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Abstract
We develop a new framework of algebraic theories with linear pa-
rameters, and use it to analyze the equational reasoning principles
of quantum computing and quantum programming languages. We
use the framework as follows:

• we present a new elementary algebraic theory of quantum com-
putation, built from unitary gates and measurement;
• we provide a completeness theorem for the elementary alge-

braic theory by relating it with a model from operator algebra;
• we extract an equational theory for a quantum programming

language from the algebraic theory;
• we compare quantum computation with other local notions of

computation by investigating variations on the algebraic theory.

1. Introduction
Quantum programming languages test many of the challenges of
modern programming language theory: linear use of resources, sep-
aration, locality. A good way to understand a programming lan-
guage is to understand equality of programs. In this paper we de-
velop a general algebraic framework for computational effects in-
volving linear resources. We use it to give a complete axiomatiza-
tion of equality of quantum programs.

What is quantum computing? From a programming language
perspective, quantum computing involves qubits and entanglement:

• There is a type qubit of qubits. Viewed as an abstract type, we
can imagine a qubit as having an internal state that is a position
on the surface of a sphere (called the Bloch sphere), but the
accessor functions do not actually permit us to read its position
on the surface. The three accessor functions are, informally, as
follows. (Notation: we underline them.)

new: allocate a new qubit, with initial position at the top of
the Z axis (called |0〉).
applyU: apply a rotation to the qubit on the sphere around
a given axis by a given angle, as specified by a unitary
matrix U. For example, we can kind-of negate a qubit by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676999

rotating it by 180◦ around the X axis, taking the top of the
sphere to the bottom; this unitary rotation is notated X, and
so the function that applies the rotation is notated applyX.

measure: make a random boolean choice, with the probabil-
ity of returning either 0 or 1 depending on the Z co-ordinate
of the qubit (this is called the standard basis). For example,
if the qubit was on the X axis, the result of measuring will
be 0 or 1 with equal probability, like tossing a fair coin; if
it was at the very top of the sphere, the result of measur-
ing will be 0 with certainty; if it was at the very bottom of
the sphere, the result of measuring will be 1 with certainty.
Measuring a qubit destroys it: all that remains is the result
of the measurement.

• For types A and B, there is a type A ⊗ B of entangled pairs.
For instance the type qubit⊗ qubit is a type of pairs of pos-
sibly entangled qubits. Entanglement is achieved by controlled
unitary rotations. For example, the controlled-X unitary, cX, af-
fects two qubits, and if t is an expression of type qubit⊗ qubit
then also applycX(t) is an expression of type qubit⊗qubit. The
computation applycX(a, b) is like ‘if a is 1 then return (a,¬b)
else return (a, b)’, so that the second value returned depends
on the first value input. The entanglement occurs because this
controlled rotation happens without actually measuring a, and
indeed it is reversible. Yet if a is subsequently measured then
the controlled rotation appears to have behaved in this way.

The main contribution of this paper is the fact that the relationship
between unitary rotations and measurement can be completely de-
scribed by three simple axioms (Theorem 9), and allocation by two
simple axioms (Theorem 11). This simple axiomatization (com-
bined with the unitary groups and commutativity laws) completely
characterizes earlier models that are built from operator algebra and
functional analysis.

In the remainder of this introduction, we give an informal
overview of these results. To express the equations, we need to
first discuss the syntax.

Quantum programming languages and quantum programs. A
quantum programming language captures the ideas of quantum
computation in a linear type theory. For example, we can write a
program of type qubit→ qubit:

fn a : qubit⇒ if measure a = 0 then new() else applyX(new())
(1)

which measures a qubit and returns a new qubit initialized either
to |0〉 or |1〉, depending on the outcome. In other words, the input
qubit is collapsed on to the Z axis.

For another example of a program, we recall the Hadamard
rotation, Had, which maps the Z axis onto the X axis by rotating
180◦ around the axis that lies between the X and Z axes. We can
use this to define a coin toss operation: first initialize a qubit to the



top of the sphere, and then rotate by Hadamard, and then measure:
the program

measure(applyHad(new())) : bit

returns 0 or 1 with equal probability. We can use this to randomly
rotate a qubit around the Z axis: writing Z for the rotation of 180◦

around the Z axis,

fn a : qubit⇒ if measure(applyHad(new())) = 0

then a else applyZ(a) : qubit→ qubit (2)

It turns out that this program (2) is actually equal to the first
program (1): projecting onto the Z axis is the same as randomly
flipping around the Z axis. This fact, perhaps counter-intuitive at
first, is a consequence of our simple intuitive axiomatization of
quantum computation.

Notions of computation and algebraic theories. In programming
language theory it is often useful to analyze different features
of a programming language separately. In the quantum programs
above there are standard features such as sequencing, if-then-else,
functions, as well as the aspects specific to quantum computing.

One way of distinguishing the specific ‘notions of computation’
from the other standard features of programming languages is by
using algebraic effects [36]. A key contribution of this paper (§2) is
a new algebraic framework for analyzing the effects of a linear-use
resource.

A useful step towards the algebraic analysis is to step away
from booleans, if-then-else and sums by writing measure(a, t, u)
for the program (if measure(a) = 0 then t else u). By working
with expressions such as measure(a, t, u), which are in a kind-of
continuation-passing normal form, we can forget about structural
aspects and typing issues. Indeed to analyze the algebraic theory of
quantum computation, we need only distinguish between two kinds
of thing: qubits and computations.

Notice our typographic convention: we underline programming-
language-style commands (measure(a)) but not the corresponding
algebraic operations (measure(a, t, u)). We make this correspon-
dence precise in Section 5.

Algebraic structure of quantum computation. We are now in a
position to postulate the algebraic structure of quantum computa-
tion. It supports four constructions:

• if t is a computation involving a qubit a then there is a compu-
tation new(a.t) that allocates that qubit, initialized to |0〉, and
continues as t;
• if t is a computation involving qubits b1 . . . bn and U is a uni-

tary matrix over n qubits then there is a quantum computa-
tion applyU(a1 . . . an, b1 . . . bn.t) that first performs the uni-
tary U to the qubits a1 . . . an and then binds the resulting qubits
b1 . . . bn in the continuation t;
• if t and u are computations and a is a qubit then there is a

computation measure(a, t, u) that measures a and continues as
either t or u depending on the result of the measurement. This
construction is linear in the quantum parameters: t and u cannot
contain a.
• if x is a variable standing for a continuation that expects n

qubits (notation, x : n) and a1 . . . an are qubits, then x(a1 . . . an)
is a computation over n qubits.

We can construct our two programs, (1) and (2), as algebraic ex-
pressions as follows:

measure(a, new(b.x(b)), new(b.applyX(b, b
′.x(b′))))

new(b.applyHad(b, b
′.measure(b′, x(a), applyZ(a, a

′.x(a′)))))

Here x is a variable standing for the continuation of the computa-
tion (as yet unspecified) which is parameterized by the result qubit.

Diagrammatic notation. Informal diagrams are often helpful.
Our notion of quantum computation is very similar to the notion
described by quantum circuits, for instance in the book by Nielsen
and Chuang [31]. The two programs above ((1), (2)) could be writ-
ten as the following circuits:

|0〉 b X

a  •

a Z a

|0〉 b Had  •

The circuits should be read from left to right. The single wires
carry qubits, the double wires carry classical bits. The boxes are
the unitary rotations, and the meter device is measurement, which
takes a quantum wire to a classical one. The vertical lines indicate
control: the outcome of the measurement determines whether the
gate is applied.

Aside: Just as we wanted to isolate notions of quantum compu-
tation from other aspects of programming languages, so we ought
to isolate the quantum parts of quantum circuits (qubits, unitaries,
measurement) from the classical wires. This leads us to a 3-d nota-
tion like

a
a

b Had

in which measurement causes a branch in the circuit instead of a
classical wire. These kinds of diagram are very similar to Melliès’
notation for storage of classical bits [28], but they are also common
in the many-worlds interpretation of quantum mechanics. In this
paper we will only use diagrams in an informal way, and so we
will write 2-d circuit diagrams for simplicity. We return to the
relationship with classical bits in Section 6.2.

