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Summary

My thesis is about foundations for formal semantics of name-passing process calculi. These calculi

are languages for describing systems of agents that communicate channel names along named

channels. This facility provides a natural way of describing the mobility of communication links.

(The π-calculus of Milner et al. [1992] is a paradigmatic example of such a language.)

The thesis is split into two parts, reflecting the two aspects of the foundations of name-passing

calculi that are addressed.

• Part I of the thesis is dedicated to operational models for name-passing calculi. Conventional

operational models, such as labelled transition systems, are inappropriate for name-passing

systems. For this reason I develop and relate two different models of name-passing from the

literature: indexed labelled transition systems, based on work of Cattani and Sewell [2004],

and a coalgebraic approach introduced by Fiore and Turi [2001]. Connections are made with

the History Dependent Automata of Montanari and Pistore [2005], and I introduce a new

operational model using the nominal logic of Pitts [2003].

• Part II of the thesis concerns structural operational semantics for name-passing calculi. Various

work has been done on the meaning of rule-based transition system specifications, and on

congruence rule formats for simple calculi. This work is not relevant to name-passing systems,

due to (for instance) variable-binding and substitution in the syntax, and side conditions

on rules. I investigate the application of Turi and Plotkin’s [1997] ‘mathematical structural

operational semantics’ to the name-passing case, by developing it for the operational models

introduced in the first part. An important result is extracted from the analysis of the structural

operational semantics. If a specification of a name-passing calculus is given in a certain

format, then bisimilarity (a natural notion of equivalence) is guaranteed to be a congruence.

While the thesis draws important conclusions about the foundations for name-passing calculi, it

must be emphasised that the ramifications of this work spread far beyond this. Many features of

name-passing calculi, particularly the variable-binding and substitution, are relevant to modern

programming languages, and also in languages for cryptographic protocols. By studying founda-

tions for name-passing calculi, I provide a step towards the foundations of these more elaborate

languages and idioms. Indeed, this the subject of my current research.

Notes for the reader. This report is structured as follows. After introducing some preliminary

concepts (the π-calculus and nominal logic), I provide summaries of the two parts of the thesis.

Following this, I provide more detailed, technical descriptions of the two parts, with more careful

cross-references to the thesis body. I conclude with a brief summary of ongoing work related to the

thesis.

In this report, I use alphabetic section numbering, to distinguish from the numeric numbering

system of the thesis. All numeric references are references to sections or results of the thesis.
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A. Preliminaries

A.a. Name-passing and the π-calculus

The paradigmatic example of a name-passing calculus is the π-calculus [Milner et al., 1992]. I in-

clude here some rudiments of the π-calculus, to give an informal impression of what is involved in

the syntax and semantics of name-passing calculi. More details are given in Sec. 3.1 of the thesis

and the references therein.

The π-calculus describes the communication of channel names along (named) channels. For

instance, consider the processes

P = c(a). P ′ which receives a name on channel c and binds it to a in P ′.

Q = c̄d.Q′ which transmits name d on channel c, becoming Q′.

There is a transition (P |Q)
τ
−→ (([d/a]P ′) |Q′), during which P and Q communicate. Notice that,

after the transition, the transmitted name d is substituted for the bound name a in P ′.

The restriction operator, ν , acts to hide names when they are used as channels. But when names

are considered as data, the operator ν has a different behaviour. The process νd. c̄d can perform

an output action; here it is helpful to think of the operator ν as describing the generation of a new

name d. The output of newly generated names is called bound output. This behaviour gives rise to

the phenomenon of scope extrusion. For instance, in the π-calculus, we have a silent transition

(νd. c̄d. P ′) | c(d).Q′
τ
−→ νd. (P ′ |Q′)

during which the scope of d extrudes to include Q′. This phenomenon can be used to describe

mobility of communication links.

A.b. Nominal logic and nominal sets

Nominal logic was introduced by Pitts [2003] as a first-order theory of variable binding. An

overview is given in Sec. 7.2 of the thesis, and I now give a brief summary.
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B. SUMMARY OF PART I (OPERATIONAL MODELS) 3

Nominal logic. A nominal logic theory is a theory of many-sorted first-order logic that has par-

ticular symbols and axioms. There must be a sort N of names, and, for each sort X there must be

a sort [N]X. If a is a term of sort N, and t is a term of some other sort X, then we have a term

〈a〉t of sort [N]X and a formula a
�

t. The term 〈a〉t is to be thought of as “a bound in t, up-to

α-equivalence”. The formula a
�

t is to be thought of as “a is fresh for t”. For example, a simple

theorem of nominal logic is:

∀a : N.∀x : X. a
�
(〈a〉x) .

Nominal sets. A nominal logic theory can be interpreted in set theory, in the category of sets,

just as any other first-order theory. A more natural category for nominal logic, though, is the

category of nominal sets, as introduced by Pitts [2006] and Gabbay. The definitions are recalled in

Secs. 7.1.1–7.1.3 of the thesis, and I now give an overview.

To begin, we fix an infinite set N , the set of ‘names’, and we write Sym(N ) for the group of all

permutations ofN . A Sym(N )-set is a set X together with a function •X : Sym(N )× X → X . Equiv-

ariant functions between Sym(N )-sets are functions that preserve the group-action structure. We

can define a notion of support for the elements of any nominal Sym(N )-set. Roughly, a support of

an element is a set of names that determine the permutation action. A nominal set is a Sym(N )-set

X for which every element x ∈ X has a (finite) support. We let Nom be the category of nominal

sets and equivariant functions.

A basic example is the nominal set of π-calculus terms up-to α-equivalence. The permutation

action is given by permuting the free names of terms. A set of names C supports a term in this set

if all the free names of the term are in C .

Perhaps the best way to understand nominal sets, and the interpretation of nominal logic in

nominal sets, is to investigate the constructions that are available in nominal sets. The most

important construction is name-abstraction, which models binding and α-equivalence. For each

nominal set X we have a set [N ]X of elements of X with names abstracted from them. Indeed,

[N ]X = (N × X )/∼, where ∼ is a notion of α-equivalence, defined in terms of supports and per-

mutations.

There are other, more straightforward constructions. The set N of names is a nominal set.

Given two nominal sets, it is straightforward to define a group action structure on the product and

coproduct (disjoint union) of their underlying sets, and this defines the products and coproducts

in Nom.

