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Abstract

We describe a framework for game semantics combining opera-
tional and denotational accounts. A game is a bipartite lgap
“passive” and “active” positions, or a categorical variaiith mor-
phisms between positions.

The operational part of the framework is given by a labelled
transition system in which each state sits in a particulaitjpm of
the game. From a state in a passive position, transitiorialeded
with a valid O-move from that position, and take us to a state i
the updated position. Transitions from states in an actosition
are likewise labelled with a valid P-move, but silent tréiosis are
allowed, which must take us to a state in the same position.

The denotational part is given by a “transfer” from one game
to another, a kind of program that converts moves betweetwihe
games, giving an operation on strategies. The agreementbpt
the two parts is given by a relation called a “stepped bisatioh”.

The framework is illustrated by an example of substitution
within a lambda-calculus.

Categories and Subject Descriptors  F.3.2 [Logic and meanings
of program$: Semantics of programming languages

1. Introduction

This paper is concerned with two established lines of reseir
the semantics of higher-order calculi. One is game sensmnte
ing pointers{[10], a form of denotational semantics that hasn
widely adapted successfully adapted to many languagerésatu
including general references [3.! 27], control operatd§],[&x-
ceptions [[20] and polymorphism_|22.123]. The other is opéta(a
normal form) bisimulation|[28], a convenient operationath-
nique for establishing observational equivalences inouariset-
tings [18,24] 25, 26, 29], based on a transition system oactsd
from the syntax of the calculus.

Itis widely accepted that these two ideas have a lotin common
and that both operational and denotational perspectivesrgror-
tant [7)/14| 15, 1€, 21]. The contribution of this paper islaberate
the connections and to develop some principles that ueciei re-
lationship.

Summary of the concepts
Our analysis is based on the following five key concepts:
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. A game,which is essentially a bipartite graph describing the
moves that can be made as play passes between the different
positions of the two players.

2. A strategy for a gamewhich specifies a particular way of
playing a game, from a given starting position. Formallysit

a set of paths through the graph.

. Atransition system over a gamehich is the operational part of
the account. This can be thought of as an abstract machine tha
performs a strategy. Formally, it is a transition systenelkol
by legal moves of a game. (The set of legitimate actions akgng
over time, by contrast with conventional LTSs.)

4. A way to transfer strategies from one game to anqtkagdrich

is the denotational part of the account. We take as an example
composition operation, which takes two strategies in aq@art

lar gameg and composes them. We understand this as a transfer
from the tensor gamé ® G (whose strategies are roughly pairs

of strategies) to the gamg

. A stepped bisimulation across a transfevhich relates the
operational and denotational accounts. Our main theorgm sa
that, if x andy are states of transition systems @rand H
respectively, and they are stepped bisimilar across aftnafs:

G — 'H, then the strategy performed byis transfered by?D
to the strategy performed hy. For the example of composing
strategies, we are able to relate the denotational oparafio
composition and the operational results of substitution.

Goals and further discoveries

When we embarked on this project, we had a number of goals.
Primarily, we wanted to understand techniques for opegatin
strategies. We also wanted to set the fundamental notiottgnwi
well-established mathematical frameworks, for exampémdition
systems as coalgebras, and renaming in terms of functayarigs.

As we report here, we have accomplished these things. Buaves h
made some surprising discoveries too.

* We found a convenient diagrammatic notation for operat@mns
strategies.

e Several well-known categorical concepts turn out to play an
interesting role, in particular two-dimensional partialapn
(Sect.[}), bimodule (Seckl 8), andautonomous bicategory
(Sect®).

Related Work

Apart from papers about denotational and/or operationahega
semantics, we briefly comment on some work that might seem
broadly related to our work. First, it seems appropriatenplea-
sise the difference between open bisimilarity, in whichraction is
tested by calling it with a fresh identifier, and applicatbisimilar-

ity [, in which a function is tested by calling it with all gsible
arguments. For the latter there remains a big gap betweemn ope



ational and denotational accounts: Howe's ingenious egrgre
proof [9] appears unrelated to any denotational principlesod-
els.

Second, we recall the ‘bialgebraic semantics’ of Turi and
Plotkin [30], which relates operational and denotatiorahantics
for simple first-order process calculi. But bialgebraic aetics
seems different in spirit from our work. On the one hand bial-
gebraic semantics neatly explains when the structuralatipeal
semantics of a first-order process calculus is compositlpneon-
struction. On the other hand we are investigating commuogitity
properties for an abstract-machine-based operationarsies for
higher-order calculi, where compositionality is not imrize.

In addition to these, there are many other operational amaly
of game semantics, notably [5, 6] and the “traversal” tetdmo
of [4]. Games similar to those in SeEl. 3 appeal.in [12, 17h&i-
ules (profunctors) are employed in game semantics in [8, 31]

2. lllustrative Example
2.1 Examplecalculus

The reader might expect at this point to see a rich exampbe:ices,
e.g. call-by-value typed-calculus with recursive types and general
references. However, treating such a calculus would irvekv-
eral complications (answer moves, ultimate pattern matc|#25],
renamings of references) that would distract somewhat fitoen
points we are presenting in this paper. So instead we shéttben
general references, and consider just one recursive type

A=(AxA)—0

which is just complicated enough to illustrate the points ave
making in the paper. A value of this type is a function thatabiexd
with two arguments and (as in CPS) never returns. By abliegia

Ax,y). M £ \z.split z as (x,y). M

we obtain the following untyped (or uni-typed) calculus. Yess
that it has no intrinsic importance; it is merely an illusitra frag-
ment of the rich calculus described above.