Axioms of quantum computation. We are now in a position to
summarize the algebraic laws of quantum computation. A full
account is in Section 3. In brief, the laws of measurement are:

• after measurement, quantum negation is like classical negation:

applyX(a, a
′.measure(a′, x, y)) = measure(a, y, x)

X  = 

• after measurement, quantum control is like classical control:

applycU(a, b, a
′b′.measure(a′, x(b′), y(b′)))

= measure(a, x(b), applyU(b, b
′.y(b′)))

• 

U
=

 •

U

• we can ‘discard’ a qubit by measuring it and ignoring the result;
gates on discarded qubits are redundant:

applyU(a, a
′.measure(a′, x, x)) = measure(a, x, x)

We combine these three axioms with the equations of the unitary
groups and the following two sensible axioms for qubit allocation:



• new qubits are initialized to |0〉, according to measurement

new(a.measure(a, x, y)) = x

|0〉  = 0

• new qubits are initialized to |0〉, according to controlled gates:

new(a.applyc̄U(a,b, a
′b′.x(a′,b′))) = applyU(b, b

′.new(a.x(a,b′)))

|0〉
U

=
|0〉

U

Completeness theorem. Other authors have proposed equational
theories for quantum computation and quantum programming lan-
guages. We discuss this in Section 3.5. What makes this paper spe-
cial is that it is a complete equational theory of quantum computa-
tion.

Of course, it is very useful to have some handy equations —
they can be used to optimize programs and partially evaluate them.
But by giving a fully complete equational theory we can understand
quantum computation from the axioms of the theory without having
to turn to denotational models built from operator algebra. This is
the subject of Section 4.

We have the following result.

Theorem 11. The following data are equivalent:

• An algebraic expression, modulo the equality derivable from
our axioms;
• A completely positive unit-preserving map between finite di-

mensional C*-algebras.

(It is already well-known that a completely positive map can
be understood in terms of allocating qubits, applying a unitary, and
then measuring, and Selinger [42] phrased this in terms of program-
ming languages; the novelty here is our complete axiomatization of
equality.)

Thus our simple equational theory provides a justification for
the model of quantum computation based on operator algebra.
Although linear algebra plays a major role in many models of
quantum computation, the non-convex addition in linear algebra
often has no direct physical justification. Viewed in this way, our
work suggests an alternative technique for reconstructing quantum
theory from reasonable postulates, which is a subject of much
recent work (e.g. [12, 20]). In our equational theory, vector spaces
do not have an explicit role. The point is that rather than jumping
from physical intuitions directly to linear algebra, one can first set
up a precise equational model of the physical intuitions, and then
use that to justify the models that use linear algebra.

2. Algebraic theories with linear parameters
In this section we introduce a formalism for describing computa-
tional effects over linearly-used resources. Our leading example is
quantum computations over qubits. To motivate this, we consider
some simple examples. If x and y are quantum computations and
a is a qubit, then measure(a, x, y) is a quantum computation that
first measures a, and, depending on the result, continues as x or
as y. We can allocate new qubits, writing new(a.measure(a, x, y))
for the computation that first allocates a, then measures it, contin-
uing as either x or y. We can also apply unitaries to qubits, writing
applycX(a,b, a

′b′.measure(a′,measure(b′,v,x),measure(b′,y,z)))
for the computation that first applies a controlled-not gate to qubits
a and b, yielding qubits a′ and b′, and then measures a′ and then b′.

We make some informal remarks about this syntax, before in-
troducing a formal system.

1. There are two kinds of variable: in the examples above, a, b
stand for qubits whereas v, x, y, z stand for computations.

2. In the example with new, the a is binding, and we could just as
well write new(b.measure(b, x, y)).

3. Computations can involve qubit parameters a, b, and the vari-
ables x, y stand for computations, so we will also allow vari-
ables with qubit parameters. When we write x(a, b), the com-
putation variable x is being passed parameters a and b. For
instance we can write a computation expression new(a.z(a))
which allocates a new qubit a and passes it as a parameter
to the continuation z; we can substitute measure(a, x, y) for
z(a), resulting in the term new(a.measure(a, x, y)). The nota-
tion means that we do not consider implicit variable capture.

4. Care must be taken when using qubits. Measuring a qubit de-
stroys it, and so we adopt the convention that, in an expression
measure(a, t, u), the qubit parameter a should not appear free
in t or u. This kind of linearity also plays a crucial role in the
syntax for unitaries: in applycX(a, b, . . . ) it is crucial that a and
b are different qubits and not aliases for the same qubit. For sim-
plicity we adopt the convention that apply consumes its qubit
parameters, creating new ones that are passed to the continua-
tion.

2.1 General syntactic framework
Our general syntactic framework is an algebraic framework which
is not at all specific to quantum computation. Indeed, it is a new
substructural version of the ‘parameterized algebraic theories’ al-
ready used to analyze various kinds of computation including lo-
cal store, π-calculus-style communication [47] and logic program-
ming [45], following some other similar syntactic frameworks [11,
18, 30, 35, 40]. There are two kinds of variable:

1. Computation variables (ranged over by x, y etc.). Computations
can depend on parameters, and we write x : p if x has p
parameters. The number p is sometimes called a valence.

2. Parameter variables (ranged over by a, b). In the quantum situ-
ation, these stand for qubits.

As in classical algebra, a theory comprises a signature (Def. 1) and
axioms (Def. 2).

Definition 1. An arity, (p | m1 . . .mk), is a natural number
(p ≥ 0) followed by a list of natural numbers (m1 . . .mk).

A signature with linear parameters comprises a set of opera-
tions, and for each operation O an arity (p | m1 . . .mk). Infor-
mally, this specifies that O takes p parameter arguments and k
computation arguments, and the ith computation argument has mi

parameters bound in it. We write O : (p | m1 . . .mk).

We define a three-place judgement Γ | ∆ ` t of well-formed
terms in context in a given signature. Here, Γ is a list of compu-
tation variables with their valences, and ∆ is a list of parameter
variables. The judgement is the least one closed under the follow-
ing rules.

−

Γ, x : p,Γ′ | a1 . . . ap ` x(a1 . . . ap)

Γ | a1 . . . ap ` t
(σ is a permutation of p)

Γ | aσ(1) . . . aσ(p) ` t

Γ | ∆, b1 . . . bm1 ` t1
. . . Γ | ∆, b1 . . . bmk ` tk O : (p | m1 . . .mk)

Γ | ∆, a1 . . . ap ` O(a1, . . . , ap, b1...bm1 .t1, . . . , b1...bmk .tk)



In the term formation rule for operations, the b’s are binding, and
we work up to renaming those bound variables, just as in predicate
logic (∀x.P (x) = ∀y.P (y)) or λ-calculus.

We make some remarks about the rules.

• An operation O consumes its parameters, the a’s, and they
cannot appear free in the continuations, the t’s (unless of course
one happens to use the same symbol for the a’s and the b’s).
• Weakening and contraction are admissible in the Γ context but

not in the ∆ context.
• The syntax admits the following simultaneous substitution law:

Γ | Ξ, a1 . . . am1 ` u1

x1 : m1 . . . xk : mk | ∆ ` t . . . Γ | Ξ, a1 . . . amk ` uk
Γ | ∆,Ξ ` t[Ξ,a1...am1

`u1/x1 · · ·
Ξ,a1...amk`uk/xk ]

Definition 2. Fix an algebraic signature with linear parameters.
An axiom is a pair of terms in the same context; it is written
Γ | ∆ ` t = u.

A presentation of an algebraic theory with linear parameters
comprises an algebraic signature with linear parameters and a set
of axioms over the signature.

In an algebraic theory we form an equivalence relation on terms in
each context (Γ|∆) by closing substitution instances of the axioms
under reflexivity, symmetry, transitivity and congruence.

We now proceed to develop the basic model theory of algebraic
theories with linear parameters. The reader could now jump to read
about the algebraic theory of quantum computation (§3).

2.2 Models of algebraic theories with linear parameters
Classical algebraic theories are typically first understood as set-
theoretic structures, but it is often profitable to look at models
whose carrier is not merely a set and whose structure maps are not
merely functions, that is, to look at models in different categories.
In Section 4, we will prove our full completeness result by looking
at models whose carriers are C*-algebras.

To account for the parameters, we are urged to look at categories
where for each object X and for each natural number n there is
a given object n • X . We can then think of a morphism X →
n • Y informally as a morphism X → Y with n parameters.
We will interpret operations O : (p | m1 . . .mk) as morphisms
(m1 •X)× · · · × (mk •X)→ (p •X).

Let us make this more formal. Let Bij be the category whose
objects are natural numbers and whose morphisms are bijections
between the natural numbers (considered as sets). We will consider
it as a symmetric monoidal category, where the monoidal operation
is addition of numbers. Recall (e.g. [23]) that an action of Bij
comprises a category V together with a functor • : Bij × V → V
and natural isomorphisms, 0 • X ∼= X and (m + n) • X ∼=
m • (n •X), satisfying coherence conditions.

Let V be an action of Bij such that the category V has products
and each functor m • − : V → V preserves products.

Definition 3. A structure for a signature in V is an object X
together with, for each operation O : (p | m1 . . .mk) a morphism
(m1 •X)× · · · × (mk •X)→ p •X .