B. Summary of Part I (Operational models)

The standard operational model of a non-deterministic system is the labelled transition system

(LTS). A labelled transition system is a set of states, X , together with a transition relation,

(→X )⊆ X × L× X , describing how the system may move from one state two another, with the

labels in L describing what is observed during transitions. Bisimilarity is the finest reasonable

equivalence relation on states.

Labelled transition systems provide an appropriate syntax-independent model for simple lan-

guages such as Milner’s CCS [1989]. There is a labelled transition system whose states are the

terms of CCS, and whose transitions describe how one CCS term can evolve into another. Bisimi-

larity in this LTS is a first notion of equality for CCS, Milner’s ‘strong equivalence’.

Labelled transition systems are not immediately relevant as models of name-passing process

calculi. For a first attempt, one might follow the usual approach for CCS, by considering a labelled

transition system whose states are the terms of the π-calculus, and with a transition from one term

to another as permitted in the language. For instance, consider the π-calculus term c(a). c̄a, which

receives a name on channel c and then transmits it again. Taking a naive approach, the reachable

LTS for this very simple term has an infinity of states, allowing for the input and retransmission of
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Many of the distinct states are syntactically closely related: the state at the top of the diagram is a

renaming of the one directly below it. It is not appropriate, in the name-passing setting, to abstract

away from this renaming structure. The information about renaming states is vital in giving a

semantics to a language, and plays a crucial role in the definition of bisimilarity. For instance, in

the π-calculus, a binary relation R on terms is a bisimulation if whenever P RQ then

• for non-bound-output labels l, if P
l
−→ P ′ then there is Q′ with P ′ RQ′ and Q

l
−→ Q′, and

• if P
c̄(a)
−−→ P ′ with a not in the free variables of Q, then there is Q′ with P ′ RQ′ and Q

c̄(a)
−−→ Q′,

and similarly with the roles of P and Q interchanged. A bisimulation on π-calculus terms is wide-

open if it is closed under all substitutions. The greatest wide-open bisimulation, wide-open bisimi-

larity, is arguably the finest reasonable equivalence for π-calculus terms. All these definitions make

use of the free-variable and renaming structure of the set of π-calculus terms.

Questions. With these concerns noted, it is reasonable to ask: what is an operational model of

name-passing? In the thesis I answer this by developing and relating various approaches.

Part I of the thesis is summarized as follows.

Key result. The following operational models of name-passing are essentially equivalent.

• A class of models involving indexed labelled transition systems and N -LTSs, in the sense

proposed by Cattani and Sewell [2004].

• A class of models built from structured coalgebras, following the proposals of Fiore and Turi

[2001].

• A class of models of a theory of transition systems in Pitts’s [2003] nominal logic.

• The history dependent automata of Montanari and Pistore [2005].

I sketch these different approaches briefly now.

Indexed labelled transition systems. Cattani and Sewell suggested that name-passing can be

modelled in labelled transition systems, provided the states are indexed by sets of ‘known names’.

Given a function C → D between sets of names, there should be a function between sets of states,

taking {states that know C} to {states that know D}. Mathematically speaking, the states of an

indexed labelled transition system form the set of elements of a presheaf over the category of finite

sets.

Once states are indexed in this way, it is possible to axiomatize apparent properties of a name-

passing system. For instance, in the π-calculus, there is no bound output transition

(āa |νa. c̄a)
c̄(a)
−−→ āa
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intuitively because the name a is free in the left-hand side, and so cannot be a newly gener-

ated name. In the context of indexed transition systems, this requirement can be phrased model-

theoretically, without reference to the particular syntax of the π-calculus. In the thesis, I investigate

various axioms of this kind.

Structured coalgebras. The following observation motivates coalgebras as an abstraction of the

notion of transition system: a labelled transition system (→) ⊆ X × L × X is the same thing as a

coalgebra X →P (L× X ) when it is seen as a non-deterministic ‘next-state’ function. Other model

theoretic ideas, including bisimulation, can be defined in this setting. Fiore and Turi [2001] in-

troduced a model for name-passing based on coalgebras for an endofunctor on the category of

presheaves. In the thesis, I investigate and develop different endofunctors on different categories

of presheaves. An important contribution of this thesis is the new notion of structured coalgebra.

This is a fundamental general notion that is of particular import when modelling name-passing

systems.

Transitions systems in nominal logic. Pitts’s nominal logic [2003] provides facilities for ex-

pressing requirements about freshness of variables and binding structure. I introduce nominal logic

theories of transition systems for name-passing. Nominal logic is a natural language for axiomatis-

ing the model-theoretic properties of name-passing systems. For instance, we can axiomatize the

property of π-calculus terms mentioned above as follows. Here, the symbol
�

is pronounced ‘fresh

for’.

∀P, P ′ : X, a, c : N. P
c̄(a)
−+ P ′ =⇒ a

�
P

The connection between these ‘nominal transition systems’ and the other approaches based on

presheaves arises as follows. An important contribution of the thesis is the introduction of the

theory of nominal substitutions, with the following result.

Theorem. The category of nominal substitutions is equivalent to a category of sheaves on finite

sets.

Indeed, as well as connecting models of name-passing, this theorem provides an elegant con-

nection between two competing approaches to abstract syntax with variable binding: the nominal

sets approach of Pitts and Gabbay, and the approach of Fiore, Plotkin, and Turi [1999], which is

based on presheaves.

History dependent automata. The final model of name-passing that I consider arises from the

work of Montanari and Pistore [2005] on history dependent automata. The starting point of history

dependent automata is a notion of named-set. A history dependent automaton is an automaton that

is built of named-sets instead of sets — there is a named-set of states, and a named-set of labels,

and so on. History dependent automata are connected with the other models by the following

theorem, which makes essential use of the orbit-stabilizer theorem.

Theorem. The category of history dependent automata is equivalent to a category of sheaves on

finite sets and injections.

It is pleasing, and perhaps surprising, that history dependent automata, invented as an efficient

apparatus for model-checking name-passing systems, have such a tight connection with other, more

mathematical structures.
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C. Summary of Part II (Structural operational semantics)

The labelled transition system semantics of the π-calculus is given by a rule-based inductive defi-

nition. For example, communication in the π-calculus is specified by the following rule.