Value V. a= x| Ax,y).M
Nonreturning command M == V(V,V)

where bindsx andy; we work up toa-equivalence. For a finite
setI" of identifiers, we writdl ¥ V' to say thafl” is a value with
free identifiers drawn fromi', andT" " M for a nonreturning
command. We omit the typing rules, which are evident.

Operational semantics of apencommandl’ "¢ M is given
by theC-machinewhich 3-reduces

I (A(x,y)-M)(V, W) ~ M[V/x, W/y]

until reaching a command of the forrgV, W) for somex € T'.

2.2 Exampleinteraction

We consider interaction between two players called P (Rrept
Patricia, the program) and O (Opponent, Oliver, the envirent).
Each passes functions to the other, and the passed funetiens
represented as fresh function-names. To illustrate tbissider the
program:

x,y E" (s, £)-5(¢,¥))(x, AP, @)-(A(w, v)-u(v, @) (p, x))

For this program, here is an interaction between P and Gallgjt
P has function-names y (i.e. has the ability to call them) and O
has none.

1. P firstly performs ong-reduction, giving
x(A(p, @)-(A(u, v).u(v, q))(p, %), y)

so she callx and passes to O two function-namgsand b1
representing the functions(p, q).(A(u, v).u(v, q))(p,x) and
y respectively. These names dmresh i.e. not used previously.

2. Suppose O callg, passing to P two fresh function-names
andw;.

3. Then P executes(p, q).(A(u, v).u(v,q))(p, x))(wo,w1) ~
(A(u,v).u(v,w1))(wo, x) ~ wo(x,w1) SO she callsi, passing
two fresh function-namek, andbs representing the functions
x andw; respectively.

4. Suppose O callg;, passing to P two fresh function-names
andws.

5. Then P executeg(w2, ws3), i.e. immediately callg, passing to

O two fresh function-nameks and bs representing the func-
tionsw2 andws respectively.

We see that each player moves by calling a function-name from
their inventory, which grows over time. Consequently the afe
legitimate moves keeps changing.

Remark We are not explicitly using justification pointers in the
style of [10] but it is clear that, for example, when O cdllsin
move 4, he could express this as “the second name | received in
move 1”. Thatis: as a justification pointer with some extread®n

the other hand, when P caljsin move 5, there is no justification
pointer because she owned it at the start.

3. Games, Strategies, Transition Systems

We consider two kinds of games in this paper: a familiar “dite”
kind in this section, and a more sophisticated “categdridald in
Sect[¥.

3.1 Games

DEFINITION 1. A (discrete) gam&; is a bipartite directed multi-
graph. Explicitly:
® a setGP**® of passive positions
e asetG*** of active positions
o for each passive positioR,
= a setOmove P of Opponent-moveffom P
= for eachm € Omove P an activeresult positionP.m
o for each active positiod),
= a setPmove Q of Proponent-moveBom Q
= for eachn € Pmove Q a passivaesult position?).n.

Note that no position is designated “initial”. We writg —— Q
to mean thatn € Omove P and Q = P.m, and we write

Qe+ P tomean thai € Pmove Q andP = Q.n.

Our main example of a game uses the notion ajem-set
intuitively a set of names with a facility for generatinggheones.
Formally it is a setd equipped with a set gdermittedfinite subsets
of A, and for each permitted sé& an elemenvR € A\ R such

thatRt £ R U {vR} is permitted. Here are some examples.

1. Nis a gen-set witl$n = {m € N | m < n} permitted for all

n € N, andv($n) = n. This is similar to O’s function-names
in our example, vizbo, b1, bz, bs, ba, bs.

2. If B is a set thenB + N is a gen-set withi/ + $n permit-
ted for all finteU C B andn € N, andv(U + $n) =
inr n. This is similar to P’s function-names in our example, viz.
X, ¥, Wo, W1, w2, w3. We would takeB to be some set containing
x andy.

3. [Example with thanks to L. Moss; not used in the sequeld Th
universe of sets forms a gen-set, or strictly speaking actpsy



with every finite se® permitted and'R = {z € R | = ¢ =}, For z ¢ S"™" P and m € Omove P we write z@m,_for
which is simplyR if the Axiom of Foundation is assumed. (P (x)(m). Fory € S*" P we writey ~» x ory ~ z (silent
transitior) according ag* (y) isinl (n, ) orinr z.

n

- T For our main exampleffl), we form a transition systetxSyst
For a permitted seR andn € N, we write RT™ = rt -t over \Game as follows.
def +n qivi iati . . . . . .
andv, R = vR™", giving a sequenci, R)ncn Of distinct names ¢ A passive state in (passive) positibr|| A is a family of values

not in R. For permitted set$, S and functionf : R — S and

- ! (Va)aea, WhereI' H¥ V,, for eacha € A.
n € N, we write f™ : R™ — S*™ for the extended function

f iR — viSlicn. ¢ An active state in (active) positidn || A consists of a family of
Let us now fix two gen-sets d®'s function-namesind ofO’s values(Va)aea and a nonreturning command, wherel” -
function-namesespectively. We form a gameGame in which Vo for eacha € Aandl” =" M. We write(Va)aea » M for

an active state.
¢ apassive position is a pdir || A, wherel’ andA are permitted

sets of P's names and O's names respectively e For a passive statéV,).ca in positionT' || A, we define

(Va)aea@a = (Va)aea » Va(vol, D).

e an active position is the same ) ] .
e For an active stat€V,)aca » M in positionT | A, we set

e an O-move fronT" || Aisb € A, with result positiod™ ™2 || A

e a P-move fronT || A is x € T, with result positior” || A™2. = (Va)aca > M'if M~ M
o ) ) ] o ] (Va)aca » M <~ (Va)aea [Vi — Vii—o,1
This is in keeping with the interaction in Secti@h 2: O moves it M =x(Vo, V1)

by selecting a function-name from his inventory, putting taew

function-names into P’s, and vice versa. We often want to ignore the silent transitions, in which case

use the following.