Given a structure for a signature, one can interpret each term
in context x1 : m1 . . . xk : mk | a1 . . . ap ` t as a morphism in
the category, JtK : (m1 •X)× · · · × (mk •X)→ p •X . This
interpretation is defined by induction on the structure of terms in
a standard way. Informally, the interpretation assigns a value in X
for each valuation of its variables. Note that exchange of parameters
amounts to the functoriality of the action, and the admissibility
of substitution amounts to the composition of the morphisms that
interpret the terms.

Definition 4. A model of an algebraic theory with linear pa-
rameters is a structure for its signature such that for each axiom
x1 : m1 . . . xk : mk | a1 . . . ap ` t = u the interpretation mor-
phisms JtK, JuK : (m1 •X)× · · · × (mk •X)→ p •X are equal.

Proposition 5 (Soundness). If an equality is derivable in a theory
then it is is true in all models.

This is proved by induction on the derivations of equality.

Proposition 6. Consider terms x1:m1 . . . xk:mk | a1...ap ` t, u
of an algebraic theory that are equal in all models. Their equality
is derivable from the axioms of the theory.

Proof. Fix an algebraic theory with linear parameters. Consider
the category of functors [Bij → Set] and natural transforma-
tions between them. This has finite products: (F ×G)(p) =
F (p)×G(p). There is an action of Bij on [Bij → Set] given
by (n • F )(p) = F (p+ n). For each computation context Γ =
(x1 : m1 . . . xk : mk) we define a functor TΓ : Bij → Set with
TΓ(q) the set of terms in context (Γ|b1 . . . bq) modulo the deriv-
able equations. This can be given the structure of a model, in the
functor category [Bij → Set]: notice that (p • TΓ)(∆) is the set
of terms in context (Γ | ∆, a1 . . . ap), and we define the structure
maps using the term formation for the operations. In this model,
for any term Γ | a1 . . . ap ` t we have in particular a function
JtK0 : TΓ(m1) × · · · × TΓ(mk) → TΓ(p), and by definition,
t = JtK0(x1(b1 . . . bm1), . . . , xk(b1 . . . bmk )) in TΓ(p). So if two
terms Γ | a1 . . . ap ` t, u are such that JtK = JuK in this model,
then t = u must be derivable.

Functors (Bij → Set) are called ‘species of structure’, and
have been used to analyze aspects of quantum computation includ-
ing variations on the Fock space construction (e.g. [7]).

In this paper we are particularly interested in models that are
fully complete in the following sense.

Definition 7. A model X in a category is fully complete if for all
contexts (x1 : m1 . . . xk : mk|a1 . . . ap),

• for every morphism f : (m1 •X)× . . . (mk •X)→ (p •X)
there is a term x1 : m1 . . . xk : mk | a1 . . . ap ` t such that
JtK = f ;
• for all terms x1 : m1 . . . xk : mk | a1 . . . ap ` t, u, if JtK = JuK

then t = u is derivable.

3. An algebraic theory of quantum computation
3.1 Rudiments of unitaries.
The basic idea of quantum computation is that the 2n × 2n unitary
matrices describe purely quantum circuits over n qubits. We recall
some key parts of the theory of unitaries.

Recall that a square matrix U of complex numbers is unitary if
its conjugate transpose U∗ is its inverse (U.U∗ = I = U∗.U). Uni-
taries of the same dimension form a group under matrix multipli-
cation: multiplication of two unitaries is again unitary. If U and V
are 2p × 2p unitaries, then we can use quantum circuit diagrams to
illustrate their multiplication by horizontal juxtaposition.

U V

For the simplest example, a 1-dimensional unitary is just a com-
plex number with modulus 1. This is sometimes called a global
phase shift. Global phase shifts can ultimately be neglected in quan-
tum computation, indeed that is a consequence of our Axiom (C),
but they still play a role in the unitary groups.

Every rotation by some angle about an axis of the sphere can
be understood as a 2 × 2 unitary. In fact, every 2 × 2 unitary



arises by combining a global phase shift with such a rotation. We
are particularly interested in the rotation by π about the X axis,
X = ( 0 1

1 0 ), rotation by θ about the Z axis, Zθ = ( 1 0
0 eiθ

), and the
Hadamard rotation, Had = 1√

2
( 1 1

1 −1 ).
To explain the different ways of combining unitaries, we note

that the collection of all finite unitaries of different dimensions
forms a groupoid, that is, a category where all morphisms are
isomorphisms. The objects are natural numbers, and a morphism
U : n→ n is an n× n unitary. Recall that a monoidal structure on
a category is a way of combining objects and morphisms. There are
two symmetric monoidal structures on this groupoid of unitaries,
coming from the multiplication and addition of dimensions.

One monoidal structure is multiplication: if U and V are uni-
taries, m×m and n×n respectively, the Kronecker product U⊗ V
is a unitary (m × n) × (m × n) matrix: (U ⊗ V)i+mk,j+ml =
Ui,jUk+1,l+1. When m = 2p and n = 2q are powers of two, so
m× n = 2p+q , we can illustrate this structure on quantum circuit
diagrams as vertical juxtaposition.

U

V

The other monoidal structure is addition of dimensions: if U and
V are unitaries, m×m and n× n respectively, the block diagonal
(m+n)×(m+n) matrix ( U 0

0 V ) is also unitary. In general we write
D(U1, . . . , Uk) for a block diagonal.

The block diagonal unitaries are controlled unitaries. The small-
est example is Zθ , which can be thought of as a controlled global
phase shift. More generally if U and V are 2p × 2p unitaries, then
D(U, V) is a 2p+1 × 2p+1 unitary, illustrated as follows:

•

U V

(3)

In particular the block diagonal cX def
= D(I2, X) is sometimes

called ‘controlled not’.
We have already seen the symmetry structure for + at di-

mension 1: it is the X gate. The symmetry for the multiplication
monoidal structure is swap def

= D(1, X, 1).
In fact, every 2p×2p unitary can be built from the two monoidal

structures and the single qubit unitaries (e.g. [31, §4.5.2]).

Remark: Our aim in this paper is to study the interaction between
the unitaries and qubit allocation and measurement. There is a body
of work on axiomatizing unitaries (e.g. [43]), which is complemen-
tary to our aims. Moreover the groupoid of unitaries has topological
structure. We are ignoring this continuity in this paper, but it is im-
portant from a foundational point of view (e.g. [20, Axiom P4’]),
and it is central to the study of approximation of quantum gates
(e.g. [31, Ch. 4.5]) and the notions of estimation inherent to quan-
tum algorithms (e.g. [31, Ch. 5]).

3.2 The signature of quantum computation
The signature for quantum computation comprises the following
operations.

new : (0 | 1) measure : (1 | 0, 0)

applyU : (n | n) for every 2n × 2n unitary U

Explicitly, these operations induce the following term formation
rules:

Γ | ∆, a ` t

Γ | ∆ ` new(a.t)

Γ | ∆ ` t Γ | ∆ ` u

Γ | ∆, a ` measure(a, t, u)

Γ | ∆, b1 . . . bn ` t

Γ | ∆, a1, . . . an ` applyU(~a,
~b.t)

together with the variables and exchange law (§2.1). (There are no
closed terms in this theory, in common with continuation passing
style.)

Examples

1. We can make a new qubit initialized to |1〉 and continue as x.

x : 1 | − ` new(a.applyX(a, b.x(b)))

This is justified by the term formation rules:

x : 1 | b ` x(b)

x : 1 | a ` applyX(a, b.x(b))

x : 1 | − ` new(a.applyX(a, b.x(b)))

Here, the a and b are binding: this expression is equal to
new(c.applyX(c, d.x(d))) and also equal to the expression
new(a.applyX(a, a.x(a))). The notation x(b) indicates that the
continuation x takes a parameter b.
A convenient shorthand:

new0(a.t)
def
= new(a.t), new1(a.t)

def
= new(a.applyX(a, a.t)).

2. We can use quantum operations to make a random choice be-
tween continuations x and y.

x : 0, y : 0 | − ` new(a.applyHad(a, b.measure(b, x, y)))

3. A Bell state comprises two entangled qubits. We can create a
Bell state and pass it to x:

x : 2 | − ` new(a.new(b.applyHad(a, a.

applyD(I2,X)
(a, b, ab.x(a, b)))))

This would be written as the following circuit diagram:

|0〉 a Had •

|0〉 b

4. The linearity constraints mean that we cannot implicitly dis-
card nor duplicate qubits. However we can explicitly discard a
qubit a, by measuring it and ignoring the result.

x : 0 | a ` measure(a, x, x)

5. In our formalism, measurement consumes the qubit parameter.
Another convention is that measurement retains the qubit but
it is now collapsed into one of the basis states. This can be
simulated by immediately creating a new qubit with the result
of the measurement:

x : 1 | a ` measure(a, new0(a.x(a)), new1(a.x(a)))

6. In fact, we will later show that (5) is the same as randomly
rotating the phase of a by π, using the rotation Z =

(
1 0
0 −1

)
.

x : 1 | a ` new0(b.applyHad(b, b.measure(b, x(a),

applyZ(a, a.x(a)))))

3.3 Axioms of quantum computation
The terms built from new, apply, measure and variables are subject
to the following laws. The axioms are of four main kinds. There are
two classes of interesting axioms, relating unitaries and measure-
ment (A–C), and relating qubit allocation with unitaries and mea-
surement (D–E). The remaining axioms are more administrative,



relating the properties of unitaries with composition in the syntax
(F–I), and commutativity of the theory (J–L).