P
c(z)
−→ P ′ Q

c̄d
−→ Q′

P |Q
τ
−→ [d/z]P ′ |Q′

(∗)

In the original work of Milner et al. [1992], the meaning of the rule-based inductive definition is

not explained: this is left to the reader’s intuitions. Through the 1980s and 1990s, various people

initiated research into various kinds of rule-based inductive definitions. They asked: When, and

how, do such definitions give rise to valid transition systems? What can be proved about systems

defined in this way? Under what conditions is bisimilarity a congruence? Some of the results of

these investigations are reported by Aceto et al. [2001]. An important analysis, from the point of

view of this thesis, is that of Bloom et al. [1995], and their ‘GSOS’ format. A rule is in the positive

GSOS format if it has the following shape,

⋃n

i=1

§

X i

ai j

−→ Yi j

�

� 1≤ j ≤ mi

ª

op(X1, . . . , Xn)
c
−→ C
�

~X , ~Y
�

where all variables are distinct, n ≥ 0 is the arity of op, m i ≥ 0, and C
�

~X , ~Y
�

is a context with free

variables including at most the X ’s and Y ’s.

Every specification in the GSOS format defines a transition system, and, moreover, bisimilarity

is a congruence. That is, for any n-ary operator op of the language, if P1 ∼ Q1,. . . Pn ∼ Qn, then

op(P1, . . . , Pn)∼ op(Q1, . . .Qn) (writing ∼ for the bisimilarity relation).

Questions. The communication rule (∗) for the π-calculus does not fit into the GSOS format.

There is a binding label in the premise, and a substitution in the conclusion. Other rules for the

π-calculus involve side-conditions about the freshness of variables. Moreover, with name-passing

calculi, the definition of bisimulation must be modified for it to be reasonable and for bisimilarity to

be a congruence. This raises the question: What is the meaning of a rule-based inductive definition of

a name-passing process calculus? More precisely: What is a congruence rule format for name-passing

process calculi?

The GSOS format was put in a more categorical light in the ‘mathematical structural operational

semantics’ (MSOS) of Turi and Plotkin [1997]. They explained how the rules in the GSOS format

correspond to ‘abstract rules’ — natural transformations between endofunctors on Set. They ex-

plained how abstract rules provide recursion data which can be used to lift a monad-of-syntax to a

category of coalgebras; this gives the congruence result.

Fiore and Turi [2001] considered name-passing calculi in the setting of mathematical structural

operational semantics. They provided a specification of the π-calculus as an abstract rule, viz. nat-

ural transformation between endofunctors on a presheaf category, and thus obtained a congruence

result. An immediate complaint is as follows: natural transformations are not in the toolbox of a

typical operational semanticist.

The purpose of this Part II of the thesis is to address this complaint. I develop the theory of

mathematical structural operational semantics in the setting of structured coalgebras. By careful

inspection of the abstract rules in this MSOS, I extract a concrete rule format for rule-based induc-

tive definitions. I call this format the � -GSOS
+ format1. The analysis is explained in the setting of

nominal logic, which, after all, is intended as a reasonable formalization of everyday pen-on-paper

proofs.

1Here and in the thesis I use the symbol � , introduced by Pitts, to prefix ‘nominal’ concepts.
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Key result. A rule-based inductive definition in the � -GSOS+ format induces an operational model

for which bisimilarity is a congruence.

More precisely, I proceed as follows. I introduce a notion of rule structure, as the data (such

as (∗) above) for a rule-based inductive definition for name-passing. A rule structure is used in two

ways: (a) a rule structure gives rise to a natural transformation, an abstract rule for mathematical

SOS, and (b) a rule structure gives rise to a theory of nominal logic. Thus a connection is made

with MSOS on the one hand, and the usual workings of an operational semanticist on the other.

The conditions of the � -GSOS
+ format for name-passing are much more elaborate than the con-

ditions for the GSOS format. One can argue that the conditions are necessary by finding examples

of rule structures for which bisimilarity is not a congruence. For instance, suppose that we add an

operator if-fresh to the π-calculus. It takes one name parameter and one term parameter with a

binder, and its semantics are given by the following rule structure.

p
τ
−+ q

if-fresh(a, 〈a〉p)
τ
−+ q

This rule structure is not in the � -GSOS
+ format, and should indeed be forbidden for the following

reason. In this extension of the π-calculus, under the nominal logic semantics, we have the follow-

ing behaviour. If a is fresh for 〈b〉 P then the term if-fresh(a, 〈b〉 P) behaves exactly as P with regard

to silent actions, because in that case the term if-fresh(a, 〈b〉 P) is α-equivalent to if-fresh(a, 〈a〉 P).

But if a is not fresh, then if-fresh(a, 〈b〉 P) cannot reduce. With this property, the operation if-fresh

can be used to construct a context that distinguishes two very simple bisimilar terms. Thus the

operation if-fresh, if allowed, would break the congruence of bisimilarity.

D. Detailed overview of Part I (Operational models)

I now provide a more detailed overview of Part I of the thesis. We begin with presheaves of

states, and move through labelled transition system and coalgebraic models. The section concludes

with the more refined kinds of state space: sheaves, nominal substitutions, and named-sets with

symmetry.

The material of Part I is published as [Fiore and Staton, 2006].

D.a. Presheaves of states

The category Set has as objects, sets, and morphisms, functions between sets. As discussed above,

it is excessively simplistic to model a name-passing system with merely a set of states. The states

have additional structure, viz. free names and ways of renaming one state into another. We now

develop some categories whose objects are sets with renaming structure, and whose morphisms

preserve that structure.

For the remainder of this article we fix an infinite set N of names. Let the category I have as

objects finite sets of names, and as morphisms injections between them. An important role is also

played by the category F with the same objects, but whose morphisms are all functions between

them.

A (covariant) presheaf over I, i.e. a functor P : I → Set, is a first notion of set-with-renaming.

Given a set C of names, the set P(C) is thought of as the set of all states whose names are included

in C . An injection ı : C � D has an action, a function P(ı) : P(C) → P(D), describing how states

with names in C can be renamed to states with names in D. A natural transformation between such

presheaves plays the role of a function that preserves the renaming structure. The category SetI is

introduced in the thesis in Sec. 3.2.
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In some situations it is necessary to substitute one name for another, in a non-injective way. A

(covariant) presheaf over F, i.e. a functor X : F→ Set, is a first notion of set-with-substitution. Any

function f : C → D has an action, a function P( f ) : X (C)→ X (D), describing how to perform the

substitution f on states with names in C . The category SetF is introduced in the thesis in Sec. 3.4.1.

D.b. Labelled transition systems for name-passing

Sets of states, elements of presheaves. Every presheaf P in SetI gives rise to a set (
∫

P) of

elements. An element of P is a pair (C , p), where p ∈ P(C). In the thesis, I write (C ` p) for

an element of such an element. The idea is that the element (C ` p) represents the state p in

name-context C . Similar remarks are also valid for elements of presheaves in SetF.