3.2 Strategies DEFINITION 4. A big-step systenover a gamej consists of the
LetG be a game. Alayin G is any sequence of consecutive moves. following data.
Strategies may be described as sets of plays, as follows. e For each passive positiof® a setSP** P of passive states in
DEFINITION 2. 1. Astrategyfor G starting from a passive posi- position 7. . " act . .
tion P is a setr of passive-ending plays o For.e.ach active positior) a setS** @ of active states in
position@.
Pol0 om0 L it it W e For each passive positioR a function
s s act
such that the empty play is in, and smn € o impliess € o, TSP — H §*" Pm
andtn,tn’ € o impliesn = n'. We writeStratZ™* P for the meOmove P
set of all such strategies. e For each active positiod a function
2. Astrategyfor G starting from an active positio is a seto of act act pass
passive-ending plays @ 8@ — Z S Q) +1
nEPmove Q
Q-L s s Forz € SP** P andm € OmoveP we write x@Qm for
o , o P2 (z)(m). Fory € $** P we writey == x andy 1 according
such thatsmn € o |m£!|eSs € o, andin,tn’ € o implies as¢xt(y) isinl (n,z) orinr (). A small-step system always gives
n =n'. We writeStrat3™ @) for the set of all such strategies. rise to a big-step one: we sgt==> z wheny ~* <5 =, andy 1
o wheny ~~%.,
33 Transition systems We may go a step further and dispense with the active states:

In the following, it is essential not to confuse positionshnstates.
For a computer program playing chess, the position descilme
current arrangement of the chessboard, which determineg wh

DEFINITION 5. A passive systenover a gamej consists of the
following data.

moves are legitimate, whereas a state describes the vdloeso e For each passive positiofr a setS”*** P of passive states in
ory cells etc. used to determine how to play. Think of a positas position P.
the “type” of a state. o For each passive positioR a function¢2*** : SP** P —
DEFINITION 3. A small-step systeraver a gaméj consists of the H (( Z SP** Pom.n) + 1)
fOHOWing data. m€EOmove P neEPmove P.m
e For each passive positioR a setSP*** P of passive states in  Forz € SP** P andm € Omove P we writez@m ~% w and
positionP. x@m 1 according a¥"(x)(m) is inl (n,w) or inr (). (Here
e For each active positiorQ a setS**(Q of active states in @~ and @} are quaternary and binary predicates respectively,
positionQ. andx@m has no meaning in a passive system.) Clearly a big-step
e For each passive positioR a function system gives rise to a passive one by taking just the padsitess
We could consider bisimulations for small-step or big-sge-
s P — H S P.m, tems, but it turns out that the most useful notion is for passi/s-
méeOmove P tems.
e For each active positio® a function DEFINITION 6. LetS be a passive system over a gaghé\ passive
act et pass act bisimulationonS associates to each passive positida binary re-
@G sQ o~ () S™TQm)+87Q lation R » onSP** P, such that ifz (Rp) 2’ andm € Omove P,

nePmove Q either



e z@Qm == w andz’@m = w’ for somen € Pmove P.m
andw (Rp.m.n) w’
e or z@Qm {t andz’@Qm 1).

3.4 From transition systemsto strategies

Each state has an associated strategy that describesyhét pieay
perform.

PROPOSITIONL. 1. LetS be a passive system over a gagie
and z a passive state in positioR. Write [z]>** for the set
of tracesof z, i.e. passive-ending playsono . .. mr—1ng—1
from P that arise from a sequence of states

k—1

n Mo
T =x0 xoQmg ~ x1 Tr_1Qmp_1 ~~

Then[z] 2™ € Stratg™ P.

2. LetS be a big-step system over a gagieandy an active state
in position@. Write [y] %™ for the set oftracesof y i.e. passive-
ending playsnomoni ... mg_1n from @ that arise from a
sequence of states

T

Y N To xoQmo N 1 Tr—1Qmy_1 5 Tk
Then[y]s* € Straty™* Q.

As usual for deterministic systems, trace equivalence &ichb
ilarity coincide:

ProPOSITION2. 1. LetS be a passive system over a gaghend
z, 2’ passive states in positioR. Then[z]%*° = [z']%"° iff
there is a passive bisimulatioR onS such thate (Rp) z'.

2. LetS be a big-step system over a gagheandy, 3y’ active states
in position Q. Then[y]s* = [y'] iff there is a passive
bisimulationR on'S such that either

ey = wandy’ == w' for somen € Pmove P.m and
w (Rg.n) w'
e ory randy’ 1.

4. Position Morphisms

We return to our exampleff)). Given functiony : T' — I'" and

q : A’ — A, any passive statd’,).ca in positionT" || A can be
transformed into a passive St&t€ V,(q))ac -’ in positionI” || A’,
wherep® indicates renaming. We would expect that the operational
meaning of the latter state can be obtained from that of thedo

by the following operation transforming strategie®nI" || A to
strategies ol || A'.

An O-move from the latter position is converted into an
O-move from the former by applying If we feed this to
o and it responds with a P-move from™2 || A, we play
a P-move fronT'*2 || A’ by applyingp™2. If we receive
another O-move, we continue in the same way.