Interaction between unitary gates and measurement. Our first
set of axioms describe the interaction between the unitaries and the
standard basis measurement operations. Axiom (A) states that the
quantum not gate (X) simply negates a measurement.

applyX(a, a.measure(a, x, y)) = measure(a, y, x) (A)

Informally,

X  = 

Axiom scheme (B) states that after measurement, quantum control
appears the same as classical control. Recall that D(U, V) is the
block diagonal matrix, ( U 0

0 V ).

measure(a, applyU(
~b,~b.x(~b)), applyV(

~b,~b.y(~b))

= applyD(U,V)(a,
~b, (a,~b).measure(a, x(~b), y(~b))) (B)

 •

U V

=

• 

U V

(B)

For Axiom (C) we need some shorthand. For a list of p dis-
tinct parameter variables a1 . . . ap and a term t, define a term
discardp(a1 . . . ap, t), informally ‘measure a1 . . . ap and continue
as t regardless’; formally:

discard0(−, t) = t;

discardn+1(a,~b, t) = measure(a, discardn(~b, t), discardn(~b, t)).

We can now phrase Axiom scheme (C), which asserts that if all
the qubits involved in a unitary are to be discarded, the unitary is
redundant.

applyU(~a, ~a.discardn(~a, x)) = discardn(~a, x)

where U is a 2n × 2n unitary, n ≥ 0 (C)

In particular, Axiom (C) for n = 0 says when global phase can be
ignored.

Axioms for qubit allocation: Our second class of axioms de-
scribe the interaction between new and measurement and con-
trolled unitaries. They simply impose the idea that new qubits are
initialized to |0〉. Firstly measuring a new qubit always yields 0:

new(a.measure(a, x, y)) = x (D)

|0〉  = 0

(This axiom is similar to Selinger’s axiom for quantum flow
charts [42, §6.6].) Secondly a unitary controlled by a new qubit
will always be controlled by 0.

new(a.applyD(U,V)(a,
~b, a,~b.x(a,~b)))

= applyU(
~b,~b.new(a.x(a,~b))) (E)

|0〉 •

U V
=

|0〉

U

This concludes the interesting axioms. The remaining axioms are
more administrative.

Respecting the symmetric monoidal groupoid of unitaries. Our
third class of axioms imposes the relationships between the struc-
ture of the unitaries and the compositional structure of terms built
from applyU. We can understand axioms (A) and (B) as relating the
+ monoidal structure of the groupoid of unitaries with the branch-
ing structure after measurement. The remaining axiom schemes
(F)-(I) relate the other structure of the groupoid (composition and
the × monoidal structure) with the syntax of the algebraic theory.

applyswap(a, b, (a, b).x(a, b)) = x(b, a) (F)

applyI(~a,~a.x(~a)) = x(~a) (G)
applyUV(~a,~a.x(~a)) = applyU(~a,~a.applyV(~a,~a.x(~a)))

(H)

applyU⊗V(~a,
~b, (~a,~b).x(~a,~b)) = applyU(~a,~a.applyV(

~b,~b.x(~a,~b)))
(I)

Here are informal illustrations of these equations.

×
× =

I =

U V = UV

U⊗ V =
U

V

Commutativity. Our final class of axioms ensure that our equa-
tional theory is commutative in the sense of [26]. In this parame-
terized setting, this means that all operations commute as far as is
allowed by the variable binding. For instance, the following com-
mutativity equation scheme is already derivable from (I):

applyU(
~b,~b.applyV(~c,~c.x(~b,~c)) = applyV(~c,~c.applyU(

~b,~b.x(~b,~c))

This is in spite of the fact that multiplication of unitaries is not
commutative, e.g. X.Had 6= Had.X. For instance, while

applyX(a, a.applyHad(b, b.x(a, b)))

= applyHad(b, b.applyX(a, a.x(a, b)))

X

Had

= X

Had

this does not imply that applyX(a, b.applyHad(b, c.x(c))) is equal
to applyHad(a, b.applyX(b, c.x(c))): it is not a substitution instance,
because one must respect the variable binding. (This is an example
of a general technique for converting a non-commutative algebraic
structure to a commutative one by passing linear-use parameters;
see also [30].)

Several other commutativity equations also follow from our
other axioms, but we need to explicitly include the following com-
mutativity axioms:

measure(a,measure(b, u, v),measure(b, x, y))

= measure(b,measure(a, u, x),measure(a, v, y)) (J)

new(a.new(b.x(a, b))) = new(b.new(a.x(a, b))) (K)

new(a.measure(b, x(a), y(a)))

= measure(b, new(a.x(a)), new(a.y(a))) (L)



Commutativity laws are essentially built in to the quantum circuits
notation. For instance Axiom (L) could be informally written

|0〉


=
|0〉



This concludes our axiomatization of quantum computation.

3.4 Examples of derivations
Rotation about Z doesn’t affect standard basis measurement.
Let Zθ =

(
1 0
0 eiθ

)
= D(1, eiθ). Then

applyZθ (a, a.measure(a, x, y))

= applyD(1,eiθ)(a, a.measure(a, x, y))

= measure(a, apply1(x), applyeiθ (y)) by (B)

= measure(a, x, y) by (C).

Similarly rotation of a new qubit about Z doesn’t affect it:

new(a.applyZθ (a, a.x(a)))

= new(a.apply1(x(a))) by (E)

= new(a.x(a)) by (C). (4)

Notation. To save space we introduce shorthand:

νa. t
def
= new(a.t) t ?a u

def
= measure(a, t, u)

U~a(t)
def
= applyU(~a,~a.t) disc~a(t)

def
= d~a(t)

def
= discard(~a, t)

(Note that we use the same variable names for the input and output
of the unitary gates.) For example, equation (4) would be written
νa. Zθa(x(a)) = νa. x(a), and the key axioms would be written

Xa(x ?a y) = y ?a x (A)

(U~b(x)(~b)) ?a (V~b(y)(~b)) = D(U, V)a,~b(x(~b) ?a y(~b)) (B)

U~a(discard(~a, x)) = discard(~a, x) (C)

νa. (x ?a y) = x (D)

νa.D(U, V)a,~b(x(a,~b)) = U~b(νa. x(a,~b)) (E)

Random choice is symmetric. Recall that νa. Hada(x ?a y)
provides a random choice between x and y. We deduce that it is
unbiased:

νa. Hada(x ?a y) = νa. Za(Hada(x ?a y)) using (4)
= νa. Hada(Xa(x ?a y)) since Z.Had = Had.X

= νa. Hada(y ?a x). using (A) (5)

NB. Random choice is also idempotent and medial, so it is a mean
value algebra (e.g. [2]).

Random phase flip = measurement. Consider the following
equation:

νa. Hada(x(b) ?a Zb(x(b))) = (νa. x(a)) ?b (νa. Xa(x(a)))

In full:

new0(a.applyHad(a, a.measure(a, x(b), applyZ(b, b.x(b)))))

= measure(b, new0(a.x(a)), new1(a.x(a)))

It says that randomly flipping the phase of a qubit is the same as
measuring it. Nielsen and Chuang discuss the equation to demon-
strate the freedom in the operator-sum representation [31, eqns
8.66–8.70]. We can prove it directly in our equational theory.

First we show that measuring a qubit is the same as making
an entangled copy using controlled not, cX = D(I2, X), and then
discarding the original:

(νa. x(a)) ?b (νa. Xa(x(a)))

= νa. (x(a) ?b Xa(x(a))) using (L)

= νa. cXb,a(x(a) ?b x(a)) using (B)

= νa. cXb,a(discb(x(a)))

= νa. cXa,b(cXb,a(disca(x(b)))) (†)
= νa. cXb,a(disca(x(b))) using (E)

†: since cX.swap.cX = swap.cX.swap as matrices.
We conclude by showing that the last line is the same as ran-

domly flipping the phase.

νa. cXb,a(disca(x(b)))

= νa. Hada(cZa,b(Hada(disca(x(b))))) (‡)
= νa. Hada(cZa,b(disca(x(b)))) using (C)

= νa. Hada(x(b) ?a Zb(x(b))) using (B).

