
Substitution, jumps, and algebraic effects

Marcelo Fiore
Computer Laboratory, University of Cambridge

Sam Staton
ICIS, Radboud University Nijmegen

Abstract
Algebraic structures abound in programming languages. The start-
ing point for this paper is the following theorem: (first-order) al-
gebraic signatures can themselves be described as free algebras for
a (second-order) algebraic theory of substitution. Transporting this
to the realm of programming languages, we investigate a compu-
tational metalanguage based on the theory of substitution, demon-
strating that substituting corresponds to jumping in an abstract ma-
chine. We use the theorem to give an interpretation of a program-
ming language with arbitrary algebraic effects into the metalan-
guage with substitution/jumps.

Categories and Subject Descriptors [Theory of computation]:
Semantics and reasoning.

1. Introduction
In studying computational effects for functional programming lan-
guages, it is appropriate to distinguish between what we will call
actual and virtual effects. This paper is about the relationship be-
tween the two.

• By actual effects we mean extensions to a pure functional
language that permit access to its (abstract) machine. In this
sense SML/NJ has many actual effects such as memory access,
network primitives and access to the control stack.

• By virtual effects we mean a style of programming that has the
appearance of performing actual effects on an abstract machine,
but where the effects are in reality handled within the pure
language. For example, one can use a state monad in Haskell to
write Haskell programs that appear to directly access memory
without actually requiring a memory management unit in the
abstract G-machine.

We make two main contributions:

1. We give a novel denotational semantics for the actual effects
involving code pointers and jumping, based on a mathematical
theory of substitution.

2. We give a translation from a class of virtual effects into the
actual effects of jumping. This is motivated and justified by the
following basic observations:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603163

• virtual effects can be formalized in terms of algebraic sig-
natures;

• algebraic signatures are exactly the free models of the the-
ory of substitution.

We thus derive a semantic explanation of current programming
practice from a fundamental mathematical result.

1.1 Virtual effects and algebraic signatures
Consider an algebraic signature with one binary operation ⊕.
Terms in the signature are binary trees with branches labelled ⊕
and leaves labelled by free variables. We might think of such a
term as a very simple program with virtual effects: a binary deci-
sion tree.

⊕
auu))(x⊕ y)⊕ z i.e. ⊕

uu))
z

x y

(1)

Indeed, think of ⊕ as meaning ‘read from a fixed boolean memory
cell; if true then branch left, if false then branch right’. Or think
of ⊕ as meaning ‘read from a stream of booleans’, or as ‘make
a probabilistic choice’, or as an undetermined boolean in a non-
deterministic computation. The leaves (x, y, z) are thought of as
pointers to the continuation of the computation.

Thus a program involving virtual effects is typically decom-
posed into two parts: first the main program, which creates a com-
putation tree rather than actually performing the effects; secondly
an auxiliary mechanism that ‘runs’ the virtual effects by processing
the tree.

The tree is a tree of computations and not a tree of data, so it
is reasonable to treat it differently. Informally, we can think of the
edges as code pointers rather than as edges in a concrete datatype.
(Efficient ML implementations in this vein do this by manipulating
the control stack (e.g. [2, 25]); Haskell implementations use free
monads and laziness (e.g. [17, 25, 27, 45]).)

1.2 Substitution and the actual effects of code pointers
The terms for an algebraic signature have additional algebraic
structure given by substituting a term for a free variable. Indeed,
the computation tree (1) can be written using substitution instead
of nested terms: (x ⊕ y) ⊕ z = (a ⊕ z)[x⊕y/a]. To this end we
study substitution as a second-order algebraic theory, following
[15] (also [39], [13], [28], [41]). It comprises two operations, sub
and var. It involves a basic type `, which might be thought of as a
type of variables or indices, and the following term formation rules:

Γ, a : ` ` t Γ ` u

Γ ` sub(a.t, u)

Γ ` t : `

Γ ` var t

Informally, we think of sub(a.t, u) as ‘substitute u for each occur-
rence of var a in t’. We work up to α-renaming a in t and equations
such as sub(a.var a, u) ≡ u. We have the following theorem (The-

orem 9): To give an algebraic signature is to give a free algebra for
the algebraic theory of substitution.

Plotkin and Power [36] proposed to consider algebraic theories
as describing effects. We are thus led to consider substitution itself
as an actual effect, one that in some ways subsumes the virtual ones.
A suitable computational reading of the type ` is as a type of labels
or code pointers, so that sub(a.t, u) can be read as ‘create a new
code pointer to u, bind it to a and continue as t’, and var a can be
read as ‘jump to label a’.

1.3 Translating virtual effects into code pointers
We can now understand a computation that involves the virtual ef-
fect ⊕ as a computation of type (` × `) that involves the actual
effects of substitution/jumps. The computation tree (1) can be writ-
ten in our metalanguage as sub(a.return (a, z), return (x, y)). It
returns the pair of labels (a, z), where label a is a pointer to the
computation that returns the pair (x, y) of labels.

For another example without dangling pointers, consider the
computation (return tt ⊕ return ff) : bool which returns either
tt or ff depending on the outcome of the virtual effect ⊕. This is
translated into our metalanguage as

sub(a.sub(b.return inr(a, b), return inl(ff)), return inl(tt))

: bool + (`× `)
The type (bool + (` × `)) is inhabited by programs that either
immediately return a boolean (inl v) or that return a pair of point-
ers (inr(a, b)) describing how to continue according to the outcome
of the virtual effect ⊕.

1.4 Contributions
In summary, our main contributions are as follows:

• a typed metalanguage based around the theory of substitu-
tion/jumps (§2), with an abstract machine and an adequate de-
notational semantics (§ 3).

• a sound translation of a language with virtual effects into the
metalanguage with substitution (§5), based on the fact that
algebraic signatures are free substitution algebras.

We also develop the following advanced topics more briefly:

• semantics of effect handlers (§6), which are (roughly) a mech-
anism for manipulating trees such as (1);

• the addition of other effects to the theory of substitution
(§7). Adding a stack of code pointers to our abstract ma-
chine amounts to extending the theory of substitution with the
β-equality of the untyped λ-calculus (§7.2).

2. Substitution and actual code pointers
We introduce a metalanguage which extends Moggi’s monadic
language [30, 34] with substitution/jumps.

2.1 Algebraic presentation of substitution
The theory of substitution can be presented as an equational theory
in typed lambda calculus ([15, Def. 3.1], [11, §B]). It has two types,
ι and `, an operation sub : (` → ι) × ι → ι and an operation
var : `→ ι. The theory has four equations:

x : ι ` sub(λa.var(a), x) ≡ x
x : ι, y : ι ` sub(λa.x, y) ≡ x
a : `, x : `→ ι ` sub(λb.x(b), var(a)) ≡ x(a)

x : `×`→ ι, y : `→ ι, z : ι ` sub(λa.sub(λb.x(a, b), y(a)), z)

≡ sub(λb.sub(λa.x(a, b), z), sub(λa.y(a), z))

The idea is that ι is a type of terms, ` is a type of variables (or ‘la-
bels’), and var includes the variables in the terms and sub(λa.t, u)
substitutes u for a in t.