The correctness of this construction is an instance of argkfaet,
Proposition[b below. The key idea is that the paif| ¢ in the
preceding discussion may be callesharphisni" || A — T || A,
and it is then evident that the passive positions form a cayggnd
likewise the active positions).

4.1 Categorical games

DEFINITION 7. A categorical gamg is a game together with the
following additional data.

e For each pair of passive position P’, a setG”***(P, P’) of
passive position morphisnid — P’.

e For two passive position morphismp I =4 . P

. if . . id
a composite P L P” , and an identity p "o p for

each passive positio®, satisfying the usual left and right
identity and associativity laws.

o Likewise for active positions.

e For each passive position morphisfn: P — P’ andm’ €
Omove P, a move(Omove f)(m') € Omove P and active
position morphisny.m’ : P.(Omove f)(m’) — P'.m/, sat-
isfying equations for identity and composition describetbty.

o For each active position morphisp: Q — Q' and eachn €
Pmove Q, a move(Pmove g)(n) € PmoveQ’ and passive
position morphisng.n : Q.n — Q’.(Pmove g)(n), satisfying
equations for identity and composition described below.

We introduce a helpful diagrammatic notation. We shall draw
anO-move square

m

Poe >Q

fl g
v

P’eﬁ/Ql

()

to say thatn = (Omove f)(m’) andg = f.m’, and likewise draw
aP-move square

Qe——— P 2

gl f
7

Q’ .n,> P’

to say thatn’ = (Pmove g)(n) and f = g.n. Note the conven-
tions used: downwards arrows are position morphisms, wigittts
arrows are moves, and dashed arrows are derived.

The equations mentioned in Odf.7 stipulate that identitied
composites of O-move squares

m

Pe7—n>Q Po >Q
fl Eg
Y

id id

Plo > Q’

m
f/l fg/
Y

PGT Q P" eﬁ Q”
are O-move squares, and likewise for P-move squares.

We may now describe how our main exampl&ame forms a
categorical game. In both the passive and active posititagoaes
a morphism

plg:TA—-T"|A @)

consists of functiong : ' — IV andq : A’ — A, with identity
and composite morphisms defined in the evident way. The sguar
are
1(b)

T H Ao . 1“+2 H A
O-move
+2 :
pql ? ”q@ square
Ind H A,Obﬁ F/+2 H A
F|Ae———=T | AT2
P-move
+2:
pql Plla v square
k(x)

|| A e =T || A/T2



4.2 Position morphisms acting on strategies

The operation on strategies described at the start of thiosec
may now be given generally. L& be a categorical game. &-
interaction sequencés just a sequence of O-move and P-move
squares, e.g.

We may describe this interaction sequence fiphy the sequence
of movesnomgnimjnz depicted as solid, since they determine the
other moves and morphisms. The play depicted along an attena
sequence’s upper edge is itgernal play, the one depicted along
its lower edge is itexternal play

PROPOSITION3. For any passive position morphisfn: P — P’
ando € Stratg™ P, let (Stratg™ f) (o) be the set of external
plays of passive-ending-interaction sequences frofiwhose in-
ternal play is ino. Then(Stratg™ f) (o) € Stratg™* P’. Like-
wise for an active position morphism.

PROPOSITION4. (Functoriality of Straty ™ and Stratg™
1. For a strategyr € Straty™™® P we have
(Stratg™*idp) (o) = o
and likewise for active positions.

2. For passive position morphismgP . p—2s pr,
and strategyr € Stratg™ P, we have

(Stratg™ (f; g)) (o) = (Stratg™ g) (Stratg™ f) (o)
and likewise for active position morphisms.

4.3 Transition systems over a categorical game

As in Secf3B, we define small-step, big-step and passiters
over a categorical game.

DEFINITION 8. LetG be a categorical game. small-step system
over G is a small-step system over the discrete gainéas in
Definition[3), with the following additional data.

e For each passive position morphisfn: P — P’ a function
Spass f . Spass P — Spass P,.
¢ For each active position morphism : Q@ — Q' a function
Sact g: Sact Q N Sact Q/-
The following conditions must be satisfied.

e For z € SP** P we have(SP***idp) () = z, and likewise for
active positions.

¢ For passive position morphismg . p—2~ p and
x € SP** P we have(SP*** f; g) (x) = (SP**g) (SP** f) (x),
and likewise for active position morphisms.

e For every O-move squardd(l) and € SP**P, we have
(™" g) (x@m) = ((S*** f) (x))@m’.

¢ For every active position morphism : Q — Q" andy €
St Q, if y ~ 2z then(S** g) (y) ~ (S** g) (2).

e For every P-m/ove squargl(2) ande S** Q, if y ~% 2 then
(8™ g) (y) ~ (8P f) ().

We likewise define a big-step system and passive systemcver

Once again a small-step system gives rise to a big-stepnsyatel
a big-step system to a passive system.

Our example\Syst forms a small-step system over the categor-
ical game\Game: a passive morphisriil(3) transforifig, ),c A to
(P V) )ve ar» and an active morphisrill(3) transforifis,)aca »
M to (p* q(b))beA’ » p*M.

4.4 Compositionality theorem for position morphisms

We now substantiate the claim at the start of the sectiors: &ni
instance of the following “compositionality theorem”.

PROPOSITIONS. (Naturality of [-]*** and [-]*°*)

1. LetS be a passive system over a categorical gamé&or any
passive position morphisih : P — P’ and stater € SP**° P
we have

[[(Spass f) (ZL’) l;lnjss _ (Strat];glass f) [[:I;]]I;Dass

2. LetS be a big-step system over a categorical gaghéor any
active position morphismp : Q — Q' and statey € S** Q
we have

(69 WIF = (Stratf" o) b

5. Categorical Gamesvia Two-Dimensional
Partial Maps

In this section, which is not used in the sequel, we presenia c
cise formulation of categorical game in terms of two-dinienal
partial mapsi[18].