‡: since swap.cX.swap = (Had ⊗ I).cZ.(Had ⊗ I), and where
cZ = D(I2, Z).

Reasoning without qutrits. The following example illustrates a
key point in the proof of our completeness theorem (Thm. 11).
When reasoning in terms of C*-algebras, one has access to various
structures that are not definable in our syntax as it stands, such as
base 3 quantum digits, ‘qutrits’. We could extend our syntax to have
parameter variables of different sorts, for different bases. In fact,
we do not need these structures to deduce the relevant equations
between computations over qubits. Let

U = D(1, Had, 1) =

(
1 0 0 0
0 1/
√

2 1/
√

2 0

0 1/
√

2 −1/
√

2 0
0 0 0 1

)
=

• Had •

•
.

Consider the following equation:

νb. Ua,b(x(a) ?b (y ?a u))

= νb. Ua,b(x(a) ?b (y ?a v))
(6)

By considering this equation for all x, y, u, v, we have an equa-
tional way of expressing the idea that, after the unitary, the pair
(a, b) of qubits will never be in the state |1, 1〉. In effect we have a
qutrit, although qutrits are not expressible in this formalism. We de-
rive equation 6 by introducing an intermediate qubit c, as follows.
Let T = D(I6, X), the 8 × 8 Toffoli gate, and note that if V is a
block 3-1 matrix then T.(V⊗ I2) = (V⊗ I2).T.

νb. Ua,b(x(a) ?b (y ?a u))

= νb. Uab((νc. dc(x(a))) ?b ((νc. dc(y)) ?a (νc. u?cv))) by (D)

= νc. νb. Ua,b(dc(x(a)) ?b (dc(y) ?a (u ?c v))) (commutativity)

= νc. νb. (U⊗ I)abc(dc(x(a)) ?b (dc(y) ?a (u ?c v))) (G),(I)

= νc. νb. T.(U⊗ I)abc(dc(x(a)) ?b (dc(y) ?a (u?cv))) (E)

= νc. νb. (U⊗ I).Tabc(dc(x(a)) ?b (dc(y) ?a (u?cv)))

= νc. νb. (U⊗ I)abc(dc(x(a)) ?b (dc(y) ?a Xc(u?cv))) (B)

= νc. νb. (U⊗ I)a,b,c(dc(x(a)) ?b (dc(y) ?a (v ?c u))) (A)

= νc. νb. Ua,b(dc(x(a)) ?b (dc(y) ?a (v ?c u))) (G),(I)

= νb. Ua,b(x(a) ?b (y ?a v)) (D).

3.5 Other axiomatizations of quantum computation
Equational reasoning about programs is widely regarded as impor-
tant, and several authors have already proposed useful equations
for reasoning about quantum programs (e.g. [42, §4.9], [55, §6],
and [53]), and other aspects of quantum computation [51, 54].



There are two particular equational formalisms that we would
like to mention especially: the measurement calculus [15] and the
ZX calculus [14] (which comes out of the categorical quantum me-
chanics programme, see also [1, 52]). Unlike our theory, neither of
these axiomatizations of equality are complete for quantum compu-
tation. But they are both in a different spirit: they have strong results
regarding term rewriting. It seems unlikely that there is a straight-
forward rewriting system to fully decide equality of quantum com-
putations, firstly because of problems with rewriting expressions
over the unitary groups, and secondly because our derivation of (6)
was not at all automatic: it required some ingenuity.

4. Full completeness
In the previous section we provided a new algebraic description of
quantum computation by giving axioms that express the relation-
ship between the unitary gates, measurement and allocation. We
now show that this algebraic theory completely characterizes quan-
tum computation.

We show this by reference to a well-established model of quan-
tum mechanics, over 60 years old, based on operator algebra and
C*-algebras. We show that terms in our theory correspond bijec-
tively with completely positive maps. Thus, via our axiomatization,
one can fully understand quantum computation without first know-
ing all about operator algebra. Conversely, linear algebra gives an
array of techniques for reasoning about the quantum computation
that we have axiomatized: one can decide equality of computations
by comparing matrix representations of the linear maps.

4.1 Rudiments of C*-algebras
The idea of matrix mechanics is that the observables of a quantum
system should be elements of a C*-algebra. Recall that a C*-
algebra is a vector space over the field of complex numbers that also
has multiplication, a unit and an involution, satisfying associativity
laws for multiplication, involution laws (e.g. x∗∗ = x, (xy)∗ =
y∗x∗, (αx)∗ = ᾱ(x∗)) and such that the spectral radius provides a
norm making it a Banach space. A *-homomorphism between C*-
algebras is a linear map that preserves the multiplication, involution
and unit. We write Cstar for the category of C*-algebras and *-ho-
momorphisms.

A key source of examples of C*-algebras are the algebrasMk of
k × k complex matrices, with matrix addition and multiplication,
and where involution is conjugate transpose. In particular the set
M1 = C of complex numbers has a C*-algebra structure, and the
2×2 matrices,M2, form the C*-algebra containing the observables
of qubits.

The ‘direct sum’X⊕Y of C*-algebras is given by the cartesian
product of the underlying sets. It has the universal property of the
categorical product. The C*-algebra C⊕C represents classical bits.

If X is a C*-algebra then the k × k matrices valued in X
form a C*-algebra, Mk(X). For instance Mk(C) = Mk, and
Mk(Ml) ∼= Mk×l. Informally, we can think of the C*-algebra
Mk(X) as representing k entangled copies of X .

Any linear map f : X → Y extends in the obvious way to a
linear map Mk(f) : Mk(X)→Mk(Y ), and Mk(f) is a *-ho-
momorphism if f is. We can thus use this matrix construction to
understand Cstar as a category suitable for modelling algebraic
theories with linear parameters. Consider the action of Bij on
Cstar given by m • X = M2m(X). The direct sum distributes
over the action: Mk(X ⊕ Y ) ∼= Mk(X)⊕Mk(Y ).

In Section 2.2 we defined a notion of model for an algebraic
theory with linear parameters. We now investigate models of the
theory of quantum computation (§3) whose carrier is the complex
numbers, considered as a C*-algebra. Note that m • C = M2m ,
the C*-algebra of 2m × 2m complex matrices, representing m
entangled qubits. Thus a term a1 . . . ap | x1 : m1 . . . xk : mk ` t

is interpreted as a linear map JtK : Mm1 × · · · ×Mmk →Mp.
This can be read, informally, as in predicate transformer semantics:
‘if JtK(o1 . . . ok) is observed of a1 . . . ap then o1 . . . ok will be
observed of x1 . . . xk’. Our interpretation of quantum programs
as maps between C*-algebras follows other recent work in this
direction (e.g. [13, 22, 41]).

4.2 Full completeness for measurement
We begin with the subtheory built from measurement and uni-
taries. We will add qubit allocation in Section 4.3. The oper-
ations measure and and applyU are interpreted using the fol-
lowing *-homomorphisms, measure : M1 ⊕ M1 → M2 and
applyU : Mp →Mp (for each p× p unitary matrix U).

measure(α, β) =

(
α 0
0 β

)
applyU(A) = U

∗AU.

Proposition 8. In the category of C*-algebras and *-homomor-
phisms, the complex numbers C form a model of the subtheory of
quantum computation involving measure and applyU (but not new),
and all the relevant axioms ((A)–(C), (F)–(J)).

This is shown by direct calculation.

Theorem 9. The complex numbers form a fully complete model:

1. For any *-homomorphism f : M2m1 ⊕ · · · ⊕M2mk →M2p

there is a term in the algebraic theory not involving new,
x1 : m1 . . . xk : mk | a1 . . . ap ` t, such that f = JtK.

2. If Γ | ∆ ` t, u and t and u do not contain new, and JtK = JuK
then Γ | ∆ ` t = u is derivable.

We give a rough outline of our proof here, some more detail is
in the Appendix. The theorem is proved by noting that a term not
involving new can always be rearranged to a term applyU(~a,~a.t)
where t is built from measure and variables. We can understand
a term built only from measure as a Bratteli diagram, which is a
combinatorial way of understanding the *-homomorphisms.

4.3 Full completeness for all quantum computations
Completely positive unital maps. To interpret allocation, we
move beyond *-homomorphisms. Recall that an element x of a C*-
algebra is called positive if ∃y. x = y∗y. A linear map f : X → Y
is completely positive if for all k the map Mk(f) : Mk(X) →
Mk(Y ) preserves positive elements. (If either X or Y has commu-
tative multiplication then it is sufficient to check the case k = 1.)
We will focus on the completely positive maps that preserve units.
These form a category CstarCPU and the products and Bij-action
extend from Cstar (*-homomorphisms) to CstarCPU.