One can also read sub(λa.t, u) as ‘bind u to a in t’, and var a
as ‘jump to a’. Indeed, the theory of substitution is a fragment of
Thielecke’s CPS calculus [44, §2.1] with the restriction that the
jumps take no parameters. The four axioms for substitution are
essentially the four axioms of that calculus.

2.2 Metalanguage
Types The types of the metalanguage are

A,B ::= ` | A→ s B | A1∗ · · · ∗An | A1 + · · ·+An (n ∈ N).

We have a special type ` of labels. As a special case of the n-ary
product type when n = 0 we have the type unit. We decorate the
arrow of the function type (→ s) to emphasise that the functions are
not pure, they might contain substitution effects.

Typed terms We have two typing judgements: one for pure com-
putations (`) and one for computations with substitution effects
(`s). The terms in context are defined as follows. Firstly we have
rules for sums and products of pure computations:

−

Γ, x : A,Γ′ ` x : A

Γ ` t : A1∗ . . . ∗An

Γ ` #i t : Ai

Γ ` t : Ai

Γ ` injit : A1 + · · ·+An

. . . Γ ` ti : Ai . . .

Γ ` 〈t1 . . . tn〉 : A1∗ . . . ∗An
Γ ` t : A1 + · · ·+An . . . Γ, xi : Ai ` ui : B . . .

Γ ` case t of inj1(x1)⇒ u1 . . . injn(xn)⇒ un : B
Secondly standard term formation for sequencing and returning in
a call-by-value-like language:

Γ `s t : A Γ, x : A `s u : B

Γ `s let valx = t inu : B

Γ ` t : A

Γ `s return t : A

Thirdly the specific term formation rules for the metalanguage:
Γ ` t : `

Γ `s varA(t) : A

Γ, a : ` `s t : A Γ `s u : A

Γ `s subA(a.t, u) : A

And finally function abstraction and application. In the call-by-
value tradition, functions freeze (‘thunk’) computational effects.

Γ, x : A `s t : B

Γ ` fnx ⇒ t : A→ s B

Γ ` t : A→ s B Γ ` u : A

Γ `s t u : B

We will use simple syntactic sugar. We write bool for the type
unit+unit, and tt and ff for inj1〈〉 and inj2〈〉 respectively. We write
(if t thenu1 elseu2) for (case t of inj1()⇒ u1 | inj2()⇒ u2),
and we write (t ; u) instead of (let val = t inu). We only in-
cluded rules for case on pure terms, but they can be derived for
computation terms too, using pure terms and functions (e.g. [33,
§2]). We sometimes write (t u v) for (let val f=(t u) in (fv)), and
so on.

Equational theory We have an equality judgement on pure typed
terms, Γ ` t ≡ u : A, and an equality judgement on effectful
terms, Γ `s t ≡ u : A. The judgements are generated as follows:

• equality is reflexive, symmetric, transitive and substitutive;
• on pure terms we include the standard β/η laws:

#i 〈t1 . . . tn〉 ≡ ti t ≡ 〈#1 t . . .#n t〉
case (inji t) of . . . inji(xi)⇒ ui . . . ≡ ui[t/xi]

case t of . . . inji(xi)⇒ u[inji(xi)/x] . . . ≡ u[t/x]

(2)

• on effectful terms we have the following standard laws [30, 34]:

let valx = return t inu ≡ u[t/x] t ≡ let valx = t in returnx

let valx = t in (let val y = u inw)

≡ let val y = (let valx = t inu) inw (y 6∈ fv(t))

(fnx ⇒ t)u ≡ t[u/x] t ≡ fnx ⇒ (t x) (x 6∈ fv(t))

(3)

• the judgement Γ `s t ≡ u : A includes all the equations
for substitution (§2.1); together with two ‘algebraicity’ equa-
tions [40], which propagate the effects:

let valx = sub(a.t, u) inw (a 6∈ fv(w))

≡ sub(a.(let valx = t inw), let valx = u inw)

let valx = var(t) inw ≡ var(t)

Informal semantics We may think of ` as a type of code pointers
or labels, so that sub(a.t, u) creates a new label a, and continues
as t; if and when var(a) is called, the program jumps back to the
point where a was created, and continues as u instead. The type of
labels ` is thus like a type of statically-scoped exceptions, as used
for instance in Herbelin’s study of Markov’s principle [21]. We can
think of sub(a.t, u) as installing a new statically-scoped exception
a with handler u, and var(a) as raising the exception.

The reader should not think of sub(a.t, u) as textual substitution
of u for a in t: that is a meta-operation that is typically nonsense in
this context, and indeed it is inconsistent with the algebraicity equa-
tions. (The construct sub(a.t, u) can however perhaps be thought
of roughly as binding u with the current continuation to a in t.)

Much has been made of the relationship between control effects
and classical logic. We make a few remarks on this topic. In some
ways the type ` behaves like “¬unit”. The operation var is like
negation elimination. It is often helpful to work with the ‘generic
effects’ that are associated to each algebraic operation [37]; the
generic effect of sub is

fn ⇒ sub(a.return inj1(a), return inj2〈〉) : unit→ s `+ unit

(NB we do not mean the textual substitution of a by (return inj2〈〉)
in (return inj1(a)), which does not make sense.) This generic effect
is like the law of the excluded middle ¬unit ∨ unit. Recall a com-
putational intuition for the excluded middle (e.g. [6],[20, §31.4]):
it first introduces the left hand disjunct (¬unit); but if the subse-
quent proof eliminates this negation at some point then the whole
proof backtracks to the disjunction which introduces the right hand
disjunct (unit) instead. (We do not claim to have a full model of
classical logic: it is a subtle model that contains some aspects of
classical logic.)

3. Semantics of the metalanguage
3.1 Denotational semantics of the metalanguage
3.1.1 Context-indexed sets
The theory of substitution (§2.1) is not a classical algebraic theory,
but rather a parameterized algebraic theory in the sense of [41, 42],
i.e., a second-order algebraic theory [13, 14] in which the exponents
are all of a special kind. As such it is not well-suited to naive set-
theoretic models, since there is no canonical set for interpreting `
(e.g. [41, §VI-C]). To resolve this we consider sets indexed by
contexts of labels (a1:` · · · an:`). To abstract away from the choice
of names for labels, we take a context to be a natural number n
considered as a set with n elements {1 . . . n}.
Definition 1. A context-indexed-set P is given by, for each nat-
ural number n, a set P (n), and for each function f : m→ n, a
function Pf : P (m) → P (n), such that identities and com-
position are respected. That is, a context-indexed-set is a functor

P : Ctx→ Set, where Ctx is the category of natural numbers
(considered as sets) and functions between them.

A context-indexed-function P → Q is given by a natural family
of functions {P (n)→ Q(n)}n.

The objects n of Ctx should not be thought of as arbitrary
contexts of the metalanguage, but rather as contexts of labels.
The category of context-indexed-sets is an extension of the tiny
type theory (`,×), which has nothing but finite products and a
distinguished type `, to a model of intuitionistic higher-order logic.
More precisely, the category SetCtx of context-indexed-sets is the
free cocompletion of Ctxop, which is equivalent to the syntactic
category of (`,×).