Indexed labelled transition systems

One appropriate model of name-passing is a labelled transition system whose states are elements

of a presheaf. These I call indexed labelled transition systems (ILTSs).

Definitions 3.3.2 and 3.4.4 (in the thesis). An I-indexed early labelled transition system (I-ILeTS)

is a presheaf P ∈ SetI together with a transition relation −→ ⊆
∫

P × Labe ×
∫

P. An F-indexed

early labelled transition system (F-ILeTS) is a presheaf X ∈ SetF together with a transition relation

−→ ⊆
∫

X × Labe ×
∫

X .

In this definition, the set Labe is the set of labels for the early semantics. These labels are

the input labels (written c?d), output labels (written c!d), and the silent labels τ. An important

example of an indexed labelled transition is the semantics of the π-calculus.

Various conditions on I-ILeTSs and F-ILeTSs are appropriate. These are Axioms I1–I6 and F2’,

listed in Figures 3.4 and 3.5 in the thesis, reproduced here on page 9. The conditions were sug-

gested by three things: (i) intuitions and existing lemmas about the transition systems for the

π-calculus (as studied in Section 3.1 of the thesis); (ii) the aim of a bijective correspondence with

the coalgebraic notion of model, discussed in the following section; (iii) the existing axiomatization

of Cattani and Sewell [2004], who introduce N -LTSs as F-ILeTSs that satisfy certain conditions.

Ground semantics. The input labels considered in the definition above are of the form c?d, to be

read “input name d on the channel named c”. These kinds of input label describe the early input

semantics. An alternative semantics of input is what I call the ground semantics. (Other authors

use the term late; the terminology ‘ground’ is motivated by the natural notion of bisimulation for

this semantics.) A ground input label, c?(d), is to be read “input a name on the channel named c

and bind it to d”, or alternatively, “input a fresh name d on the channel named c”. I refer to

those transition systems that use the ground, rather than early, semantics, as I-ILgTSs and F-ILgTSs.

Ground transition systems are introduced in Section 3.3.4 of the thesis.

A crucial observation is that an F-ILgTS, with ground labels, induces an F-ILeTS, with early labels.

The idea is, if you know how to input a fresh name, then you can derive how to input an arbitrary

name, by substituting the arbitrary name for the fresh name. The construction is described in

Equation 3.4.10 of the thesis.

Theorems 3.4.12 and 3.4.16. The following data are equivalent.

• An F-ILeTS satisfying Axioms I1–I6 and F2’ (see the figure on page 9).

• An F-ILeTS satisfying Axioms I1–I6, that is induced by an F-ILgTS.

• An N -LTS in the sense of Cattani and Sewell.
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Conditions for I-ILeTSs and F-ILeTSs:

I1. Channel is known and at most transmitted data is learnt:

C ` p
`
−→ C ′ ` p′ =⇒ ch(`)⊆ C ∧ C ′ = C ∪ dat(`)

I2. If one name can be input, then so can any other: for all d ′ ∈ N :

C ` p
c?d
−→ C ∪ {d} ` p′

=⇒ ∃p′′ ∈ P(C ∪ {d ′}). C ` p
c?d ′

−→ C ∪
�

d ′
	

` p′′

I3. Bijective maps preserve transitions.

I4a. Knowing/forgetting input data preserves transitions.

I4b. Known output data must really be known.

I5. Inclusion maps preserve transitions.

I6. Inclusion maps reflect transitions.

Additional condition for F-ILeTSs:

F2’. (For an F-ILeTS.) Input is determined by the input of fresh names:

C ` x
c?d
−→ C ∪ {d} ` x ′

⇐⇒ ∃z ∈ (N − C), x ′′ ∈ X (C ∪ {z}). [d/z]x ′′ = x ′ ∧ C ` x
c?z
−→ C ∪ {z} ` x ′′

Conditions on I-ILeTSs and F-ILeTSs. Reproduced from Figures 3.4 and 3.5 in the thesis.

Bisimulation for indexed labelled transition systems

Indexed labelled transition systems provide an appropriate setting for model-theoretic definitions

of the kinds of bisimulation that are relevant for name-passing systems.

Definitions 3.3.4 and 3.4.4 (Paraphrased). An I-indexed binary relation R between presheaves P

and Q in SetI is a presheaf R in SetI that is a subobject of P ×Q. Similarly, an F-indexed binary

relation R between presheaves X and Y in SetF is a presheaf R in SetF that is a subobject of X × Y .

An I-indexed early bisimulation between two I-ILeTSs, (P,−→
P
) and (Q,−→

Q
). is an I-indexed

binary relation R⊆ P ×Q such that

∀C ⊆f N , (p,q) ∈ R(C), ` ∈ Labe, (C ′ ` p′) ∈
∫

P.

C ` p
`
−→

P
C ′ ` p′ =⇒ ∃q′ ∈Q(C ′). C ` q

`
−→

Q
C ′ ` q′and (p′,q′) ∈ R(C ′)

and symmetrically (interchanging the roles of P and Q). An F-indexed early bisimulation is an

F-indexed binary relation that is also an I-indexed early bisimulation.

For the I-ILeTS for the π-calculus, an I-indexed early bisimulation is essentially an early bisimu-

lation that is closed under injective substitutions, while an F-indexed early bisimulation is a wide-

open bisimulation: it is an early bisimulation that is closed under all substitutions.
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D.c. Coalgebras in general

Indexed labelled transition systems are one kind of operational model of name-passing. Another

kind of model that is developed in the thesis is a coalgebraic model. Before discussing coalgebras

for name-passing, there are some comments to be made about coalgebras in general.

Definition 2.1.2. Consider an endofunctor B on a category C . A B-coalgebra is an object X ∈ C

equipped with a morphism X → BX .

Coalgebras have thus arisen as general notions of transition system in various areas of theo-

retical computer science [see e.g. Rutten, 2000]. In Sec 2.2 of the thesis, I provide a simple first

example of how coalgebras represent a refined kind of transition system, by looking at the early

semantics of value-passing systems. The reader may enjoy reading this as a prelude to the more

elaborate refinements for name-passing systems.

I now summarize some important developments of the general theory of coalgebras that are

introduced in the thesis.

Structured coalgebras

For various reasons studied in the thesis, coalgebras per se are too constraining. The thesis intro-

duces the following new and more general notion of structured coalgebra.