DEFINITION 9. (Element category) Le€ be a category. For a
functor G C — Set, we write EI(C,G) for the category
of pairs of A € C and x € GA. Its morphisms ar&-morphisms
preserving the element. For a funct6f : C°* — Set, we define
opEl(C, G) = (EI(C°?, G))°". Each has a forgetful functor tG.

DEFINITION 10. (Families construction) LelC be a category.
We write Fam(C) for the category that has as objects fami-
lies of objects fronC; the homset from(A;)icr to (Bj)jes IS
[Licr 2°;c5C(As, Bj). We writeopFam(C) for (Fam(C?))°P.
These are respectively the free category with coproductstha
free category with products ai

DEFINITION 11. LetC andD be categories.

1. Atwo-dimensional partial mag — D is a functorF' : C —
Fam(D). Equivalently: it consists of a functdr, : C — Set
and a functorFy : EI(C, Fy) — D. Any functorH : D —
Set gives a functory . H : C — Set defined to be the
composite ofd with the coproduct-preserving extension ff
to Fam(D). Equivalently: the left Kan extension BfF'* along
the forgetful functoEl(C, Fy) — C.

2. A2-dimensional op-partial map — D is a functorF' : C —
opFam(D). Equivalently: it consists of a functdr, : C°* —
Set and a functor Iy opEl(C, Fv) — D. Any functor
H : D — Set gives afunctof[. H : C — Set defined
to be the composite df with the product-preserving extension
of H to opFam(D). Equivalently: the right Kan extension of
HF" along the forgetful functospEl(C, Fy) — C.

Now we reformulate our key definitions.
PROPOSITIONG. A categorical gam& consists of

¢ (small) categorieg;?*** and G**
¢ a two-dimensional op-partial maPmove : GP*** — G
¢ atwo-dimensional partial mapmove : G** — GP?ss,

PROPOSITIONY. LetG be a categorical game.



1. A small-step system ovéris a coalgebra for the endofunctor
ass act .
onSet”"" x Set?"" sending

(Spass7Sact) — ( H Sact7( Z SpaSS) + Sact)

Omove Pmove

2. A big-step system ovéris a coalgebra for the endofunctor on
ass act .
Set?""™ x Set?"™" sending

(Spass7gact) H( H Sact7( Z SpaSS) + 1)

Omove Pmove

3. A passive system ovéris a coalgebra for the endofunctor on
Set?"™ sending

Spass — H (( Z SpaSS) + 1)
Omove Pmove
More surprisingly, a game is a coalgebra too:

PROPOSITIONS. A categorical game is a coalgebra for the endo-
functor onCat? sending

(gpass7 gact) — (opFam(gaCt), Fam(gpaSS))

6. Tensoring
6.1 Tensor games

We often want to run two game§ and G’ in parallel, and we
describe this by a “tensor’ gam@ ® G’, following e.g. [2,[1].
A passive position in the tensor consists of a passive positom

each game. O can move in either component; then that componen

becomes active and P can only respond within it, whereuptim bo
components are again passive.

DEFINITION 12. For gamesg andgG’, letG ® G’ be the following
game:

¢ A passive position i§P, P') where P and P’ are passive irg
andg’ respectively.

¢ An active position is eitheinl(Q, P') with @ active inG and
P’ passive ing’, or inr(P,Q’) with P passive inG and Q’
active ing’.

e An O-move fron{P, P’) is eitherinlm with m € Omove P,
which has targetnl(P.m, P’), or inr m with m € Omove P’,
which has targetnr(P, P'.m).

¢ A P-move fromnl(Q, P') isn € Pmove Q, and its target is
(Q.n, P"). Likewise from arinr active position.

DEFINITION 13. For categorical gameg andG’, define the cate-
gorical gameG ® G’ as in Definitior IR, with the following addi-
tional data.

e A passive position morphism frot®, P’) to (P”, P"") is a
pair (f, fYwithf : P — P”andf’ : P’ — P"’. Composite
and identity morphisms are defined componentwise.

¢ Likewise forinl active positions, and likewise faur active po-
sitions. There are no morphisms frani to inr active positions
or vice versa.

6.2 Tensor strategies

Any play inG® G’ has deft playand aright play. This is illustrated
in Fig.[O.

PROPOSITIONS. Let G and G’ be games. For passive positions

P,P" in G,G respectively, andv € Stratg™ P and o’ €

Stratg™ P, leto ® o’ be the set of passive-ending playsjim G’

from (P, P') whose left play is inr and whose right play is i’
pass

Theno ® o' € Stratgyy, (P, P'). Likewise forinl and forinr
active positions.

PrROPOSITION10. (Naturality of ®)

LetG andG’ be categorical games. For passive position morphisms
f:P—Pl'inGandf : P'— P"ing’,ando € Straty"* P
ando’ € Straty;> P, we have

(Straths, (f, 1)) (0@ ') =
(Stratg™ f) (o) ® (Stratgs™ f') (o)
Likewise forinl and forinr active positions.