We now concretely explain the structure of the category of
context-indexed-sets as a basis for our denotational semantics. (See
also [15, 41].)

• The product of context-indexed-sets satisfies

(P1 × · · · × Pk)(n) ∼= P1(n)× · · · × Pk(n).

• The sum of context-indexed-sets satisfies

(P1] · · ·] Pk)(n) ∼= P1(n)] · · ·] Pk(n).

• There is a distinguished context-indexed-set L, given by L(n) =
n. The Yoneda lemma provides a natural family of bijections
P (n) ∼= SetCtx(Ln, P).

• The category is cartesian closed: there is a context-indexed-set
QP of context-indexed-functions that satisfies

QP (n) ∼= SetCtx(P × Ln, Q).

• In particular the function space (Q(Ln)) has a natural family
of bijections (Q(Ln))(m) ∼= Q(m + n). So exponentiation by
powers of L is a kind of context extension.

3.1.2 Substitution algebras
We can now consider models of the theory of substitution (§2.1) in
the category of context-indexed-sets, interpreting ` as L. In more
detail, a substitution algebra is a context-indexed-set P equipped
with a family of functions subn : P (n + 1) × P (n) → P (n)
and varn : L(n) → P (n) satisfying naturality requirements and
the four equations for substitution [15, Def 3.1]. A homomorphism
of substitution algebras P → Q is a context-indexed-function that
respects the additional substitution structure.

Every context-indexed-set P admits a free substitution algebra
SP , i.e. a substitution algebra SP together with a context-indexed-
function η : P → SP such that for any substitution algebra Q
and any context-indexed-function f : P → Q there is a unique
homomorphism f] : SP → Q such that f = f] · η. This free
substitution algebra can be built in a standard way [42, Thm. 2,
Prop. 2] by inductively adding sub and var and then quotienting
by the equations [19]. This syntactic construction provides a com-
pleteness result [41, Prop. 8]: an equation is derivable in the second
order theory of substitution if and only if it holds in all substitution
algebras.

The free substitution algebra construction S yields a strong
monad on the category of context-indexed-sets ([12],[42, Cor. 1]):
for any context-indexed-sets P and Q there is a context-indexed-
function >>= : SP × (SQ)P → SQ, satisfying the monad laws.

(We will use two other characterizations of the monad S in
this paper: as a Kan extension of the construction of terms for
a signature (Thm. 9), and as a free monoid (6) for a substitution
tensor product.)

3.1.3 Denotational semantics
We use the monad S to give a denotational semantics for our
metalanguage, essentially following Moggi’s pattern [30, 34]. We
interpret types as context-indexed-sets:

J`K def
= L JA1∗···∗AnK def

= JA1K×···×JAnK

JA→ sBK def
= (SJBK)JAK JA1+···+AnK def

= JA1K]···]JAnK

Pure terms (`) and effectful terms (`s) are interpreted as context-
indexed-functions:

JΓ ` t : AK : JΓK→ JAK JΓ `s u : AK : JΓK→ SJAK.

This interpretation is defined by induction on the structure of
derivations as usual. For instance,

Jlet valx = t inuK(ρ)
def
= JtK(ρ) >>= λx. JuK(ρ, x)

(in the internal language of SetCtx). We define Jvar(t)K and
Jsub(a.t, u)K using the substitution algebra structure of the monad
S.

Proposition 2. The semantics of the metalanguage is sound: if
Γ `s t ≡ u : A is derivable in the equality theory, then

JtK = JuK : JΓK→ SJAK.

3.2 An abstract machine
We now cement the computational intuitions about the metalan-
guage by describing an abstract machine. The machine is similar
to what Felleisen and Friedman called a CK-machine (e.g. [8, 29]).
However, since we make heavy use of code pointers it is natural
to use a tree of evaluation frames rather than a stack. (The idea of
using a heap instead of a stack is certainly not a new one, e.g. [1].)

Configurations Consider a finite set {a1 . . . an} of labels. A
code-heap labelled by {a1 . . . an} is given by the following data:

• A finite forest G, i.e. a set G of nodes together with a partial
function succ : G → G whose graph is acyclic. We say g is
a root if succ(g) is undefined. If succ(g) = g′ then we say
that g is a predecessor of g′; we say g′ is a leaf if it has no
predecessors. Let leaves(G) be the set of leaves of G.

• A choice of one leaf as the current node (i.e. the program
counter), called now .

• An injection label : leaves(G)→ {a1, . . . , an}.
• An assignment to each node g of the forest G either a pair of

types (A,B) or a single type B. We write g : A → B or
g : ()→ B respectively.

if g is a leaf then g : ()→ B, otherwise g : A→ B;

if g : A → B or g : () → B and succ(g) is defined then
succ(g) : B → C for some C;

there is one fixed type BG such that for all roots g either
g : ()→ BG or g : A→ BG for some A.

• An assignment to each node g of the forestG a program expres-
sion [g], subject to the following conditions. Here ΓG = (a1 :
`, . . . , an : `).

If g : ()→ B then ΓG `s [g] : B.

If g : A→ B then ΓG, x : A `s [g] : B.

The informal idea is that in normal behaviour the machine
proceeds by running the program expression at the leaf node now ,
passing the result to succ(now). The machine may need to add new
nodes to operate, and sometimes control may jump to a different
leaf node.

Evaluation of pure computations Among the well-typed pure
expressions in context (ΓG ` t : A) we distinguish values, defined
by the following grammar:

v ::= fnx ⇒ t | 〈v1 . . . vk〉 | inji v | a

where a ranges over labels, and we define a type-preserving evalu-
ation function ⇓, taking terms to values:

t ⇓ 〈v1 . . . vk〉

#i t ⇓ vi

t1 ⇓ v1 . . . tk ⇓ vk

〈t1 . . . tk〉 ⇓ 〈v1 . . . vk〉

t ⇓ inji(v) ui[
v/xi] ⇓ w

(case t of . . . inji(xi)⇒ ui . . .) ⇓ w

t ⇓ v

inji(t) ⇓ inji(v)

Small steps of the machine A code heap changes over time.
We describe the next step of a code heap by describing how it is
modified at each step. We write in an imperative pseudocode since
this is a simple way to describe graph manipulations. We write
G G′ if the code heapG becomesG′ according to the following
transformations.

1. If [now] = return t and t ⇓ v then we proceed depending on
whether now is a root.

(a) If now is a root then set [now] := v and stop: the machine
has finished.

(b) If now is not a root, if succ(now) = g : A→ B and
[g] = (ΓG, x : A `s u : B), then we set

[now] := u[v/x] succ(now) := succ(g).

If g has no remaining predecessors then we delete g from
the graph.

2. If now : ()→ B and [now] = (let valx : A = t inu) then we
add a node g : A→ B. We set

[g] := (ΓG, x : A `s u : B) [now] := (ΓG `s t : A)
succ(g) := succ(now) succ(now) := g.

3. If [now] = (sub(a.t, u)) then we add a leaf node g. We assume
the binder a is different from the labels already in the machine,
renaming it if necessary. We set

label(g) := a [g] := u

[now] := t succ(g) := succ(now).

4. If [now] = (var t) and t ⇓ a then we proceed depending on
whether a is in the image of the label function. If label(g) = a,
we set now := g. If a 6∈ im(label), we stop.

