been generalized to Kleisli structures (e.g. [14])
and relative monads ([6], [61]).

When C is locally small and cocomplete then we can left-
Kan-extend any abstract clone to a strong monad. Since F is
dense in C, every object X of C is a colimit X = W ?D of
a canonical diagram D : J → F of objects of F, relative to a
weight W : Jop → C (e.g. [28]). We define an enriched monad
on C by preserving this colimit: T (W ?D)

def
= W ? (T (D−)).

More concretely, T (X) is a coequalizer:∐
A,B∈F T (A)×BA ×XB ⇒

∐
A∈F T (A)×XA → T (X)

whose components can be thought of as pairs of a term
together with a valuation for its context, modulo change of
variables. See also [8], [30]: monads that arise in this way are
an enriched version of ‘monads with arities’.

Aside: From an abstract clone T for (F ⊆ C) we can build
a C-enriched category CT : the objects are the objects of F,
and the hom-objects are given by CT (A,B)

def
= [B ⇒ T (A)].

This is essentially an enriched Lawvere theory [53] (albeit
with different objects, following [6], [8], [11], [32], [37], [38],
[51]), or dually a distributive Freyd category ([34], [40]).

B. Clones on presheaf categories

We have already seen (§VI-E5) that the presheaf category
[Ctx0,Set ] is a good place to model parameterized algebraic
theories. For the subcategory F, we choose the category of
order 1 contexts.

To describe an order 1 context it is sufficient to describe the
number of variables of type [α1 . . . αm], for each list of order 0
types, α1 . . . αm. We can thus understand an order 1 con-
text Γ = (x1 : [α1,1, . . . , α1,m1

], . . . xn : [α1,1, . . . , αn,mn ]) as
a sum of representable presheaves:

Γ = Ctx0((α1,1 . . . α1,m1),−)+· · ·+Ctx0((αn,1 . . . αn,mn),−)

so that the interpretation of a context given in §VI-A satisfies
JΓKX ∼= XΓ.

Recall that the category of finite sums of representables
Ctx1 is a finite coproduct completion of Ctx0 (e.g. [10]). The
importance of this construction to algebra is well established
(e.g. [26] and §VIII-B3).

The term model construction (§VI-E5) gives the following
correspondence:



Theorem 10 ([59]). To give a parameterized algebraic theory
is to give an abstract clone for Ctx1 ⊆ [Ctx0,Set ].

C. Example: clone for equality testing

We now provide a syntax free description of the abstract
clone for the theory of equality testing (§IV-C). Since there is
only one base type in that theory, an order 0 context is given
by a natural number (its size) and an order 1 context is given
by a function k : N→ N such that the set {n ∈ N | k(n) 6= 0}
is finite, so that k(n) is the number of variables of type [αn].
So an order (0/1) context is given by a pair (k|p).

Recall that the Stirling number of the second kind, Sp(n),
is the number of ways to partition a set of size p into n non-
empty subsets (e.g. [54, §1.9]). The function Sp : N → N
has finite support, and so we can understand it as an order 1
context.

Proposition 11. The terms of the theory of equality testing
(§IV-C) in context (k|p) are in bijection with the set of
renamings Ctx1(Sp, k).

Before embarking on a proof we note the general fact that
we can count the morphisms of order 1 contexts, k → l:

Ctx1(k, l) ∼=
∏
m(
∑
n(l(n)×mn))k(m) (3)

since a morphism assigns to each variable of type [αm] in k
a variable of type [αn] in l together with a renaming of the
parameter variables, n→ m.

Proof notes for Prop. 11: We convert a term into a normal
form as follows. Construct a binary tree of height p×p where
the nodes at height (i, j) are labelled ?ai=aj . By law (idem-?),
any term t is equal to this tree with t at each of the leaves.
We now use (?=�/?=�) and the derivable law (dup-?) to reduce
the tree to one where the leaves are of the form x(~a). Each
of the 2p×p leaves can be tagged with a binary relation on p
which contains (i, j) if the path to the leaf turned left at height
(i, j). If this binary relation is not an equivalence relation,
then the leaf doesn’t matter, by (?=�/?=�, ?=�, sub-?=�, dup-?). If it
is an equivalence relation then we can rename the variables
~a within the equivalence relation. Thus for each equivalence
relation on p with m partitions a variable x : n must be given
together with parameters, of which there are mn.