Definition 2.4.2. Consider a functor U : D →C , and let B be an endofunctor on C . A U-structured

B-coalgebra is an object X of D together with a morphism UX → BUX in C — i.e. a B-coalgebra

structure for UX .

The intuition should be: “structured coalgebras are coalgebras whose state spaces have addi-

tional structure, which need not be preserved by the transition function.”

When the structure functor U : D → C has a right adjoint R : C → D, then U-structured

B-coalgebras are the same things as (RBU)-coalgebras. For the case of name-passing systems, there

typically is such a right adjoint. This right adjoint, however, is very clumsy to describe, and so the

use of structured coalgebras adds an important degree of clarity to the development.

Many of the general results in the thesis are relevant to structured coalgebras — with or without

a right adjoint. One important scenario, where there is no right adjoint, arises in the semantics

systems involving term-for-variable substitution, such as process-passing calculi. This is mentioned

briefly in Sec. 9.3.6 of the thesis and is the subject of a manuscript in preparation.

Coalgebraic bisimulation

The concept of bisimulation is relevant at the general level of structured coalgebras. We extend a

notion due to Aczel and Mendler [1989], to the setting of structured coalgebras.

Definition 2.4.4 (Paraphrased). Consider a functor U : D → C , and let B be an endofunctor

on C . A U-structured B-bisimulation between U-structured B-coalgebras, (X ,h) and (Y, k), is a span

X ← R→ Y in D for which there is a compatible U-structured B-coalgebra structure on R.

For labelled transition systems, bisimilarity, viz. the greatest bisimulation, is the finest rea-

sonable equivalence. The existence of bisimilarity for coalgebras is studied in Section 5.2. The

following result appears to be novel: the novelty is that it does not require the existence of a final

B-coalgebra. The result is stated here for the non-structured case.

Corollary (of Props. 5.2.2 and 5.2.3). Let C be a complete, well-powered category, and let B be a

weak-pullback-preserving endofunctor on C . There is a greatest bisimulation between every pair

of B-coalgebras. It is the greatest post-fixed point for a monotone operator on the preorder of

relations.
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For a given endofunctor B on a category C , the terminal sequence is a well-known ordinal-

indexed sequence of objects from C with the property that, if it converges, it converges at the

final object in the category of B-coalgebras. In Sec. 5.2.2, a ‘relation refinement sequence’ is given,

and, in Prop. 5.2.5, a tight connection is made between this relation refinement sequence and the

terminal sequence.

Relating categories of coalgebras and notions of bisimulation

For every endofunctor B on a category C , there is a category of B-coalgebras. This motivates the

following idea, developed in Sec. 2.3 of the thesis. Consider a (2-)category Endo whose objects are

pairs (C , B) of a category and an endofunctor on it. The construction of categories of coalgebras

defines a (2-)functor Endo→ CAT into the category of categories. Morphisms in Endo induce func-

tors between categories of coalgebras. In Sec. 2.5.2 of the thesis I investigate how these functors

be used to compare bisimilarity in the different categories of coalgebras. Theorem 2.5.7 is a little

technical but very general; for instance, we have the following corollary.

Corollary (of Thm. 2.5.7). Let B be an endofunctor on a categoryC , and let B ′ be a split subfunctor

of B. The greatest B′-bisimulation between two B′-coalgebras is also the greatest B-bisimulation

between them, when they are considered as B-coalgebras.

D.d. Coalgebras for name-passing

Early semantics. The labelled transition systems for name-passing have presheaves of states in-

stead of sets of states. For a coalgebraic perspective, we consider the following endofunctor on the

presheaf category SetI. This endofunctor was first suggested by Fiore and Turi [2001].

Be(−) = inp : [N++[N ⇒Pne(−)]] Input

× out : [(N × N)++Pne(−)] Free output

× bout : [N++δ(Pne(−))] Bound output

× tau : [1++Pne(−)] Silent.

(thesis 3.2.11)

The constructions involved in this endofunctor are defined in Sec. 3.2.1 of the thesis, but in brief:N

is a distinguished presheaf of names; [(−)++(−)] is a partial function space; [(−) ⇒ (−)] is a

full function space; δ(−) is a name generation operator; and Pne(−) is a (pointwise) non-empty

powerset operator.

A Be-coalgebra is given by a presheaf P ∈ SetI together with a natural family of functions

n

hC : P(C)→ (BeP)(C)
o

C∈I

To every finite set C of names and every state p ∈ P(C), the coalgebra assigns a 4-tuple hC(p),

the components of which describe the input, output, bound output and silent functionality of the

state p. More intuition is given in Sec. 3.2.2 of the thesis.

Coalgebras with arbitrary substitutions. Recall that an F-ILeTS is an I-ILeTS whose set of states

comes from a presheaf over F. With this, and the above corollary, in mind, we write U I
F

: SetF→ SetI

for the evident forgetful functor and consider a model based on U I
F
-structured Be-coalgebras.

A ground semantics is particularly interesting for transition systems supporting arbitrary substi-

tutions. An endofunctor on SetI for ground semantics is defined analogously to equation (3.2.11)

above, by modifying the first line, so that only fresh input data is considered.

Bg(−) = binp : [N++δ(Pne(−))] Bound input

× . . .
(thesis 3.2.13)
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There is an alternative definition of this endofunctor, through the isomorphism Bg(−)
∼= P (Lg(−))

where
Lg(−) = binp : N ×δ(−) Bound input

+ out : N × N × (−) Free output

+ bout : N ×δ(−) Bound output

+ tau : (−) Silent.

(thesis 3.2.15)

Corollary (of Thms. 3.3.7 and 3.3.8). There is a bijective correspondence between Be-coalgebras

and I-ILeTSs satisfying Axioms I1–I6 of Figure 3.4 (see page 9).

Corollaries 3.4.14 and 3.4.17. The following data are equivalent.

1. A U I
F
-structured Bg-coalgebra.

2. An F-ILeTSs satisfying Axioms I1–I6 and F2’.

3. An N -LTS in the sense of Cattani and Sewell.

Coalgebraic bisimulation for name-passing

Since we have correspondences between coalgebras and indexed labelled transition systems, it

would be reasonable to expect a correspondence between (structured) bisimulation and indexed

bisimulation for ILTSs. In fact, this correspondence is more complicated than might be expected

(and more complicated than suggested in [Fiore and Turi, 2001]). In Sec. 3.3.3. of the thesis, I

investigate an anomaly that breaks the correspondence. The problem is resolved by introducing

a closure operator on indexed bisimulations on ILTSs: the closure of an indexed bisimulation is a

coalgebraic bisimulation. We thus have the following result.