5. If [now] = (v w) and v ⇓ (fnx ⇒ t) then we set [now] :=
(t[w/x]).

By construction, this stepping transformation preserves the well-
formedness constraints of code heaps.

Some of the steps of the machine are illustrated as follows. We
use a double edge to indicate the current node, now .

Clause 1:

Clause 2:

. . .Clause 4:

Clause 3:

. . .

3.3 Analysis of the abstract machine
Dependency graphs and garbage collection The dependency
graph of a code heap is given by adding to the graph an edge
g → g′ whenever [g] mentions label(g′). A cycle in the depen-
dency graph indicates that the code heap might run forever, as in
this simple illustration:

We say a code heap is dependency-acyclic when its dependency
graph is acyclic. The stepping transformation preserves depen-
dency acyclicity. In particular code heaps that arise from running
programs written in the metalanguage are dependency-acyclic.

If a node is not reachable in the dependency graph, it plays no
role in the behaviour of the machine. We can ‘garbage collect’ those
nodes: given a code heap G, let gc(G) be the code heap obtained
from G by removing all nodes that are not reachable from now in
the dependency graph.

Proposition 3. If gc(G1) = gc(G2) and G1 G′1 then there is
G′2 such that G2 G′2 and gc(G′1) = gc(G′2).

Garbage collection is justified by the second equation in our
presentation of the theory of substitution (§2.1). The equational
theory of substitution also suggests other sound optimizations that
we could perform in the machine. For instance, the third equation
describes a way of removing extraneous links.

Duplicating branches and entry points Any part of a code heap
can be duplicated without changing the behaviour of the machine.
If there are labels in the part that is duplicated, they are also du-
plicated. Labels pointing into that part of the code heap can then
be arranged to point to either copy. We write G1 ∼ G2 if G1

and G2 can be made isomorphic by duplicating parts. For instance:

. . .

b

. . .

b

. . .

b''

.

Duplication preserves the steps of the machine.

We say that a label a is an entry point of a node g if a labels a
leaf with a path to g and there is a node g′ that is not a predecessor
of g but where [g′] mentions a. In what follows it will be convenient
to transform a code heap into one where every node has at most one
entry point.

If a branch node has two or more predecessors, it can be split in
two by duplicating and then garbage collecting. This transforma-
tion is essentially the algebraicity law for sub,

let valx = sub(a.t, u) inw (a 6∈ fv(w))

≡ sub(a.(let valx = t inw), let valx = u inw)

In this way, any code heap can be transformed into one where each
node has at most one entry point.

From a code heap to a typed term We assign a term

b1 . . . bm : ` `s Tm(G) : BG

to every dependency-acyclic code heap G of type BG, where
{b1 . . . bm} are the dangling pointers

{b1 . . . bm} = {a | ¬∃g. label(g) = a}.
We do this by induction on the height of G. Either G is a forest
(with many roots) or a tree (with one root).

• If G is a forest, we duplicate branches and arrange the labels
so that every node has exactly one entry point. Let G1 . . . Gl
be the trees comprising G, such that the order G1 < · · · < Gl
respects the dependency graph, and let a2 . . . al be the entry
points of G2 . . . Gl. We let

Tm(G)
def
= sub(al . . . sub(a2.Tm(G1),Tm(G2)) . . . Gl).

There may be some choice about how many branches to split,
but the algebraicity law says that this doesn’t matter.

• Suppose G is a tree with root g. If g is also a leaf then let
Tm(G)

def
= [g]. Otherwise, let G′ be the forest of predecessors

of g, so that G′ is the result of removing g from G, and let
Tm(G)

def
= let valx = Tm(G′) in [g].

Proposition 4. If G G′ then Tm(G) ≡ Tm(G′) is derivable
from the equational theory in Section 2.

Proof notes: By case analysis on how a step can be made.

Garbage collection Given a code heap G, let gc(G) be the code
heap obtained from G by removing all nodes that are not reachable
from now in the dependency graph.

Proposition 5. 1. If gc(G1) = gc(G2) and G1 G′1 then there
is G′2 such that G2 G′2 and gc(G′1) = gc(G′2).

2. Let G be a dependency-acyclic code heap. The code heap
gc(G) is also dependency-acyclic and Tm(G) ≡ Tm(gc(G))
is derivable.

Adequacy

Theorem 6. If ~a : ` `s t : bool and JtK = Jreturn vK then t ∗ G
and gc(G) = return v (for v ∈ {tt,ff}).

We follow the proof scheme for adequacy and algebraic effects
in [35]: adequacy is a consequence of termination, together with
Propositions 2 and 5. The machine can stop in various ways: either
with var(a) where a is dangling, or with a root return(v), possibly
with some other reachable leaves.

We prove termination by defining computability predicates on
typed expressions with free labels, also following [35]. There
are two kinds of computability predicate, R and Rs. The rela-
tion on pure expressions, R(a1, . . . , an : ` ` t : A), is defined
by induction on the structure of types, as usual. For instance,

R(~a ` t : A→ s B) if t ⇓ (fnx ⇒ u) and for all v with
R(~a ` v : A) we have Rs(~a `s u[v/x] : B). The predicate
on effectful expressions, Rs(a1, . . . , an : ` `s t : A), is the least
predicate closed under the following rules:

(t ∗ G 6 and [now] = var(a)) =⇒ Rs(t)

(t ∗ G 6 and gc(G) = return(v) and R(v)) =⇒ Rs(t)

(t ∗ G 6 and [now] = return(v) and R(v) and

∀g ∈ leaves(gc(G)), g 6=now⇒Rs(Tm(G

•— g))) =⇒ Rs(t)

where G

•— g is the code heap G but with now := g. We use these
predicates to show, via the usual ‘fundamental lemma’, that every
term terminates when run in the machine.

Aside: comparison with a stack machine If we run the code heap
machine over a term without sub or var, then every node will have
at most one predecessor. We thus have a linked-list, i.e. a stack: let
pushes onto the stack and return pops.

It is possible to modify the code heap machine to maintain this
linked-list structure, by modifying the cases for sub and var so that
they copy/replace the entire continuation, instead of manipulating
pointers. This is the standard CK machine semantics for a language
with unit continuations (e.g. [7, 8, 29]).

4. Algebraic signatures and virtual effects
We now introduce a programming language, inspired by Filin-
ski’s multimonadic metalanguage [10] and related developments
(e.g. [24, 46]). The typing judgements are annotated by finite alge-
braic signatures which describe the effects that may occur in run-
ning a program.

The main goal of this section is merely to set the scene for the
next section (§5), where we show how to translate the language
with virtual effects into the metalanguage with substitution.

4.1 Algebraic signatures
Definition 7. A finite algebraic signature comprises a finite set of
operation symbols each equipped with an arity, which is a natural
number (possibly zero). We write op : n if the operation symbol op
has arity n.

A morphism of algebraic signatures E → E′ assigns to each
operation symbol in E an operation symbol in E′ with the same
arity.

For a simple example, consider the signature with a single
operation ⊕ : 2, which we discussed in the introduction.