6.3 Tensor systems

DEFINITION 14. LetS andS’ be small-step systems over garges
andg’ respectively. The small-step syst8m S’ overG ® G’ is as
follows.
e A passive state in positio(P, P’) is a pair (z,z’) of states
x € SP*** Pandz’ € S"P**° P,
¢ An active state in positiom!(Q, P’) is a pair (y, z") of states
y € S** Q andx’ € SP*** P’, and likewise foinr.
o (z,2)Q(inl m) £ (z@m, z'), and likewise foinr m.
~ inl(z,2")
= (z,2)
o likewise forinr(z,y’).

ify~ 2z

° inl(y,x') |fy o T

We likewise define the tensor of big-step or passive systems.
The following shows that this does not cause ambiguity.

ProPOsITION11. 1. For small-step systenSsandS’ over games
G and G’ respectively, the tensor of the big-step formg @fnd
G’ is the big-step form of ® G'.

2. For big-step systenfsandS’ over gameg; andgG’ respectively,
the tensor of the passive forms®fand G’ is the passive form
ofGg® g’

The tensor of systems over categorical games may be defitiegl in
evident way, though we shall not use this.

6.4 Compositionality theorem for tensors

We see how to obtain the operational meaning of a tensorfsvate
those of its components.

PROPOSITION12. LetG andG’ be games.

1. LetS andS’ be passive systems ovgandg’ respectively. For
x € SP** Pandz’ € §'P** P’ we have

[P, = 3 o L]

2. LetS andS’ be big-step systems owgrandg’ respectively. For
y € S** Q andz’ € S'P** P’, we have

[y, 2 )iw@ry = Dlg" @15
Likewise forinr.
By Propositior L this result also holds for small-step eyt

7. Operating on strategies: the example of
substitution

We return to the transition systek$yst for our example calculus.

For termsx,y F" M andz ' V, suppose we have been given
two black boxes: the left one containing active stase M in
positionx, y || and the right one containing passive state— V')

in positionz || a. We can play O-moves into them and wait to
see what P-moves come out, but cannot see the syntax. We wish
to simulate the behaviour of active state A/ [V/y], formed by
substitution, in positiorx, z ||, just using the behaviour from the
left and right black boxes. How shall we proceed? We play oeeth
interfaces: with the left and right boxes and with the exaéworld.



inlm n inrm/ n’

Play ing @ ¢’ (P, P'ye——inl (P.m, P') e— (P.m.n, P')e—= inr (P.m.n, P'.m') e—— (P.m.n, P'.m’.n’)
Left play (inG) P i Pm - Pm.n Pm.n Pm.n
Right play (ing") P P P i P " P’

Figure 1. Left and right play

We first wait for the left box» M. If it plays %, then M ~~* DEFINITION 15. LetG andH be (discrete) games. #hansferQO :
x(Wo, W1) and O receives fresh namisandb; representing?y G — 'H consists of the following data.
and W, respectively. ThusM( [V /y] ~* x(Wo[V/y], W1[V/y])
and we make the latter command our current “external stateé— e For each pair of passive position8 in G and R in H, a set
state we are trying to simulate. So we plagxternally, resulting OP***(P, R) of passive linkers”> — R.
in positionx,z || bo, b1, and our current external state becomes e For each pair of active position§) in G and S in H, a set
(bo — WolV/y],br — W1[V/y]). We record the fact thdt and 0*(Q, S) of active linkers@Q — S.
b, at the external interface were respectively obtained fbgrand e For each passive linkek : P — R a functiony?** ¢
b1 at the left interface, so that whenever external Opponenytspl
bo, we playby into the left box. O*Y Pm. Rom/ OP* (P Rom/.n

On the other hand, suppose the left box playFheni ~-* m,egn[och ((m%;)movcp( ’ ) +(n§movc (R',i,)’ %
y(Wo, W1) and O receives fresh namisandb; representing?y
and W1 respectively. Thus\I[V/y] ~* V(Wo[V/y], W1[V/y]) « For each active linkek: : Q — S a functiony§** €
and we make the latter command our current external state. We
do not playy externally (indeed the external positionzisz ||). act (5 pass () o G
Instead, we play: into the right box, resulting in staie— V » nepgveQ ((n;)m?vc(éci)n m5) + (gprivcs@ m. Sm))
V (wo,w1) in positionz, wo, w1 || a. We record thaty andw, at the '
right interface were respectively obtained frépandb, at the the ] 3
left interface, so that whenever the right box plays we playby We depict the cases;"*(m) of inl (m,k) and inr (n’, ") as
into the left box. respectively:

If now the right box plays, thenV (wo, w1) ~* z(W2, W3) so
V(WolV/y), W[V/3]) ~* Pej=Pm

s | WolV/slfso 1 gy [ Walv/s)/an |, S e
2L maviylfee |70 WAVl m Y
Re——> R.m’

and we make the latter command our current external statzeTh
fore we playz at the external interface. Several points may be learnt P P
from this discussion: . o external

) ) ; square
1. When we await the external Opponent, all interfaces ase pa ' v

m/ n
. . . . — [APSTRTRS r !
sive. When we await a box, it and the external interface are R R.m’e > Rm'.n

active; the other box is passive. , e . , , ,
o . i i We depict the casesg;** (n') of inl (m, k") andinr (n', h) as re-
2. We need to maintain a “linker” function saying where each O gpactively:
name in the external interface, and each P-name in eachahter

interface, came from. A e
Qoe——> Qo> Qnm

3. At any time there is a current external state that we aiagry internal
to simulate. It is constructed from chains of substitutitimet k k' square
|

grow as play continues. s g
4. When we move between internal (left and right) interfaties 0 0
external state does not change. We must rule out an infinite T o

sequence of consecutive such events, to ensure the exttateal . N P-move
makes progress during our simulation. v square

’