D. Example: clone for restriction

We enumerate the partial equivalence relations on a set of
size n whose domain is size d: let PER(n, d)

def
=
(
n
d

)
×Bd,

where
(
n
d

)
is the number of ways to choose d from n (the

binomial coefficient), and Bd
def
=
∑
m Sd(m) is the number of

equivalence relations on d (the Bell number, [54, §1.9]). We
now use this to define

(Res k)(n)
def
=
∑
d k(n+ d)× PER(n+ d, d) (4)

Let δp : N→ N satisfy δp(p) = 1 and δp(n) = 0 (n 6= p).

Proposition 12. The terms of the theory of restriction (§V-B)
in context (k|p) are in bijection with the set of renamings
Ctx1(δp,Res k).

Proof notes: Given a renaming φ : Ctx1(δp,Res k) we let
(n, (d, i, (s, (m, q))), f) = φ(p)(∗), via (3) and (4). So xi is a
variable of type [αn+d], s is a subset of (n+d) of size d, q is
partition of d into m sets, and f : n→ p is a function. We build
the term νb1. . . . νbm.xi(c1, . . . , cn+d) where cj = af(j′) if j
is the j′-th element of (n+ d) \ s, and cj = bg(j′) if j is the
j′-th element of s, and g : d → m is a choice of surjection
that implements q.

E. Example: the abstract clone for restriction and equality

Proposition 13. The terms of the theory of restriction and
equality (§V-D) in context (k|p) are in bijection with the set
of renamings Ctx1(Sp,Res k).

These representation results can be used as a starting
point for representation results for other theories, including
π-calculus and local store.

VIII. RELATING THEORIES

In this section we assume that there is only one base type, so
that an order 0 context is determined by a natural number. Thus
the category Ctx0 comprises natural numbers and all functions
between them.

Many authors have considered the subcategory Inj0 of
natural numbers and injective functions. We will consider three
categories of algebras over [Inj0,Set ] from the literature:

1) algebras for local store [49],
2) algebras for restriction [47],
3) algebras for pi calculus [56].

We will explain the connection between these algebras and
the parameterized algebraic theories for these notions of
computation.

A. Main results

First, we recall that the identity-on-objects inclusion functor
J : Inj0 → Ctx0 induces a functor J∗ : [Ctx0,Set ] →
[Inj0,Set ] (by precomposition) which has a right adjoint
J∗ : [Inj0,Set ]→ [Ctx0,Set ]. (See also [19].)

1) Local store: Plotkin and Power defined a monad for
local store by defining a category LS -alg of ‘local store
algebras’, with a forgetful functor LS -alg → [Inj0,Set ]
which they showed was monadic (i.e., LS -alg is the category
of Eilenberg-Moore algebras for a monad).

Theorem 14. Let Mod(LS ; [Ctx0,Set ]) be the category of
models and homomorphisms for the parameterized algebraic
theory of local store (§V-E) in the category [Ctx0,Set ]. There is
an equivalence of categories LS -alg 'Mod(LS ; [Ctx0,Set ])
making the following diagram commute.

LS -alg
��

' Mod(LS ; [Ctx0,Set ])
��

[Inj0,Set ]
J∗

// [Ctx0,Set ]

(5)

In fact, Plotkin and Power showed that their functor
LS -alg → [Inj0,Set ] is a [Inj0,Set ]-enriched functor be-
tween [Inj0,Set ]-enriched categories. Since the right adjoint
J∗ : [Inj0,Set ] → [Ctx0,Set ] preserves products it yields a



2-functor [Inj0,Set ]-CAT → [Ctx0,Set ]-CAT. Indeed, we
can understand the commuting diagram (5) as a diagram in
the 2-category of [Ctx0,Set ]-enriched categories and functors.