(There is another, more general notion of signature morphism
that allows a compound term to be assigned to an operation symbol.
All our developments can be extended to cater for this, but we omit
the details.)

4.2 A programming language with effects and annotations
We consider a language with the following types:

A,B ::= A1∗ . . . ∗An | A1 + · · ·+An | A→E B

Here E ranges over finite algebraic signatures. Informally, the
function types A →E B are annotated by the effects E that may
occur when the function is called.

There is a typing judgement ` for pure computations, and there
is a judgement `E for each finite algebraic signature E: it is a
judgement of typed computations involving effects in that signa-
ture. The judgements are defined by the standard rules (§2.2) for
pure sums and products and sequencing of computations for each
judgement `E , together with the following specific rules for the

operations in the signature:

Γ `E t1 : A . . . Γ `E tn : A
(op : n) ∈ E

Γ `E op(t1, . . . , tn) : A

Γ `E t : A
φ : E → E′ is a morphism of signatures

Γ `E′ (t)φ : A

and the following rules for functions:

Γ, x : A `E t : B

Γ ` fnx ⇒ t : A→E B

Γ ` t : A→E B Γ ` u : A

Γ `E t u : B

We have taken measures to keep things semantically simple. If we
have composable functions with different effects, say f : A→E B
and g : B →E′ C, the language doesn’t allow us to merely com-
pose them, since x : A ` g(f(x)) : C is not well-formed. Instead,
we must pick a signature E′′ that subsumes E and E′ (for in-
stance E′′ = E ∪ E′) so that there are morphisms of signatures
E

φ−→ E′′
φ′←− E′ and we can write

x : A `E′′ let val y = (f x)φ in (g y)φ′ : C

Equality We thus have an equality judgement Γ ` t ≡ u : A on
pure typed terms and an equality judgement Γ `E t ≡ u : A on
effectful terms for each finite signature E. Equality is generated as
in §2.2, by reflexivity, symmetry, transitivity and substitutivity; the
β − η laws for sums products and functions (2), the associativity
and substitution laws for let (3); and additionally:

• the equality judgement (`E′≡) includes equations of the form

(op(t1, . . . , tn))φ ≡ (φ op)((t1)φ, . . . , (tn)φ)

for signature morphisms φ : E → E′ and each operation op ∈ E,
along with (return t)φ ≡ return t and

(let valx = t inu)φ ≡ let valx = (t)φ in (u)φ

• the equality judgement (`E≡) includes algebraicity equations
for each n-ary operation op ∈ E, to propagate the effects:

let valx = op(t1, . . . , tn) inu

≡ op(let valx = t1 inu, . . . , let valx = tn inu)

4.3 Denotational semantics
Each algebraic signatureE determines a monad TE on the category
of sets. The set TEX is the set of terms in the signature with vari-
ables in X . The functions ηX : X → TEX include the variables
among the terms, and the functions >>= : TEX × (TEY)X → TEY
perform substitution of terms for variables. We use these monads
to give a set-theoretic denotational semantics for our programming
language.

Interpretation of types Product types are interpreted as the prod-
uct of sets; sum types are interpreted as disjoint unions. The func-
tion type as functions into the free algebra TE , i.e. the space of
Kleisli morphisms. In summary:

JA1∗ . . . ∗AnKSet
def
= JA1KSet × · · · × JAnKSet

JA1 + · · ·+AnKSet
def
= JA1KSet] · · ·] JAnKSet

JA→E BKSet
def
= (JAKSet → TE(JBKSet))

A context Γ = (x1 : A1 . . . xn : An) is interpreted as a set too:
JΓKSet = JA1KSet × · · · × JAnKSet.

Interpretation of terms A term in context Γ ` t : A is interpreted
as a function JΓKSet → JAKSet, and an effectful term in context
Γ `E t : A is interpreted as a function JΓKSet → TE(JAKSet).

This interpretation is defined by induction on the structure of typing
derivations. For instance:

Jop(t1, . . . , tn)KSet(ρ)
def
= op(Jt1KSet(ρ), . . . , JtnKSet(ρ))

Proposition 8. The semantics in sets is sound: if Γ `E t ≡ u : A
is derivable in the equality theory, then

JtKSet = JuKSet : JΓKSet → TE(JAKSet).

5. Representing virtual effects using actual code
pointers

5.1 An alternative denotational semantics for the language
with virtual effects

A finite algebraic signature E = {op1 : n1 . . . opk : nk} can be
thought of as a context-indexed-set,

PE
def
= Ln1 + · · ·+ Lnk . (4)

The terms of a signature also form a context-indexed-set, as a
restriction of the monad TE in §4.3: let TE(n) be the terms in n
fixed variables. Since PE can be thought of as the terms involving
exactly one operation, we can think of PE as a sub-context-indexed-
set of TE . Indeed the full terms can be built from PE by freely
substituting:

Theorem 9. Let E be a finite algebraic signature. The context-
indexed-set of terms over E is a free substitution algebra on the
signature considered as a context-indexed-set (PE).

Remark: This result entirely determines the monad S (§3.1): let
Sig be the full subcategory of SetCtx whose objects are of the
form PE ; then S : SetCtx → SetCtx is a left Kan extension of
the terms-for-a-signature construction Sig → SetCtx along the
embedding Sig → SetCtx (e.g. [42, Prop. 2], [41, §VII.A]; more
broadly [4, 32]).

Recall that for any object A on any category with sums, we
have a monad (−) + A, sometimes called an ‘exceptions monad’,
and each monad M extends to a monad M((−) +A), called the
‘exceptions monad transformer’. Roughly speaking, the excep-
tions monad transformer for the context-indexed-set PE induces
the monad TE on Set that was used for the denotational seman-
tics of the language with virtual effects. To be precise, note that
‘evaluation at 0’ functor (−)0 : SetCtx → Set has a left ad-
joint K : Set → SetCtx, which associates to each set X the
context-indexed-set KX that is constantly X .

Proposition 10. For any signature E we have an isomorphism of
monads on Set: for any set X , (S(KX + PE))0 ∼= TEX .

5.2 Syntactic translation
The analysis above suggests a semantics for the programming lan-
guage using context-indexed-sets instead of sets, and using monads
of the form S((−)+PE) instead of TE(−). This alternative seman-
tics can be factored through the metalanguage with substitution. We
now directly describe a translation from the programming language
into the metalanguage.

Interpretation of types We translate a type of the programming
language to a type of the metalanguage as follows. First, given a
finite signatureE = {op1 : n1 . . . opk : nk}, we define a type ΣE
in the metalanguage:

ΣE
def
= `n1 + · · ·+ `nk so that JΣEK = PE .

We adopt the following convention: when working with a type of
the form A+ ΣE, rather than indexing the injections 1 . . . (k+ 1),

we use an index 0 for the first summand (A) and use the names of
the operations in E to index the second summand.