Selt> S/

8. TransfersBetween Games

As promised at the start of the section, we give a trans@omp
81 Transfers from A\Game ® AGame to A\Game. A passive linke(p, p;) —
We introduce a notion dfansferfrom one game to another, which  p., wherep; = T’y | A; etc., is a functionl} + I'y + Ae —
is a recipe for converting a strategy for the first game intoategy A1+A:+T. mapping each name to one at a different interface. (We
for the second. As we shall see, the procedure outlined iidbéd useinl,inr,ine as ternary sum constructors.) Likewise for active
forms a transfenGame ® A\Game — AGame. linkersinl (g1, pr) — ge Orinr (p1,gx) — ge. The squares are



e if h(inea) = inl b then O-move square

inlb
(phpr) Om> ((FlJr2 || AI),pr)
h hlinlv;Ti—inev;Teli—0,1
Y
pcoa% Fj2 || Ac
and likewise ifh(inea) = inrb
o if k(inlx) = iney then P-move square
inl (g1, pr) e——= ((T1 || Af), px)
kl klinev; Aerinlv; A1l i—0,1

4
Qoo . > T H AC+2

and ifk(inl x) = inr a then internal square
inl (g1, pr) &= ((T1 | AF?),pe) o= (D1 ]| AF?), (T2 ] A)
kl klinrv; Dyr—inlv; Ay]—0,1

y
Qe Ge

o likewise forinr.

e Composition of a passive linké? — R with a passive position
morphismP’ — P in G, and with a passive position morphism
R — R’ in H, satisfying the five equations in DEf] 16.

¢ Likewise for active linkers.

We require all composites

passive position external
f f o : )
morphism inH V square inO
-— JSRTIRRY S o @eeeeeeee > .
l i external l i 0-and P-move
;. square in® ¢ squares ing
\ \ A
S N > . o e > .

to be external squares, all composites

[T > . PSP > .

l O-move l O-move
square i+ square inO
Y Y

@ > - ST > -

l O-move l O-move
square inO® square inG
Y Y

to be O-move squares, and likewise for P-move and internal
squares.

To define a transfer between categorical games, we need the

well-known notion of bimodule (also called “profunctor”afdis-
tributor”).

DEFINITION 16. Let C and D be categories. AC, D)-bimodule
M consists of the following data:

e for eachX € C andY € D a setM(X,Y) of M-morphisms
X —-Y

e for anyC- and M-morphisms x’ L x2vy an M-morphism
X fig v

e for any M- andD-morphisms X Lyl Y’ an M-morphism

gsh S
X—Y

The following five equations must be satisfied:

e For a M-morphismg :
g; idy.
¢ For two C-morphisms and amm{-morphism:

X — Y we haveidx;g = g =

x ey tox 2oy
we have(f'; f); 9 = f';(f; 9)

e For a C-morphism andM-morphism andD>-morphism:

Xt x oy oy

we have(f; g);h = f; (g h)
e For a M-morphism and tw@-morphisms

X—Lsy—tsy oy

we have(g; h); b’ = g; (h; ).
Concisely: a(C, D)-bimodule is a functo€°? x D — Set.

DEFINITION 17. Let G and ‘H be categorical games. &ansfer
O : G — His defined as in Def15, with the following additional
data.

Our exampleA\Comp is a categorical transfer: linker composition
is given by function composition in the evident way.

8.2 Transfer operating on strategies

To define how a transfe® operates on strategies, we consider
“O-interaction sequences” comprised of O-move, externatoRe

and internal squares. An example is shown in Elg. 2. We may
describe this interaction sequence frarny the sequence of moves
mg, no, n1, mh, n2, mh depicted as solid, since they determine the
other moves and morphisms. The play frétrappearing along the
upper edge is called thaternal play, the play fromR appearing
along the lower edge is called tegternal play

PrROPOSITION13. LetO : G — H be a transfer. For any passive
linker h: P — R and strategyr € Straty™™® P let (Stratgy ™ h)o
be the set of all external plays of passive-endifdnteraction se-
quences fromk whose internal play is ier. Then(Straty, ™ h)o €
Strat};** R. Likewise for an active linker.

PROPOSITION14. Let O : G — H be a transfer of categorical
games.

1. For passive position morphism ¢hand linker

P/L>P$R

and strategy irStrat?™> R’ we have
(Stratly™ (f; h)) (o) = (Stratly™ h) (Stratg™ f) (o)

Likewise for active positions.
2. For passive linker and position morphism’h

p—L>p—tsp

and strategy irBtratg”>® R we have
(Stratys™ (h; f)) (o) = (Straty;™ f) (Stratgy™ h) (o)

Likewise for active positions.



P S > e -

h\L

Y Y \

Roe—> - P > -
mo

Figure2. Aninteraction sequence

8.3 Stepped bisimulation across a transfer

We now establish the relationship between transition systand
transfers, i.e. between operational and denotational gaemean-
tics. We shall consider only discrete games.

To ensure that we do not perform infinitely many operations
at the internal interface without making progress, we “gfatthe
states to give a finite quota of internal operations.

DEFINITION 18. Given a transferO : G — H and small-step
systems overG and T overH, a stepped bisimulatiofrom S to
T acrossO consists of the following data.

e For each active linkeik : @ — S, an increasing sequence
(U})ien Of subsets dB** Q.

e For each passive linkeh :
SP#* P to TP*** R.

e For each active linkek : Q — S, arelation R fromS** Q
to T>* S.