2) Restriction: Pitts [47] and others (e.g. [20], [36]) have
used ‘restriction structures’ to model various effects relating to
name generation and restriction. This category is monadic over
[Inj0,Set ], and the corresponding dynamic allocation monad
has been used to model the ν-calculus [56, §5].

Theorem 15. Let Mod(ν,?=; [Ctx0,Set ]) be the cate-
gory of models of restriction with equality testing (§V-D)
in [Ctx0,Set ]. There is an equivalence of categories
Mod(ν,?=; [Ctx0,Set ]) ' Res making the following diagram
commute:

Res
��

' Mod(ν,?=; [Ctx0,Set ])
��

[Inj0,Set ]
J∗

// [Ctx0,Set ]

3) π-calculus: Stark [57, §5.2] introduced a category PI of
‘algebras’ with a monadic forgetful functor PI → [Inj0,Set ].
The monad over [Inj0,Set ] describes the π-calculus up-to
early bisimulation [57, eq. (4)].

Theorem 16. LetMod(π; [Ctx0,Set ]) be the category of mod-
els of the theory of the π-calculus (§V-F) in [Ctx0,Set ]. There
is an equivalence of categories Mod(π; [Ctx0,Set ]) ' PI
making the following diagram commute:

PI
��

' Mod(π; [Ctx0,Set ])
��

[Inj0,Set ]
J∗

// [Ctx0,Set ]

This theorem substantiates a proposal in [57, §6]. Notice
that by composing with the adjunction J∗ a J∗, early bisim-
ulation becomes early congruence.

B. Details on the general situation

We now explain the general connection between algebras
and monads on [Inj0,Set ] and parameterized algebraic theo-
ries, to suggest how Theorems 14–16 are proved.

1) Characterization of monads: In Section VII-B we
showed that parameterized algebraic theories can be under-
stood as abstract clones in (Ctx1 ⊆ [Ctx0,Set ]). We have the
following general result about the monads that correspond to
abstract clones on presheaf categories.

Proposition 17 ([30],[32],[59]). Let C be a small category
and let F be the full subcategory of [C,Set ] comprising the
finite coproducts of representables. The following data are
equivalent:

1) An abstract clone for F ⊆ [C,Set ].
2) A strong monad on [C,Set ] that preserves filtered col-

imits and reflexive coequalizers.
3) A [C,Set ]-enriched category A with filtered colimits, re-

flexive coequalizers and powers, together with a functor
A → [C,Set ] that preserves filtered colimits, reflexive
coequalizers and powers, reflects isomorphisms, and has
a left adjoint.

Proof notes: 1↔2: by left Kan extension, as in §VII-A.
The density presentation of F ⊆ [C,Set ] can be chosen to
comprise the filtered colimits and reflexive coequalizers (see
also [29, Thm. 7.2]). Indeed, [C,Set ] is the free completion
of F under filtered colimits and reflexive coequalizers ([3],
[4], [32]). 2↔3: an enriched version of the crude monadicity
theorem.

We define a [C,Set ]-enriched finitary crude-monadic func-
tor to be a functor as in item (3) of Prop. 17.

2) Connections between notions of algebra: In general we
have a connection between certain monads T on [Inj0,Set ]
and parameterized algebraic theories.

Definition 18. We say that a presheaf X in [Inj0,Set ] is
1-inhabited if either X(n) is empty for all n, or X(1) is
inhabited. A functor F : A → [Inj0,Set ] is 1-inhabited if
F (A) is 1-inhabited for all A.

The functors from earlier work (Res → [Inj0,Set ] [47],
LS -alg → [Inj0,Set ] [49], PI → [Inj0,Set ] [57]) are all
[Inj0,Set ]-enriched finitary crude-monadic and 1-inhabited.
This allows us to relate them with parameterized algebraic
theories.

Theorem 19. Consider a [Inj0,Set ]-enriched finitary crude-
monadic functor A → [Inj0,Set ] that is 1-inhabited. There
is a parameterized algebraic theory T yielding the following
situation of [Ctx0,Set ]-enriched categories and functors.