We now define a translation from types A of the programming
language to types bAc of the metalanguage.

bA1∗ . . . ∗Akc
def
= bA1c∗ . . . ∗bAkc

bA1 + · · ·+Akc
def
= bA1c+ · · ·+ bAkc

bA→E Bc def
= bAc → s (bBc+ ΣE)

We translate a context Γ = (x1 : A1 . . . xn : An) into a context
bΓc def

= (x1 : bA1c . . . xn : bAnc). We translate a pure judgement
Γ ` t : A in the programming language to a pure judgement
bΓc ` btc : bAc in the metalanguage, and an effectful judgement
Γ `E t : A in the programming language to an effectful judgement
bΓc `s btc : bAc + ΣE in the metalanguage. To do this, we first
introduce a derived construction in the metalanguage: let

op(t1···tn)
def
= sub(x1.··sub(xn.return injop(x1··xn), tn)··, t1)

yielding the following derived rule:

Γ `s t1 : A+ ΣE . . . Γ `s tn : A+ ΣE

Γ `s op(t1, . . . , tn) : A+ ΣE
(5)

An n-ary operation is thus implemented as a computation that
returns n labels pointing to the remainder of the computation, as
discussed in the introduction. This allows us to make the translation
from a typed term t in the programming language to a typed term
btc in the metalanguage, by induction on the structure of the syntax:

bfnx ⇒ tc def
= fnx ⇒ btc

bt uc def
= btc buc

breturn tc def
= return(inj0 btc)

blet valx = t inuc def
= case btc of inj0(x)⇒ buc |

. . . | injop(x)⇒ return injop(x) | . . .

bop(t1, . . . , tn)c def
= op(bt1c, . . . , btnc) (using (5))

b(t)φc
def
= case btc of inj0(x)⇒ return inj0(x) |
. . . | injop(x)⇒ return inj(φ op)(x) | . . .

(The first four clauses are standard for the exceptions monad.)

Proposition 11. The translation is faithful: For terms t and u of
the programming language, we have Γ `E t ≡ u : A if and only if
bΓc `s btc ≡ buc : bAc+ ΣE.

6. Handlers of virtual effects
In the final two sections of this paper we investigate some addi-
tional features that can be added to our metalanguage. In this sec-
tion we consider the possibility of setting handlers for effects. In-
formally, a handler will capture an effect tree and deal with it. This
section is inspired by recent developments on programming with
handlers of effects [2, 5, 25, 31], although that line of work can be
traced back to the earlier work on delimited control (notably [18])
and monadic reflection [9]. The important thing to note is that
our denotational semantics (§3.1) already supports these constructs,
and our abstract machine (§3.2) is easily adapted to accommodate
them.

In the metalanguage, first-order types (types without → s) can
be thought of as signatures, since they are all isomorphic to types
of the form ΣE for a signature E. When B is a first order type and
A is any type, we can define B • A (the depth 1 B-terms in A) by

induction on B:

` •A def
= A (B1 ∗ ··· ∗ Bn) •A def

= (B1 •A) ∗ ··· ∗ (Bn •A)

(B1 + ···+Bn) •A def
= (B1 •A) + ···+ (Bn •A)

We consider the following term formation rule, which we add
to the metalanguage.

Γ `s t : A+B Γ, x : B • (unit→ s A) `s u : A (B is first-
order)Γ `s handle twithx. u : A

Informally, the program (handle twithx. u) will first run t. If
t returns normally, i.e. some inl(v), then handle twithx. u will
return v: in other words:

handle (return (inl v)) withx. u ≡ return v

If, on the other hand, t returns some exceptional value inr(v)
containing labels for the continuation of the effect tree, then
handle twithx. u will ‘handle’ these labels by recursing through
the effect tree; for instance

handle sub(a.return(inr a), t) withx. u ≡ u[fn〈〉⇒ handle twith x. u/x]

handle (return(inr a)) withx. u ≡ u[(fn〈〉⇒ var a)/x]

If we think of ` as a type of unit continuations, then, roughly,
B • (unit→ s A) fixes the answer type as A.

In the simple case where B = unit then handling reduces to
case analysis just as in a hand-coded implementation of exception
handling.

For an example, consider a program using virtual effects in
the signature with a binary operation, t : A+`∗`. We will use
handlers to interpret the virtual operation as test-and-flip on a
single bit of memory (aka fetch-and-complement), transforming
the program t with virtual effects into a state-passing program of
the type bool→ s bool∗A. We first define an auxiliary term

t′
def
= case t of inl(x)⇒ return inl(fn s ⇒ 〈s, x〉)
| inr(x)⇒ return inr(x) : (bool→ s bool∗A) + `∗`

and now we consider the following term:

handle t′ with k. return(fn s ⇒
if s then (#1 k)〈〉ff else (#2 k)〈〉 tt) : bool→ s bool∗A

which runs t by state-passing: c.f. [2, §6.3], [25, §2.1]. (The exam-
ple demonstrates that some more elaborate syntax would be use-
ful [3]).

6.1 Accommodating handlers in the abstract machine
We accommodate handlers in the abstract machine by adding
a special kind of branch node denoted g : A

handle−−−→ B. We re-
quire that ΓG, x : A • (unit→ sB) `s [g] : B and that if succ(g′) :

A
handle−−−→ B then either g′ : C → (B +A) or g′ : ()→ (B +A)

or g′ : C
handle−−−→ (B +A).

We extend the translation from machines to programs (§3.3) as
follows: if G is a tree with root g : B

handle−−−→ C and G′ is the forest
of predecessors of g, then let

Tm(G)
def
= handle Tm(G′) withx. [g].

Before we extend the transition behaviour of the machine we
first make the following definition. If a is a label for a machine
and g : A

handle−−−→ B is a branch node, then we define a program
ΓG ` (a−g) : B as follows. First, letG

—•

g
be the tree of nodes with

a path to g (including g), and let (a−g)
def
= Tm(var(a), G

—•

g
). For

example, if g is not reachable from a then (a− g) ≡ vara.

We now define the machine by adding the following case:
6) If now : () → B and [now] = handle twithx. u then we add

a new node g : A
handle−−−→ B and set

[now] := t [g] := u

succ(g) := succ(now) succ(now) := g

and by extending case 1 with the following clauses:
1c) If succ(now) : A

handle−−−→ B then we proceed as follows.

i) If v = inl(w) then we set [now] := returnw and
succ(now) := succ(succ(now)).

ii) If v = inr(w) then let g = succ(now), and suppose
[g] = ΓG, x : A • (unit→ sB) `s t : B. Notice that w has
type A and, if we substitute (fn 〈〉 ⇒ (a− g)) for each
label a in w, we obtain a term w[fn〈〉⇒ (a−g)/a] of type
(A • (unit→ sB)). We set

[now] := t[w[fn〈〉⇒ (a−g)/a]/x]

succ(now) := succ(g).

6.2 Denotational semantics of handlers
Substitution monoidal product We have given a denotational
semantics for the metalanguage by interpreting types as context-
indexed-sets. The category of context-indexed-sets has a monoidal
structure • (discussed in [15, 26, 39, 43] and elsewhere). One way
to explain it is as follows: to give a context-indexed-set is to give
a functor Set → Set that preserves filtered colimits, and the
monoidal structure corresponds to the composition of functors. The
unit for the monoidal structure is L. The monoidal structure • is
such that (− • P) preserves colimits and finite products.

We did not include this monoidal structure as a first-class type
constructor in the metalanguage because there does not appear to
be a good term syntax for it. However, it is lurking: for a first-order
type A and any type B, JA •BK ∼= JAK • JBK.