Corollary 3.3.17 and Prop. 3.4.8. The final Be-bisimulation between two Be-coalgebras is the

greatest I-indexed early bisimulation between the corresponding I-ILeTSs. The final U I
F
-structured

Be-bisimulation between two U I
F
-structured Be-coalgebras is the greatest F-indexed early bisimula-

tion between the corresponding F-ILeTSs.

For wide-open relations, the requirements of ground and early bisimulation coincide. This is

easily established at the coalgebraic level, by exhibiting one endofunctor as a split subfunctor of

the other. This is Thm. 3.4.9 in the thesis.

D.e. Refining the state spaces: sheaves, nominal substitutions, and named-sets

To conclude our discussion of operational models of name-passing systems, I discuss some refine-

ments that it is appropriate to make to the notion of state space.

Sheaves of states. There are some presheaves in SetI and SetF that have properties that would

not be expected of a ‘set-with-renaming’. An example is the state space considered in the ‘anomaly’

for the correspondence of bisimulations, mentioned above. Firstly, the action of a presheaf P in

SetI need not be injective. From the intuition that we have given, this is obscure: the action of an

injective renaming should surely be injective. Another concern is that, for C ∈ I, and D ⊆ C , we can

deduce that the ‘free names’ of an element p of P(C) are contained in D, by looking at the action

of injections on p. In this case, we say that D supports p. Our intuition would suggest that p ought

to also reside in P(D), but there are some presheaves in SetI for which this is not the case.

The condition about supports is exactly a sheaf condition for a particular Grothendieck coverage

on I. The category of such sheaves, Sh(I), is known as the Schanuel topos. General information

about sheaves is provided in Sec. 4.1.1 of the thesis, and the Schanuel topos is first discussed in

Sec 4.2.1.
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There are similar complaints to be made about presheaves in SetF. Moreover, the forgetful

functor SetF → SetI between presheaf categories, which is important at various stages in the de-

velopment, does not factor through the sheaf category Sh(I). For these reasons we also consider a

sheaf subcategory of SetF. (see Sec. 4.3 of the thesis).

In Thm. 4.2.6 of the thesis, I show that all the constructions on SetI, that are used to define

endofunctors Be and Bg, restrict to constructions on the sheaf category Sh(I).

Corollary (to Thm. 4.2.6). The endofunctors Be and Bg on SetI restrict to endofunctors BSh
e and BSh

g

on Sh(I).

It is important to note that the problems with bisimulation for coalgebras on presheaves, dis-

cussed in Sec. 3.3.3 of the thesis, do not arise for sheaves.

Theorem 4.2.5. For Be-coalgebras with sheaf carriers, a Be-bisimulation is the same thing as a

I-indexed early bisimulation on the induced I-ILeTSs.

The Schanuel topos as a Kleisli category. An alternative description of the Schanuel topos is as

the Kleisli category for a monad on the presheaf category SetB (see Sec. 4.4). Here, B is the category

of finite sets of names and bijections between them. The intuition is as follows: a presheaf Q in

SetB determines, for each set C of names, the set Q(C) of all states involving precisely the names

in C . (Recall that, by contrast, for a presheaf P in SetI, the set P(C) is thought of as all the states

whose names are contained in C . )

The tighter, more explicit specification of names in SetB allows a simplified axiomatization

of transition systems. I define an B-ILeTS to be a a labelled transition system whose states are

the elements of a presheaf in SetB. I introduce simplified axioms Axiom B1– B3 on B-ILeTSs in

Sec. 4.4.2.

Nominal sets and nominal substitutions

The nominal sets of Pitts and Gabbay were recalled earlier in this report and are discussed in

Sec. 7.1 of the thesis. It is well-known that the category of nominal sets is equivalent to the

Schanuel topos.

In the thesis, in Sec. 3.3, I introduce a nominal logic theory of nominal substitutions as a ‘nom-

inal’ formulation of sheaves in Sh(F). The theory has one sort, X, and a single function symbol

sub : N, [N]X→ X. There are four axioms. (Here, [b/a]x is shorthand for sub(b, 〈a〉x).)

NOMSUB-1. ∀a : N. ∀x : X. [a/a]x = x .

NOMSUB-2. ∀a, b : N. ∀x : X. a
�

x =⇒ [b/a]x = x .

NOMSUB-3. ∀a, b, c : N. ∀x : X. [c/b][b/a]x = [c/b][c/a]x .

NOMSUB-4. ∀a, b, c, d : N. ∀x : X. c 6= b 6= a 6= d =⇒ [d/b][c/a]x = [c/a][d/b]x .

Let NomSub be the category of models of this theory (in nominal sets). The following correspon-

dence result is non-trivial.

Theorem 7.3.2. The category NomSub is equivalent to Sh(F).

Given this correspondence, it is reasonable to rework the coalgebraic models for name-passing

in the context of nominal sets, by reinterpreting the endofunctor for ground behaviour (thesis

eq. 3.2.15) in this setting. The only obstacle is an explicit description of the pointwise powerset

on presheaves, which has not been considered in the nominal context before. This is treated in

Sec. 7.1.5 of the thesis, where it is characterized as a set of ‘support-bounded’ subsets (Prop. 7.1.6).

It is also instructive to re-investigate the work on labelled transition systems in this setting. In

Sec. 7.5 of the thesis I define nominal logic theories of labelled transition systems.
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Definition 7.5.5. The nominal logic theory of nominal ground labelled transition systems ( � g-LTSs)

has one ground sort X and four relation symbols: a bound input transition relation symbol
� −?(−)
−+
�

with arity X,N,N,X; an output transition relation symbol
� −!−
−+
�

with arity X,N,N,X; a bound

output transition relation symbol
� −!(−)
−+
�

with arity X,N,N,X; and a silent transition relation

symbol
� τ
−+
�

with arity X,X; subject to Axioms � g1 and � g2 in Fig. 7.2.

An analogous definition is given for nominal early labelled transition systems in Defn. 7.5.1 of

the thesis, with different axioms ( � e1– � e4, in Fig. 1, omitted from this report).

� g1. The channel and free data are known, while binding data is fresh.

∀x , y : X, c, d : N.

�

x
c?(d)
−+ y =⇒ ¬(c

�
x)∧ (d

�
x)

�

∧

�

x
c!d
−+ y =⇒ ¬(c

�
x)∧¬(d

�
x)

�

∧

�

x
c!(d)
−+ y =⇒ ¬(c

�
x)∧ (d

�
x)

�

� g2. Names in the derivative depend only on names in the source and communication data.