Interpretation. The operation new is interpreted using the fol-
lowing map, new : M2 →M1.

new

(
α11 α12

α21 α22

)
= α11.

This is not a *-homomorphism, but it is completely positive and
unital.

Proposition 10. In the category of C*-algebras and completely
positive unital maps, the complex numbers C form a model of the
theory of quantum computation.

Theorem 11. The complex numbers form a fully complete model:

1. For any linear map f : M2m1 ⊕ · · · ⊕M2mk →M2p that is
completely positive and unital, there is a term in the algebraic
theory, x1 : m1 . . . xk : mk | a1 . . . ap ` t, such that f = JtK.

2. If Γ | ∆ ` t, u and JtK = JuK then Γ | ∆ ` t = u is derivable.

(NB. Part (1) of the theorem is essentially Thm. 6.14 of [42].)



A proof is in the Appendix. In brief, we use Stinespring’s the-
orem (e.g. [34]) to factor a completely positive unital map into a
*-homomorphism followed by a restriction. This corresponds to the
way that every term can be written with all the new’s at the front,
then the apply’s, and finally the measure’s. To obtain full complete-
ness we use the minimal dilation that Stinespring’s theorem yields.
However, there is a complication: in this model we can only work
with C*-algebras of the form

⊕k
i=1 M2mi , and the minimal dila-

tion need not be of this form. For instance, consider example (6): its
minimal dilation is a *-homomorphism M2 ⊕M1 ⊕M1 →M3.
We resolve this by generalizing our derivation of (6) from the ax-
ioms.

5. A quantum programming language
The syntax of our equational theory describes quantum computa-
tion but it is not immediately amenable to practical programming
because it focuses on continuing computations rather than interme-
diate results.

There is a standard way of moving between an equational the-
ory like ours and a syntax more oriented towards programming.
This applies to many different notions of computation [37]. In the
setting of quantum computation, we can illustrate it by suggesting
that a programmer might find it helpful to have a typed function
measure : qubit → bit which returns the result of a standard ba-
sis measurement. Our measurement operation can then be derived:
measure(a, x, y) = if measure(a) = 0 then x else y. Conversely,
if we have a language with a bit type that is a model of our equa-
tional theory, we can derive measure(a) = measure(a, 0, 1).

This relationship between ‘algebraic operations’ (like measure)
and ‘generic effects’ (underlined, like measure) is a crucial one in
the theory of computational effects [37]. It allows us to pass from
our algebraic syntax to a language rather like Selinger’s QPL [42].
A categorical way to understand this relationship is in terms of the
duality between Lawvere theories, which are an abstract descrip-
tion of algebraic theories, and Freyd categories, which are an ab-
stract description of first order programming languages [49].

Program equations. To be more precise, we briefly demonstrate
the programming language that corresponds automatically to our
algebraic theory. The types are built from the grammar:

A,B ::= qubit | I | A⊗B | 0 | A+B.

We write bool for I + I . A context in this language is just an
assignment of types to variables. The typed terms are built from
the standard rules for a linear type theory (e.g. [8]), e.g.

−

x : A ` x : A

Γ ` t : A⊗B ∆, x : A, y : B ` u : C

Γ,∆ ` let (x, y) = t in u : C

To this standard linear type theory we add the following generic
effects:

−

` new() : qubit

Γ ` t : qubit⊗n

Γ ` applyU(t) : qubit⊗n

Γ ` t : qubit

Γ ` measure(t) : bool

The resulting language is essentially Selinger’s QPL [42] (see also
[3, 19, 33, 53, 55]).

Our axioms (§3.3) between algebraic expressions have counter-
parts as program equations, e.g. our five key axioms can be written:

measure(applyX(a)) = ¬(measure(a)) (A)

let (a′, x′) = applyD(U,V)(a, x) in (measure(a′), x′) (B)

= if measure(a)=0 then (0, applyU(x)) else (1, applyV(x))

discard(applyU(x)) = discard(x) (C)

measure(new()) = 0 (D)

applyD(U,V)(new(), x) = (new(), applyU(x)) (E)

The commutativity equations amount to the commutativity of
let (e.g. [50]). We combine our axioms with the standard equa-
tional theory of a linearly typed language (e.g. [8]). In this way we
build a language in which every context-type pair is a model of the
theory in Section 3. For instance, if Γ, a : qubit ` t : A then let

newΓ,A(a.t)
def
= t[new()/a];

if Γ ` t : A and Γ ` u : A then let

measureΓ,A(a, t, u)
def
= if measure(a)=0 then t else u.

Higher order computation and monads. By understanding quan-
tum computation as an algebraic effect, we are able to begin apply-
ing other techniques developed for algebraic effects in general, such
as compiler optimizations and static analyses [24] and normaliza-
tion by evaluation [4]. Another general method is building models
of higher order computation with effects [38] by using monads.

Indeed, the equational theory of quantum computation is not a
theory in the sense of classical universal algebra, but rather a theory
enriched in the functor category [Bij,Set], which is why we used
actions of Bij to discuss models.

To be precise: it is a general fact that to give an algebraic
theory with linear parameters in the style of Section 2 is to
give a sifted-colimit-preserving strong monad on the symmet-
ric monoidal closed functor category [Bij → Set]. This fol-
lows from our syntactic completeness result (Prop. 6; see also
[45, Cor. 1], [47, §VII]). For each computation context Γ =
(x1 : m1 . . . xk : mk), we define a functor FΓ : Bij→ Set by
FΓ = Bij(m1,−) + · · ·+ Bij(mk,−). Every functor Bij →
Set is a sifted colimit of functors of this form, so to define a sifted-
colimit-preserving monad T on the functor category (Bij→ Set)
it suffices to specify its action on functors of the form FΓ. Let

T (FΓ)p = {Γ | a1 . . . ap ` t}/=

∼= CstarCPU(M2m1 ⊕ · · · ⊕M2mk ,M2p).

In the proof of Proposition 6, T (FΓ) was called TΓ. (See also
e.g. [25] and [5, 9, 29].)

Since our algebraic theory (§3) is commutative, the Kleisli cat-
egory of the monad T is monoidal [26] (see also [50]). This makes
a connection with other work on monoidal categories for quantum
computation. The monad-based model seems to be closely related
to the one proposed by [27]; it would be interesting to compare it
with the model of [33]. One can also study the full subcategory of
the Kleisli category that is spanned by objects of the form FΓ. This
is essentially the syntactic category of our programming language,
and its dual can be thought of as the Lawvere theory for our alge-
braic theory [49]. It is sometimes called a Freyd category, which
also makes a connection with [53], since Freyd categories are a
categorical formulation of arrows.

6. Variations on the algebraic theory
A distinct advantage of specifying notions of computation by alge-
braic theories is that it is very easy to combine different theories
and to investigate the consequences of further operations and equa-
tions.



6.1 Characterizing different linear maps
Non-returning computations, sub-unital maps and recursion.
We can model computations whose results are partially unde-
fined (e.g. they ‘fail’) by adding to our theory a constant symbol
undef : (0 | −). This should commute with the other operations:

− | a ` discard(a, undef) = undef.

We interpret undef as the zero map undef : M0 → M1 between
C*-algebras: undef() = 0. The correspondence with C*-algebras
extends to ‘undef’ when we relax the preservation of units to the
requirement that (1 − f(1)) is positive: these maps are called
subunital.

Proposition 12. In the category of C*-algebras and completely
positive subunital maps, the complex numbers form a fully complete
model of the algebraic theory of quantum computation extended
with undef.

(In brief, this is because to give a subunital map f : X → Y
is to give a unital map f : X ⊕ C → Y .) Selinger has noted that
the sub-unital maps between finite-dimensional C*-algebras form
a pointed dcpo, and proposed to use this to interpret recursion in
a quantum programming language [42]; this ought to be related to
standard algebraic ways of analyzing iteration [10].

Non-determinism and non-unital maps. Some authors drop the
requirement of preserving the unit altogether (e.g. [21]). I am not
aware of any attempt to justify this with physical intuitions, but
we can consider the idea in this algebraic framework. We do this
by adding to the algebraic theory a commutative monoid, that is, a
binary operation : : (0 | 0, 0) satisfying the monoid laws:

(x: y) : z = x: (y : z) x: y = y : x undef : x = x

Let us add axioms imposing that : commutes with the other opera-
tions (measure, apply and new). The operation : is reminiscent of
non-deterministic computation, although we do not impose idem-
potence, x: x = x; in fact, there is no non-degenerate commu-
tative algebraic theory that combines idempotent nondeterminism
with probabilistic choice.

We can interpret : as a linear map between C*-algebras: let
: : M1 ⊕ M1 → M1 be given by :(α, β) = α + β. This is
completely positive, but it does not preserve units.