Indeed, recall that every signatureE induces a context-indexed-
set PE (4). To give a context-indexed-function PE •Q→ Q is
to give a context-indexed-function Qn → Q for each operation
(op : n) inE, i.e., an algebra for the signature. This is the structure
that appears in the second premise of the term formation rule for
handlers, matching up with the motto ‘handlers are algebras’ [38].

Characterization of free algebraic theories The context-indexed-
set PE • Q can be thought of as depth-1 E-terms in Q. Thus we
can build all E-terms by iterating the construction. In other words,
SP is the free •-monoid on P (e.g. [12, 19, 26, 28]):

SP = µM.L + P •M . (6)

This gives us a structural recursion principle for eliminating SP .
We use this to define the denotational semantics of handlers.

Denotational semantics for handlers For simplicity we only give
an interpretation to terms

− `s handle twithx. u : A

where the ambient context is empty. (To accommodate a non-
empty context, one uses the fact that the constructions involved are
strong.)

First, we use the initiality (6) of SJA+BK to define a context-
indexed-function SJA+BK → SJAK. To this end we must define
context-indexed-functions

L→ SJAK JA+BK • SJAK→ SJAK.

The left-hand context-indexed-function is the var operation. The
right-hand context-indexed-function can be equivalently given by
two context-indexed-functions, JAK • SJAK→ SJAK, which arises

from the initiality property (6) of SJAK, and JBK • SJAK→ SJAK,
which is the denotational semantics of the term u.

We now compose this context-indexed-function SJA+BK →
SJAK with the denotational semantics of t, to obtain the denota-
tional semantics of handle twithx. u.

Adequacy

Theorem 12. If ~a : ` `s t : bool and JtK = Jreturn vK then
t ∗ G and gc(G) = return v.

7. Further actual effects
The metalanguage in Section 2 has two actual effects, sub and
var. We demonstrated that virtual effects can be encoded into this
metalanguage. We now explain how to incorporate further actual
effects.

7.1 Example: a bit of memory
We begin by considering how the theory of accessing a single bit of
memory can be accommodated into the metalanguage. We extend
the theory of substitution (§2.1) with three function symbols:

rd : ι× ι→ ι wrtt : ι→ ι wrff : ι→ ι

and add the equations for a bit of memory (e.g. [36], [41, IIIA]) to-
gether with the following equations which explain how substitution
propagates over reading/writing:

sub(a.rd(x(a), y(a)), z) ≡ rd(sub(a.x(a), z), sub(a.y(a), z))

sub(a.wri(x(a)), z) ≡ wri(sub(a.x(a), z))

We note that these kinds of equation are discussed in a different
context in [16] and they are implicit in [13, 14].

Metalanguage We accommodate reading/writing in the metalan-
guage using the following term formation rules:

Γ `s t : A Γ `s u : A

Γ `s rd(t, u) : A

Γ `s t : A
b = tt,ff

Γ `s wrb(t) : A

Abstract machine We can accommodate the extra effect in the
code heap machine by redefining a configuration to be a pair (G, s)
of a code heap G and a bit s. We then add clauses to the transition
behaviour such as

• If [now] = (rd(t, u)) and s = tt then we add a new leaf g and
a new label a with label(g) := a, and set

[g] := t succ(g) := succ(now) now := g.

7.2 Example: Stacks of code pointers and untyped λ-calculus
Our second example concerns the effect of having a stack of labels
alongside the code heap. This is an old idea (see e.g. [7, §2]) but we
can shed new light on it: it amounts to the algebraic theory of the
untyped λ-calculus. We accommodate it by extending the theory of
substitution (§2.1) with two function symbols:

push : `× ι→ ι pop : (`→ ι)→ ι

subject to the following equations.

a : `, x : `→ ι ` push(a, pop(b.x(b))) ≡ x(a)

b : `, x : `→ ι, z : ι ` sub(a.push(b, x(a)), z)

≡ push(b, sub(a.x(a), z))

x : `→ ι, z : ι ` sub(a.push(a, x(a)), z)

≡ sub(a.push(a, sub(a.x(a), z)), z)

x : `× `→ ι, z : ι ` sub(a.pop(b.x(a, b)), z)

≡ pop(b.sub(a.x(a, b), z))

Metalanguage We accommodate the stack in the metalanguage
by adding the following term formation rules:

Γ ` t : ` Γ `s u : A

Γ `s push(t, u) : A

Γ, x : ` `s t : A

Γ `s pop(x.t) : A

with corresponding ‘generic effects’:

Push
def
= fnx : ` ⇒ push(x, return 〈〉) : `→ s unit

Pop
def
= fn : unit ⇒ pop(x.returnx) : unit→ s `

The first equation can be written Push(a) ; Pop〈〉 ≡ return a.

Abstract machine We can also accommodate this extra effect in
our code heap machine by defining a configuration to be a pair
(G, stk) of a code heap and a list stk of labels, considered as
a stack. We extend the transition behaviour with the following
clauses:

6′) If [now] = (push(t, u)) and t ⇓ a then we push a onto the
stack stk (i.e. stk := a :: stk). We add a new leaf g and a new
label a with label(g) = a, and set

[g] := u succ(g) := succ(now) now := g.

7′) If [now] = (pop(x.t)) then if the stack stk is empty, we stop.
If the stack is not empty, we pop the top element a. We add a
new leaf g and a new label a with label(g) = a, and set

[g] := t[a/x] succ(g) := succ(now) now := g.

Encoding recursion We can define the following derived term,
when t has a free variable a of type ` and b is fresh.

mk-loop(a.t)
def
= sub(b.push(b, var b),

pop(b.sub(a.t, push(b, var b))))

This term has the property that

mk-loop(a.t) = sub(a.t,mk-loop(a.t))

Its generic effect

PC
def
= fn : unit ⇒ mk-loop(a.return a) : unit→ s `

can be thought of as a command which returns the current program
counter.

If we combine the theory of a stack of pointers with the theory
of store then we have generic effects

Wri
def
= fn : unit ⇒ wri(return 〈〉) (i ∈ {tt,ff})

can run the following program

let valx = PC〈〉 in Wrtt〈〉 ; Wrff〈〉 ; var x

and in the machine it runs forever, continually flipping the bit in the
store.

Connection with the lambda calculus We conclude by explain-
ing that that the algebraic theory for a stack of pointers is the equa-
tional theory of β-equality in the untyped λ-calculus. To see this, let
lam(a.t)

def
= pop(a.t) and let app(t, u)

def
= sub(b.push(b, t), u) (b

fresh). This algebraic theory is thus essentially the one in [11, §B],
[13, Ex. 3]; its models are the semi-closed algebraic theories [23]
(see also [22]). The derived term mk-loop is essentially Curry’s Y
combinator.

We could also consider the η-law, pop(a.push(a, x)) ≡ x. This
says that the stack is never empty.

8. Summary
We have presented a foundational analysis of the principles of
programming with algebraic effects.

We have shown that concepts such as labels and jumps are not
merely implementation details for virtual algebraic effects. Rather,
they arise immediately from a mathematical result about algebraic
signatures: an algebraic signature is a free model of the theory of
substitution.