Figure 7.2: Axioms for the nominal logic theory of nominal ground labelled transition systems.

Corollary (of Thms 4.4.9 and Thm 7.5.3). The following data are equivalent.

• A BSh
e -coalgebra.

• An I-ILeTS with sheaf carrier, satisfying Axioms I1–I6 (see page 9).

• An B-ILeTS satisfying Axioms B1–B3.

• A � e-LTS satisfying Axioms � e1– � e3.

Corollary (of Prop. 7.5.4 and Thm. 7.5.6). The following data are equivalent.

• A U I
F
-structured BSh

g -coalgebra.

• An F-ILeTS with sheaf carrier, satisfying Axioms I1–I6 and F2’.

• An N -LTS, in the sense of Cattani and Sewell, with sheaf carrier.

• A � e-LTS over a nominal substitution satisfying Axioms � e1– � e4.

• A � g-LTS over a nominal substitution satisfying Axioms � g1– � g2.

Efficient descriptions of sheaves: named sets with symmetries. Various authors, including

Montanari and Pistore [2005], have proposed varieties of named-sets as models of name-passing

calculi. So-called history dependent automata, viz. automata internal to categories of named-sets,

have been used to provide efficient verification techniques for name-passing systems.

In the thesis, Sec. 5.1, I establish an equivalence between a category of named-sets with symme-

tries, and the Schanuel topos. For our purposes, a named-set-with-symmetries is a tuple

�

I ,
�

mi

	

i∈I ,
�

Hi

	

i∈I

�
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where I is a set, and for all i ∈ I , mi is a natural number and H i is a group of permutations

on mi. The group Hi can be thought of as “the permutations of mi that fix i”. Morphisms between

named-sets must be defined carefully, and the correct definition is quite elaborate.

Theorem 5.1.8. The category of named-sets with symmetries is equivalent to the Schanuel topos.

The categories of presheaves, sheaves, and nominal sets and substitutions, considered in this

thesis, are not amenable to machine implementation. For a presheaf P in SetI, the set
∫

P of

elements is almost always infinite; nominal sets always have infinite carriers unless they have

trivial action. The importance of named-sets-with-symmetry is that they allow finite presentations

of interesting state spaces.

Corollary 5.1.12 (Simplified). A named-set is finitely presentable (in the categorical sense) if and

only if it has a finite carrier set.

E. Detailed overview of Part II (Structural operational semantics)

In Part II of the thesis I study structural operational semantics of name-passing calculi. I now

overview this part in two stages. First, I explain how the mathematical structural operational

semantics of Turi and Plotkin [1997] can be used for structured coalgebras in general, with par-

ticular emphasis on the first-order setting that is relevant for simple languages such as Milner’s

CCS [1989]. Secondly, I explain how the theory can be applied to the name-passing case, and how

a congruence rule format for name-passing can be extracted.

The material of this section is published as [Fiore and Staton, 2006, 2007].

E.a. First-order framework

My outline here follows the development of Chapter 6 of the thesis. Mathematical structural oper-

ational semantics can be explained by the following recipe.

MSOS-1. An algebraic signature S induces a monad TS,Set on the category of sets, whose alge-

bras are the algebras for the signature. The elements of the set TS,Set(;) are terms of

the language specified by S.

MSOS-2. Given a lifting T̃ of the monad TS,Set to a category of coalgebras, the initial T̃-alge-

bra is a coalgebra whose carrier is the set TS,Set(;) of S-terms. For this coalgebra,

bisimilarity is a congruence.

MSOS-3. The universal property of a free monad on a signature can be used to define a monad

lifting for it, through a (parameterized) recursion theorem.

MSOS-4. Recursion data of this kind can be seen as a rule-based inductive definition of the

semantics of the language described by S, in the GSOS format.

MSOS-1: Syntax through initial algebras and free monads

In Sec. 6.1 of the thesis, I consider algebras for signatures at three levels of abstraction. These are,

beginning with the most abstract:

• Algebras for an arbitrary monad on an arbitrary category, in the sense of Eilenberg and Moore;
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• Algebras for an endofunctor Σ on an arbitrary category, or equivalently algebras for the free

monad TΣ on Σ (provided it exists);

• Algebras for a signature S, in a category C with finite limits, or equivalently algebras for the

endofunctor ΣS,C generated by the signature (provide C has enough sums), or equivalently

algebras for the free monad TS,C generated by that endofunctor (when it exists).

The notion of congruence is traditionally defined only for the last, lowest level of abstraction, but

can also be defined for the other levels.

MSOS-2: Monad liftings and congruence of bisimilarity

A lifting of a monad T on a category C along a functor F : C ′→C is a monad T′ on C ′ for which

there is an isomorphism F T ′ ∼= T F . The lifting is strict if this isomorphism is identity. A key idea is

that monad liftings describe good operational semantics, as the following theorem corroborates.

Corollary 6.2.3. Let U : D → C be a functor between categories, and let B be an endofunctor

on C . Let T̃ be a monad on (U , B)-Coalg which is a strict lifting of a monad T on D. Let (X ,h), (Y, k)

be U-structured B-coalgebras. Every final U-structured B-bisimulation between T̃ (X ,h) and T̃ (Y, k)

is a T-congruence between the free T-algebra on X and the free T-algebra on Y .

MSOS-3: Monad liftings from parameterized recursion

The result of Corollary 6.2.3 suggests that a monad lifting is a kind of “good operational semantics”.

We might ask how such a monad lifting should be defined.

When a monad is free for an endofunctor, the universality provides a recursion principle for it.

A particular type of recursion data, called an “abstract rule”, gives rise to a lifting of the monad to

a category of structured coalgebras.

Definition 6.2.11. Let U : D →C be a functor between categories, and let B and Σ be endofunctors

on C . Suppose that the free monad T on Σ exists, and that T lifts along U to a monad T̃ on D. An

abstract rule for (C ,D, U , B,Σ, T̃) is a natural transformation

ρ : Σ(U × BU)→ BU T̃ .

An abstract rule gives rise, via a recursion theorem (introduced in Sec. 6.2.2), to an operator Tρ on

structured coalgebras.

Theorem 6.2.14. The operator Tρ defines a strict lifting of the monad T̃ along the forgetful functor

from the category of U-structured B-coalgebras.