Proposition 13. In the category of C*-algebras and all completely
positive maps, the complex numbers form a fully complete model of
the algebraic theory of quantum computation extended with undef
and :.

To show this, we define one-sided measurement operation,
m0 : (1 | 0) by m0(a, x) = measure(a, x, undef), so that

measure(a, x, y) = m0(a, x) : applyX(a, a.m0(a, y)).

Now all terms can be rearranged into an sum of operators, as in
Choi’s theorem.

6.2 Relationship with classical data and QRAM.
Changing of unitaries. The algebraic presentation of quantum
computation does not assume very much about the unitaries, only
they that they form a groupoid with two monoidal structures. To
focus on classical computation, we can cut down to the {0, 1}
valued unitary matrices. In this classical setting the following extra
axiom is reasonable.

x(a) = measure(a, new0(a.x(a)), new1(a.x(a))) (M)

Axiom (M) is consistent with classical computation:

Proposition 14. The two-element set, 2, is a fully complete model
in the category Setop. In other words, the following data are
equivalent:

• A term x1:m1...xk:mk | a1...ap ` t where all the unitaries are
valued in {0, 1}, modulo all the axioms including (M).
• A function 2p → (2m1 + · · ·+ 2mk ) between sets.

Note that Axiom (M) is is inconsistent with quantum computa-
tion, since we can use it to derive x = y (for all x and y):

x = νa. (x ?a y) (D)

= νa. Hada(Hada(x ?a y)) (G),(H)

= νa. Hada((νa. Hada(x?ay)) ?a (νa. Xa(Hada(x?ay)))) (M)

= νa. Hada((νa. Hada(y?ax)) ?a (νa. Xa(Hada(y?ax)))) (5)

= νa. (y ?a x) (M),(H),(G)

= y (D)

Notice that the algebraic framework allows us to make this very
strong statement: we are not only saying that (M) fails in the
particular model of C*-algebras, but moreover that it fails in every
consistent model of quantum computation.

Reference cells versus their contents. A rather different ap-
proach to quantum data is to step away from the actual qubits,
and instead consider pointers to memory cells that store qubits (in
‘QRAM’). This approach is taken in the QIO monad [6].

We can analyze this in the context of our algebraic theory by
understanding the parameter variables (a, b) not as qubits but as
distinct references to memory cells. Thus new does not create a
new qubit, but rather allocates a new memory cell containing a
qubit initialized with |0〉. With this interpretation, discard is not
discarding a bit, but rather discarding the name of the pointer: the
memory itself might remain active.

In this context it is appropriate to omit Axiom (C). We now
explain this by analogy with the classical situation.

Algebraic theories with a discard operation. The theory of quan-
tum computation has, as a subtheory, the simple theory of discard-
ing. The signature is discard : (1 | 0), and there is one equation:
discard(a, discard(b, x)) = discard(b, discard(a, x)). In Prop. 6
we saw that the functor category [Bij,Set] is a canonical category
for models of algebraic theories with linear parameters. In fact, as
is quite well known (e.g. [17, 28, 39]), the category of algebras
for the theory of discard alone is equivalent to the functor category
[Inj,Set], where Inj is the category of natural numbers and injec-
tions between them. This means that every algebraic theory with
linear parameters and with a discard operation induces a monad on
the category [Inj,Set]. This category has long been used to model
dynamic allocation [44] and separation [32].

The category Inj has a monoidal structure, given by addition
of natural numbers, and this extends to a monoidal structure on
the category [Inj,Set]. If we have an algebraic theory with linear
parameters and a the discard operation commutes with all other
operations, then this induces a strong monad on [Inj,Set] for
this monoidal structure. There is a well-studied strong monad on
[Inj,Set] that describes local store of classical data: it is attributed
to O’Hearn and Tennant, but first appeared in [36]. We analyze that
monad by considering an algebraic theory of classical local store,
which is a variation on the theory of quantum computation (§3)
found by restricting to {0, 1}-valued matrices; omitting Axiom (C);
and including Axiom (M).

Proposition 15. The (enriched) category of algebras for the theory
of classical local store is equivalent to the category of LS-algebras
from [36], over [Inj,Set].



(This is proved in much the same way as [28, 36, 39], only
within the formal framework of algebraic theories with linear pa-
rameters.) An important property of the monad for local store of
classical data is that it is enriched in [Inj,Set] in two ways: firstly
with the monoidal structure, which gives a notion of separation;
and secondly with the cartesian product, which enables standard
programming with ordinary cartesian products.

If we add Axiom (C) then we retain the enrichment in the
monoidal structure (see also [48, §4.2.2]) but the cartesian enrich-
ment is broken. Indeed, no further axioms can be added without
breaking the cartesian enrichment [46].

Following Proposition 15, we can also consider an algebraic
theory of quantum local store, by omitting Axiom (C) (except for
n = 0); omitting Axiom (M), but using all the unitaries. This again
supports the two different kinds of enrichment in [Inj,Set]. We
propose our algebraic theory of quantum local store as a semantic
theory of the notion of computation describing the QRAM model.

Summary. Axioms omitted Unitaries valued in
Quantum computation (M) Complex numbers
Classical computation None {0, 1}
Classical local store (C) {0, 1}
QRAM (C),(M) Complex numbers

It would be interesting to add other operations to the signature, such
as communication primitives, e.g. following [47].

Overall summary. We have presented a framework for algebraic
theories with linear parameters (§2) and used it to axiomatize quan-
tum computing (§3). We showed that our axiomatization com-
pletely describes quantum computing, by referring to an old model
built from operator algebra (§4). We showed how to extend the no-
tion of quantum computing to a programming language (§5), and
considered several variations on the theory (§6), demonstrating the
flexibility of the algebraic framework.
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A. Proof of full completeness
We use this appendix to give more details of our proof of the
completeness theorems from Section 4. As a first step we consider
the case without new.

Theorem 9.

1. For any *-homomorphism f : M2m1 ⊕ · · · ⊕M2mk →M2p

there is a term in the algebraic theory not involving new,
x1 : m1 . . . xk : mk | a1 . . . ap ` t, such that f = JtK.

2. If Γ | ∆ ` t, u and t and u do not contain new, and JtK = JuK
then Γ | ∆ ` t = u is derivable.

Proof notes. Recall that if m1 . . .mk, p are non-zero natural num-
bers then the set of Bratteli diagrams, Brat(m1 . . .mk, p), com-
prises k-tuples of natural numbers s1 . . . sk (‘partial multiplicities’)
such that

∑k
i=1 simi = p. There is a function

µ : Brat(m1 . . .mk, p)→ Cstar(Mm1 ⊕ · · · ⊕Mmk ,Mp)

where µ(s1 . . . sk)(A1, . . . , Ak) is the block diagonal matrix
formed by s1 copies of A1 followed by s2 copies of A2 and so
on.

The following result is standard (e.g. [16, 1.1.3]).

Proposition 16. The function µ has a retraction: there is a function
ρ : Cstar(Mm1⊕· · ·⊕Mmk ,Mp)→ Brat(m1 . . .mk, p) such
that ρµ = id. Moreover ρ(f) = ρ(g) if and only if there is a p× p
unitary U such that f( ~A) = U∗(g( ~A))U .

Consider a context (x1 : m1 . . . xk : mk | a1 . . . ap). Suppose
that the second order variables are arranged in order of increasing
valence. The following are in bijective correspondence:

1. Terms built only from measure and variables, such that the vari-
ables (of both kinds) appear in the same order as in the context.
(These terms are not considered modulo any equations.)

2. Sequences of partial multiplicities in Brat(2m1 . . . 2mk , 2p).

To show this, we interpret a term t as a Bratteli diagram LtM so
that µLtM = JtK. If the term is a variable xi(a1 . . . aq), then
mi = q = p, and we let Lxi(a1 . . . aq)M ∈ Brat(2m1 . . . 2mk , 2p)
be given by si = 1, and sj = 0 for j 6= i. If the term is a measure-
ment, measure(ap+1, t, u), then by induction t and u correspond
to Bratteli diagrams LtM, LuM ∈ Brat(2m1 . . . 2mk , 2p), and so∑k
i=1LtMi2

mi+
∑k
i=1LuMi2mi = 2p+1. Let Lmeasure(ap+1, u, v)M

in Brat(2m1 . . . 2mk , 2p+1) be the coordinatewise sum of LtM and
LuM, i.e. Lmeasure(ap+1, u, v)Mi = LtMi + LuMi.

The inverse to this interpretation maps Bratteli diagrams ~s in
Brat(2m1 . . . 2mk , 2p) to terms Measure(~s) of this special form,
so that Measure(LtM) = t and LMeasure(~s)M = ~s. This inverse
is defined by induction on p. The special order on the computation
variables is needed here.