We have demonstrated this by designing a typed metalanguage
based around the theory of substitution and jumps (§2). We solid-
ified the computational intuitions about the relationship between
substitution, labels and jumps by giving an abstract machine (§3).
We gave a sound interpretation of an effectful programming lan-
guage into this metalanguage (§5).

In the final sections we sketched how handlers for effects can
be understood as an extension of this metalanguage (§6) We also
considered some extensions of the theory of substitution, most
notably β-equality for the untyped lambda calculus, which, we
argue, describes the computational effects associated with a stack
of code pointers (§7).

We have brought together several lines of work but some links
remain to be made. We are now investigating whether other aspects
of the denotational model have an elegant syntactic counterpart. For
example, there is an isomorphism S0 ∼= L in the model that is not
definable in the metalanguage; it suggests a new language construct
that takes an effectful computation of type 0, which must eventually
jump (var a), and traps that jump, returning the pure label (a). Our
work also suggests new styles of programming with jumps, which
we are developing.

Acknowledgements It has been helpful to discuss this line of
work with many people, including Danel Ahman, Marco Ferreira
Devesas Campos, Hugo Herbelin, Ohad Kammar, Paul Levy, Sam
Lindley, Gordon Plotkin and Noam Zeilberger. Our research was
partly supported by ERC Projects ECSYM and QCLS.

References
[1] A. W. Appel and T. Jim. Continuation-passing, closure-passing style.

In Proc. POPL 1989, pages 293–302, 1989.
[2] A. Bauer and M. Pretnar. Programming with algebraic effects and

handlers. arXiv:1203.1539, 2012.
[3] N. Benton and A. Kennedy. Exceptional syntax. J. Funct. Program.,

11(4):395–410, 2001.
[4] C. Berger, P.-A. Melliès, and M. Weber. Monads with arities and their

associated theories. J. Pure Appl. Algebra, 216, 2012.
[5] E. Brady. Programming and reasoning with algebraic effects and

dependent types. In Proc. ICFP 2013, 2013.
[6] P. de Groote. A simple calculus of exception handling. In TLCA 1995,

pages 201–215, 1995.
[7] B. F. Duba, R. Harper, and D. B. MacQueen. Typing first-class

continuations in ML. In Proc. POPL 1991, pages 163–173, 1991.
[8] M. Felleisen and D. P. Friedman. Control operators, the SECD-

machine, and the λ-calculus. In Formal Description of Programming
Concepts, pages 193–217. North Holland, 1986.

[9] A. Filinski. Representing monads. In Proc. POPL’94, 1994.
[10] A. Filinski. On the relations between monadic semantics. Theor.

Comput. Sci., 375(1–3):41–75, 2007.
[11] M. P. Fiore. Mathematical models of computational and combinatorial

structures. In FOSSACS 2005, 2005.
[12] M. P. Fiore. Second-order and dependently-sorted abstract syntax. In

LICS 2008, 2008.
[13] M. P. Fiore and C.-K. Hur. Second-order equational logic. In CSL

2010, pages 320–335, 2010.
[14] M. P. Fiore and O. Mahmoud. Second-order algebraic theories. In

Proc. MFCS 2010, pages 368–380, 2010.
[15] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable

binding. In Proc. LICS 1999, pages 193–202, 1999.

[16] M. J. Gabbay and A. Mathijssen. Capture-avoiding substitution as a
nominal algebra. Formal Asp. Comput., 2008.

[17] J. Gibbons. Unifying theories of programming with monads. In
Proc. UTP 2012, pages 23–67, 2012.

[18] C. A. Gunter, R. Didier, and J. G. Riecke. A generalization of excep-
tions and control in ML-like languages. In Proc. FPCA 1995, pages
12–23. ACM, 1995.

[19] M. Hamana. Free Σ-monoids: A higher-order syntax with metavari-
ables. In APLAS 2004, pages 348–363, 2004.

[20] R. Harper. Practical Foundations for Programming Languages. CUP,
2012.

[21] H. Herbelin. An intuitionistic logic that proves Markov’s principle. In
Proc. LICS 2010, pages 50–56, 2010.

[22] A. Hirschowitz and M. Maggesi. Modules over monads and initial
semantics. Inf. Comput., 208(5):545–564, 2010.

[23] J. M. E. Hyland. Classical lambda calculus in modern dress. Math.
Struct. Comput. Sci., 2014. To appear.

[24] O. Kammar and G. D. Plotkin. Algebraic foundations for effect-
dependent optimisations. In POPL 2012, pages 349–360, 2012.

[25] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In
Proc. ICFP 2013, 2013.

[26] G. M. Kelly and A. J. Power. Adjunctions whose counits are coequalis-
ers. J. Pure Appl. Algebra, 89:163–179, 1993.

[27] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alterna-
tive to monad transformers. In Haskell 2013, pages 59–70, 2013.

[28] S. Lack. On the monadicity of finitary monads. J. Pure Appl. Algebra,
140:65–73, 1999.

[29] P. B. Levy. Call-by-push-value. A functional/imperative synthesis.
Springer, 2004.

[30] P. B. Levy, J. Power, and H. Thielecke. Modelling environments in
call-by-value programming languages. Inform. and Comput., 2003.

[31] C. McBride. The Frank manual. tinyurl.com/frank-manual,
2012.

[32] P.-A. Melliès. Segal condition meets computational effects. In
Proc. LICS 2010, pages 150–159, 2010.

[33] R. E. Møgelberg and S. Staton. Linearly-used state in models of call-
by-value. In CALCO 2011, 2011.

[34] E. Moggi. Notions of computation and monads. Inform. and Comput.,
1991.

[35] G. D. Plotkin and J. Power. Adequacy for algebraic effects. In
Proc. FOSSACS 2001, pages 1–24, 2001.

[36] G. D. Plotkin and J. Power. Notions of computation determine mon-
ads. In Proc. FOSSACS’02, pages 342–356, 2002.

[37] G. D. Plotkin and J. Power. Algebraic operations and generic effects.
Applied Categorical Structures, 11(1):69–94, 2003.

[38] G. D. Plotkin and M. Pretnar. Handlers of algebraic effects. In
Proc. ESOP’09, pages 80–94, 2009.

[39] J. Power. Abstract syntax: Substitution and binders. In MFPS 2007,
2007.

[40] M. Pretnar. The Logic and Handling of Algebraic Effects. PhD thesis,
School of Informatics, University of Edinburgh, 2010.

[41] S. Staton. Instances of computational effects. In LICS 2013, 2013.
[42] S. Staton. An algebraic presentation of predicate logic. In FOSSACS

2013, pages 401–417, 2013.
[43] M. Tanaka and J. Power. Pseudo-distributive laws and axiomatics for

variable binding. Higher-Order and Symbolic Computation, 2006.
[44] H. Thielecke. Categorical structure of continuation passing style. PhD

thesis, Univ. Edinburgh, 1997.
[45] J. Voigtländer. Asymptotic improvement of computations over free

monads. In MPC 2008, volume 5133 of LNCS, pages 388–403, 2008.
[46] P. Wadler and P. Thiemann. The marriage of effects and monads. ACM

Trans. Comput. Log., 4(1):1–32, 2003.