These are required to satisfy the following conditions.

e For any active linkerk : Q@ — S andi € Nandy € U}, if
y ~ z andn completes to an internal square

P — R, arelation R},** from

...... >
m

(4)

Qe—— Q.no-

lk

S

Q.n.m

Y
S

thenz@m € Uj, for somej < i.
e For any passive linkeh : P — R andz (R}*®) 2z’ and
m’ € Omove R,
= if m completes to an O-move square

Pon > P._m

l/h K thenz@m (R 2’@m’
' Y

Re—"> R.m’

= if m completes to an external square

P
I

lh
/ / ki

Re—"—> R.m/ e "> Rom'.n’'
thenz’@m’ ~% w’ withaz (R}7*°) w'.
e For any active linketk : Q — S andy (R:") v/,
» y € U} for somei € N
= if y ~ 2z theny' ~ 2/ with z (R2Y) 2/
= if y ~5 2 andn completes to a P-move square

P

n! v

theny’ ~% ' withz (RP*®) 2/
= if y <% 2 andn completes to an internal squarg (4) then
z@Qm (R v

Recall our example transfalComp : A\Game® \Game —
AGame. Our aim is to give a stepped bisimulati¢fr, R) from
ASyst ® ASyst to ASyst across this transfer.

Given a passive linkeh (p1,pr) — pe, an h-grading ¢
consists of a natural numbég| (the number of “generations”)
and mapsp : A — $|¢| ando: : A — $|¢| (saying when
each name was generated). Foagradingy and: € N we write
Olderf’z‘ C I'; andOlder? i C T, for the names that are older than
generation. Explicitly: Olderf i consists of those € T such that
k(inlx) is eitherinr a with ¢.(a) < i oriney. (External P-names
are deemed to have always existed.)

Now a passive state in positigp, p:) takes the form

(V) (Vi)aca,) (5)

The state[[p) igradedby an h-grading¢ when for alla € A,
we haveOlder{ ¢i(a) ' V, and likewise fora € A,. If B) is h-
gradeable (i.e. is graded by sorhgyrading), then we shall define
its h-substitution a passive state in positigh. as follows. First
associate to each € A; + A, + T’ a valuel's " W,, by the
equations

Wita = Va [Wh(inix) /X]xer,
Winra = V; [Wh(inrx) /X]XEFr
Winex = x

which have a unique solution by induction over a grading.nThe
define theh-substitution of[b) to béW,(ine a))acA.-

We setR}** to be the partial function relating eaghgradeable
state[[b) to itsh-substitution.

Given an active linkek : inl(q, pr) — ¢e We likewise define
ak-grading An active state in positioinl(q, p:) takes the form

(6)

The state[{6) igradedby ak-gradinge when for alla € A; we
haveOlder{ ¢1(a) F* V. and likewise fora € A,. Fori € N,
the state[{6) is gradeat leveli by ¢ when the following additional
condition holds:

((Va)aca, » M, (Vi)aea,)

M =V (W,W’) implies Olderit" V.
If (B) is k-gradeable, we define itssubstitution an active state in
positionge, to be

(Wi(inea))acae ® M[Wiiinix) /X]xer,

whereW,, is defined as in the passive case.

We setRi“* to be the partial function relating eagéhgradeable
state[®) to it%-substitution. We s/}, to be the set of active states
@) that arek-gradeable at level Likewise for theinr case.

Then(U, R) is a stepped bisimulation acros€omp.



8.4 Compositionality theorem for transfers

ProPOSITION15. Given a transferQ G — H and small-
step systemS§ over G and T over H, let (U, R) be a stepped
bisimulation fromS to T acrossO.

1. For a passive linkek : P — R, if  (R}*®) 2’ then
Ile]]Ij)?ass — (Strat%ass h) II:Z_]]];DaSS

2. For an active linkek : @ — S, if y (R3") ¢’ then
W15 = (Strats' k) B

We illustrate this with our example. Let the active linker

koinl((xy 1), (2] @) = (=2 )

sendinlx — inex andinly — inra andinrz — inez. The state
inl (» M, (a— V)) is graded by thé-grading(1, (), (a — 0))
and itsk-substitution is » M[V/y]. Since(U,R) is a stepped
bisimulation acrosa Comp, we obtain

[» M[V/Y]]]i,cztu

(Straticéomp k’) |Iln| ( > .1\47 (a = V))]]ﬁ‘lclt((x,yﬂ),(z\\a))
(by Prop[Tb)

= (StratiComp k) ([ » M35 @ [a — VIZZ)

(by Prop[IR)
This validates the procedure described in édct. 7.

9. Dual Gamesand Transfers
There is an evident involution on games:

DEFINITION 19. For a categorical game
G = (G**,G**, Omove , Pmove )
its dualis given by
G+ ((G™)°P, (G°**)°?, Pmove °F, Omove )

This provides a concise formulation of transfer:

PROPOSITION16. Let G and H be categorical games. A transfer

def

G — H is a total passive system ov@r— H = (G ® H*)*

Remark Transfers cannot be composed, because of the possibility
of “infinite chattering” [2], butpartial transfers can be, giving rise

to ax-autonomous bicategory.

10. Conclusionsand Future Work

We have described a basic framework with a “checklist” fanfo-
lating a game model of a language:

e give a small-step system over a categorical game

e for each syntactic operation, give a transfer, and a stepped

bisimulation across it to demonstrate its correctness.

It remains to examine the many game models in the literature

that use justification pointers to see how well they fit thendfe-
work. We shall need to study transfers that create multipleads
of the strategy they act on, asiin[11]. We also should tieatleter-

ministicsystems, where there is a proliferation of notions of equiv-

alence, hence of strategy. A final intriguing question istiveeour
sequential framework can be adapted for concurrent systems
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