We can thus define a section of the semantic map

J−K : {t | (x1 : m1 . . . xk : mk | a1 . . . ap ` t)}
→ Cstar(M2m1

⊕M2mk ,M2p)

as follows. Every *-homomorphism f : M2m1 ⊕ ··· ⊕M2mk →M2p

factors as f(x) = U∗ · (µ~s)(x) · U, for a 2p × 2p unitary U, so that
f = JapplyU(~a,~a.Measure(~s))K. Thus the first part of the Theo-
rem 9 is proved.

We show the second part of Theorem 9 in two stages.

1. We show that the section of the semantic map doesn’t depend
on the choice of U;

2. We show that the section is a surjection, i.e. that every term is
equal to one of the form applyU(~a,~a.Measure(~s)).

First, we show that for any Bratteli diagram~s ∈ Brat(2m1 ...2mk , 2p)
and any 2p × 2p unitaries U, V, if

U
∗ · (µ~s)(−) · U = V

∗ · (µ~s)(−) · V (7)

as linear maps, then we can derive the equality

applyU(~a,~a.Measure(~s)) = applyV(~a,~a.Measure(~s)) (8)

between terms. This fact can be understood along the same lines
as the freedom in the operator-sum representation of completely
positive maps (e.g. [31, Ch. 8]). If (µ~s)(−) = U∗ · (µ~s)(−) · U
then U must be built from a tensor products of unitaries that are
conditional on qubits that are being measured and that act on qubits
that are being discarded. All this is taken care of by laws (A)–(C),
(F)–(J). Thus the section of the semantic map does not depend on
the choice of U.

It remains for us to show that the section is a surjection, i.e. that
every term is equivalent to one of the form applyU(~a,~a.Measure(~s)).
In brief, we use the equations to rearrange a term as follows: first we
push all measure operations inside apply operations using law (B);
next we arrange all the second order variables to appear in the
designated order by using controlled nots (possibly controlled-
controlled-nots etc), via laws (A), (B) and (J); we arrange all the
parameter variables to appear in the designated order, by using con-
trolled swaps, via laws (B), (F); a sequence of apply operations can
be combined into one apply operation, using tensors and composi-
tion, via laws (G)–(I). This concludes our proof of Theorem 9.

We now turn to prove Theorem 11, extending Theorem 9 to
consider new and completely positive maps.



Theorem 11.

1. For any linear map f : M2m1 ⊕ · · · ⊕M2mk →M2p that is
completely positive and unital, there is a term in the algebraic
theory, x1 : m1 . . . xk : mk | a1 . . . ap ` t, such that f = JtK.

2. If Γ | ∆ ` t, u and JtK = JuK then Γ | ∆ ` t = u is derivable.

(NB. Part (1) of the theorem is a variation on Selinger’s [42,
Thm. 6.14]. It is the complete axiomatization of equality that is
new.)

Proof notes. Recall the following variant of Stinespring’s theorem
(e.g. [34, p. 45]). Let p̃ be a natural number. If f : A → Mp̃ is
completely positive and unital then there is a natural number q ≥ p̃
and a *-homomorphism g making the following diagram commute:

A
g ��

f

((PPPPPP

Mq // Mp̃

where the unlabelled horizontal arrow is A 7→ A|p̃, where A|p̃
comprises the first p̃ rows and columns of the q × q matrix A.
Moreover q can be chosen as the minimal such number: if r ≥ p̃
and a *-homomorphism h : A→Mr is such that h(−)|p̃ = f(−)
then r ≥ q and there is an r-ary unitary U such that g(a) =
(U(h a)U∗)|q . As a diagram:

Ah

vv
f

((QQQQQQQQ
g��

Mr U−U∗ // 44Mr
// Mq // Mp̃

Now if A = M2m1 ⊕ · · · ⊕M2mk and p̃ = 2p, so f is as in the
statement of the theorem, we can use the minimal dilation to show
that f is definable, provided q is a power of 2. This is because
the horizontal arrow can be defined using new and the *-homo-
morphism can be defined according to Theorem 9. Moreover the
minimality essentially gives us the second part of the theorem.

However, q need not be a power of 2. For instance, consider
example (6): its minimal dilation is a *-homomorphismM2⊕M1⊕
M1 →M3.

We resolve this as follows. First we note that A is not the trivial
C*-algebra M0, for if A ∼= M0 then, since f is unital, 2p = 0,
which is absurd. So k 6= 0 and we pick i ≤ k, giving us a *-homo-
morphism πi : A→M2mi . Now the Stinespring dilation gives the
following factorization of f :

A
((2mi )·g,(2l−q)·πi)//

f

,,

g

--[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[ 2mi ·Mq ⊕ (2q − q) ·M2mi

π1

**VVVVVVVVVVVVVVV
// M2mi+q

��
Mq

��
M2p

Note that the horizontal maps are *-homomorphisms, and the ver-
tical maps are restrictions. Thus the completely positive map f is
definable: there is a term t such that f = JtK.

Now suppose that t and u are terms with the same interpre-
tation (JtK = JuK). We will show that their equality can be de-
rived. We can assume that the terms are written with the news
on the outside, by using the commutativity equations, so that t =
new(a1 . . . al.t

′) where t′ doesn’t contain new. Axiom (D) implies
new(a.discard(a, x)) = x, so we can add new’s to t or u so that
they both have the same number of new’s (l, say). In summary we
have *-homomorphisms Jt′K : A → M2l and Ju′K = A → M2l ,
such that

JtK = A
Jt′K−−→M2l →M2p and JuK = A

Ju′K−−→M2l →M2p .

By Stinespring’s theorem there is a natural number q so thatMq

is the minimal dilation of JtK = JuK; by minimality there are 2l×2l

unitaries U and V such that

M2l

U−U∗
++WWWWWW

**
M2l

++WWWWWW
A

Jt′K
44iiiiiiiiiiiii

Ju′K **UUUUUUUUUUUUU Mq // M2p

M2l

33gggggg

M2l

V−V ∗ 33gggggg

44

where the composites of the inner square are *-homomorphisms.
Since U and V do not affect M2p , we have

new(~a.t) = new(~a.applyU (~b,~b.t′))

and new(~a.u) = new(~a.applyV (~b,~b.u′)).

This follows from the following lemma.
If there are n parameter variables in context andU is a unitary of

arity 2n then we write applyU (t) as shorthand for apply(~an,~a.t).

Lemma 17. Let m < n and let U be a unitary on 2n square
matrices that fixes the top 2m rows. Then the following equation is
derivable:

x : n | a1 . . . am `new(am+1 . . . an.applyU (x(~a)))

= new(am+1 . . . an.x(~a))

This lemma follows from Axiom (E). So we can assume wlog
that U and V are identities, and

M2l ,,YYYYYYY
A

Jt′K 22fffffff

Ju′K
,,XXXXXXX Mq

M2l

22eeeeeee

We now use another lemma:

Lemma 18. If the following diagram commutes

A
f ��

g

((RRRRRRR

Mp+q // Mp

and if f and g are *-homomorphisms then f factors through the
block diagonal map Mp ⊕Mq →Mp+q (measurement).

Returning to our main argument, the lemma (18) gives us
f, f ′, g, h and the following situation:

Mq ⊕M2l−q // M2l

&&MMMMMMMM

A

(f,g)
66nnnnnnnnnn

Jt′K

33fffffffffffffffffffffffff

(f ′,h) ((PPPPPPPPPP

Ju′K
++XXXXXXXXXXXXXXXXXXXXXXXXX Mq

Mq ⊕M2l−q // M2l

88qqqqqqqq

We immediately have f = f ′. Now,

t = new(~a. new(b.measure(b, t′, u′)))

= new(~a. new(b.applyU (measure(b, t′, u′))))

where U is the unitary that swaps the two occurrences of (2l − q)
in Mq+(2l−q)+q+(2l−q) = M2l ⊗M2. This equation is a conse-
quence of Lemma 17: U fixes the upper 2p rows.

It remains for us to show that applyU (measure(b, t′, u′)) =
measure(b, u′, t′). These terms don’t involve new, so by Theo-
rem 9 the equality is derivable if and only if the corresponding



*-homomorphisms are equal. Indeed they are, because

JapplyU (measure(b, t′, u′))K(a) = U
(

Jt′K(x) 0

0 Ju′K(x)

)
U∗

= U

(
f(x) 0 0 0

0 g(x) 0 0
0 0 f(x) 0
0 0 0 h(x)

)
U∗ =

(
f(x) 0 0 0

0 h(x) 0 0
0 0 f(x) 0
0 0 0 g(x)

)
=
(

Ju′K(x) 0

0 Jt′K(x)

)
= Jmeasure(b, u′, t′)K(x)

This concludes our proof of Theorem 11.