A
��

' Mod(T; [Ctx0,Set ])
��

[Inj0,Set ]
J∗

// [Ctx0,Set ]

(6)

Proof notes: We begin by characterizing the right adjoint
J∗ : [Inj0,Set ]→ [Ctx0,Set ]. By the Yoneda lemma,

(J∗X)(p) ∼= [Inj0,Set ](J∗(Ctx0(p,−)), X)
∼= [Inj0,Set ](

∑
m Sp(m)× Inj0(m,−), X)

∼=
∏
mX(m)Sp(m) (7)

using the Stirling numbers Sp(m). The bijection Ctx0(p, n) ∼=∑
m Sp(m)× Inj0(m,n) is standard (e.g. [54, §1.9],[17]).
It follows from (7) that J∗ preserves filtered colimits and

reflexive coequalizers, since they commute with products in
Set . By direct calculation, J∗ reflects isomorphisms between
1-inhabited presheaves. We use this to deduce that the com-
posite A → [Inj0,Set ] → [Ctx0,Set ] is [Ctx0,Set ]-enriched
finitary crude-monadic.

To some extent we can go the other way:

Proposition 20. If a parameterized algebraic theory T con-
tains the theory of restriction with equality testing then
there is a [Inj0,Set ]-enriched finitary crude-monadic functor
U : Mod(T; [Ctx0,Set ]) → [Inj0,Set ] making the following
diagram commute:

Mod(T; [Ctx0,Set ])
ttiii **UUUU

[Inj0,Set ]
J∗

// [Ctx0,Set ]

(8)



Proof notes: Since J∗ : [Inj0,Set ]→ [Ctx0,Set ]
preserves products, we can consider Mod(T; [Ctx0,Set ])
as a [Inj0,Set ]-enriched category. The composite functor
Mod(T; [Ctx0,Set ])→Mod(ν,?=; [Ctx0,Set ])→ [Inj0,Set ]
is [Inj0,Set ]-enriched finitary crude-monadic.
Note: Our results in this section are for models of parame-
terized algebraic theories in [Ctx0,Set ]. It is typically not the
case that Mod(T; [Ctx0,Set ]) 'Mod(T; [Inj0,Set ]).

3) Aside: Each of the three monads on [Inj0,Set ] is strong
and preserves filtered colimits and reflexive coequalizers.
Thus, by Proposition 17, they correspond to abstract clones
in Inj1 ⊆ [Inj0,Set ], where Inj1 is the finite coproduct
completion of Inj0. The category Inj1 is widely regarded
as important. It can be described in terms of ‘strong nominal
sets’ [60] or ‘named sets’ [46], and it has already been used
as arities: for graded Lawvere theories (Melliès, [38]), for
the π-calculus (Lack and Rosický, [32, Ex. 5.16]), and for
a completeness result for local store [58, Thm. 6].

However, there is still no compelling general syntactic
framework for abstract clones in Inj1 ⊆ [Inj0,Set ]. (This
is what led the author to parameterized algebraic theories.)
We note in passing that there is a non-cartesian monoidal
closed structure on [Inj0,Set ] which is regarded as important
in modelling variable binding ([18],[25]) and separation in
local store (e.g. [44],[43],[51]). This closed structure is the
focus of Melliès’ string diagrams [38] and plays an important
role in nominal equational logic ([12], [18], [21], [31]).
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[32] S. Lack and J. Rosický, “Notions of Lawvere theory,” Appl. Categ.

Structures, vol. 19, no. 1, 2011.
[33] Y. Lafont, B. Reus, and T. Streicher, “Continuations semantics or

expressing implication by negation,” 1993, Munich.
[34] P. B. Levy, J. Power, and H. Thielecke, “Modelling environments in

call-by-value programming languages,” Inform. Comput., 2003.
[35] F. E. J. Linton, “Autonomous equational categories,” J. Math. Mech.,

vol. 15, pp. 637–642, 1966.
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