Section 6.2.4 of the thesis is dedicated to the following aside, which, in some interesting cases,

reduces Thm. 6.2.14 to the problem considered by Turi and Plotkin. Recall that in many cases,

including the cases of interest in name-passing, the structure functor U : D →C has a right adjoint,

R : C → D. In this setting, there is a bijective correspondence between U-structured B-coalgebras

and (RBU)-coalgebras.

Suppose, moreover, that Σ lifts along U to an endofunctor Σ̃ on D, and that the monad T̃ on D

is free on Σ̃. In this setting, an abstract rule ρ for (C ,D, U , B,Σ, T̃) gives rise to an abstract rule ρ̄

for (D,D, idD ,RBU , Σ̃, T̃). We have the following correspondence result.

Theorem 6.2.20. The isomorphism of categories (U , B)-Coalg ∼= RBU-Coalg lifts to an isomor-

phism ((U , B)-Coalg,Tρ)
∼= (RBU-Coalg,Tρ̄) of monads.
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MSOS-4: Positive GSOS

The GSOS format is a syntactic constraint on rule-based inductive definitions, introduced by Bloom

et al. [1995]. For systems specified in the GSOS format, bisimilarity is a congruence. (The reader

familiar with [Bloom et al., 1995] should be aware that in the thesis we only consider ‘positive’

GSOS rules, i.e. rules without negative premises.)

A crucial observation of Turi and Plotkin [1997] is that abstract rules for

(Set,Set, id,P (L×−),ΣS,Set,TS,Set)

in the sense of Defn. 6.2.11 above, correspond to rule-based inductive definitions in the GSOS

format. In Sec. 6.3 I derive the positive GSOS rule format from the shape of the abstract rules. This

section serves as prelude to the more elaborate constructions needed in the name-passing case.

E.b. GSOS rules for name-passing

Chapter 8 of the thesis is dedicated to introducing a GSOS-like rule format for name-passing. To

explain the name-passing case, I revise the process MSOS-1–4 explained on page 15.

� -MSOS-1. A nominal algebraic signature S induces a monad TS,NomSub on the category of nom-

inal substitutions. The elements of the set TS,NomSub(;) are terms of the language

specified by S, up-to α-equivalence, and with the natural substitution structure.

� -MSOS-2. Given a lifting T̃ of the monad TS,Nom to the category of structured coalgebras, the

initial T̃-algebra is a structured coalgebra whose carrier is the set TS,NomSub(;) of

S-terms up-to α-equivalence. For this structured coalgebra, wide-open bisimilarity

is a congruence.

� -MSOS-3. The universal property of a free monad on a signature can be used to define a

monad lifting for it, through a (parameterized) recursion theorem.

� -MSOS-4. Recursion data of this kind can be seen as a rule-based inductive definition of the

semantics of the language described by S, in a new format called the � -GSOS
+

format.

Of these steps, the congruence theorems ( � -MSOS-2) and recursion principles (-3) are established

in full generality in Ch. 6. Only � -MSOS-1 and -4 require significant further development in Ch. 8.

� -MSOS-1: Nominal algebraic signatures

In the π-calculus, we have operators such as parallel composition, which takes two processes as

arguments. But there are also operators such as input prefix

inp(c, 〈d〉P) (usually written c(d).P, with ‘syntactic sugar’)

meaning “input a name on channel c, and bind it to d in P”. This operator takes a name parame-

ter, c, and a process parameter, P, with one name, d, bound in it.

Definition 7.4.1. A nominal algebraic signature is given by a collection of operators, where each

operator is associated with: an arity of names (a natural number); an arity of terms; and, for each

term parameter, a number describing the binding depth.

For a classical algebraic signature, we can speak of models in any category with finite products.

Models for nominal algebraic signatures can be considered in any category with finite products,

a distinguished object of names, and an endofunctor describing binding. We call such categories

model categories. Three such categories are particularly relevant:



18 Sam Staton, Thesis Description

• One model category is the category of sets SetN with a chosen set of name metavariables N,

and with binding given by N× (−). In this setting, the free algebra TS,SetN
(;) for a nominal

algebraic signature S is the set of raw terms, with names from N, but without α-equivalence.

• Another model category is the category of nominal sets Nom, with the particular set N of

names and the binding functor there. In this setting, the free algebra TS,Nom(;) for a nominal

algebraic signature S is the nominal set of terms up-to α-equivalence.

• Thirdly, there is the category of nominal substitutions NomSub. In this setting, the free alge-

bra TS,Nom(;) for a nominal algebraic signature S is the nominal set of terms up-to α-equiva-

lence with the evident substitution structure.

For any set N of name metavariables, a function V : N → N , i.e. a valuation of the metavari-

ables, induces a function TS,SetN
(;) → TS,Nom(;), taking raw terms to terms up-to α-equivalence.

Moreover, we can consider terms with explicit substitutions, by adding the substitution op-

eration sub to a signature S. A valuation function V : N → N then also induces a function

TS+sub,SetN
(;)→ TS,NomSub(;). A more categorical view is that these valuation functions induce

monad morphisms (Nom,TS,Nom)→ (Set,TS,SetN
), and (NomSub,TS,NomSub)→ (Set,TS+sub,SetN

). This

is explained in Secs 7.4 and 8.4.1 in the thesis.

� -MSOS-4: Rule structures for name-passing

The connection between abstract rules and a concrete rule format is broken down into five

steps.

4a. A rule structure is defined as a formal syntactic structure, comprising ‘premises’ and a

‘conclusion’. (See Defn. 8.1.1 in the thesis.)

4b. Every rule structure gives rise to an axiom of a nominal logic theory. Models of this nominal

logic theory are transition systems that satisfy the rule. One of these models is identified

as the intended model. (See Sec. 8.1.2 in the thesis.)

4c. Conditions are considered on rule structures, extending the first-order GSOS conditions

(Conditions � -GSOS
+-1–12, Figs. 8.2 and 8.3, reproduced on page 19).

4d. Every rule structure that satisfies conditions � -GSOS
+-1–12 gives rise to an abstract rule

(Sec. 8.4; Prop. 8.4.8, Thm. 8.4.10). A family of rule structures that all satisfy Conditions

� -GSOS+-1–12, also gives rise to an abstract rule, using the natural join-structure of the

powerset (Sec. 8.4.4).

4e. The intended model of a family of rule structures is the initial algebra of the induced lifted

monad (Sec. 8.4.4; Thm. 8.4.15). We conclude that wide-open bisimilarity is a congruence

in the intended model (Thm. 8.4.16).

To explicate 4a, I reproduce the following definition.

Definition 8.1.1. Let (X,N) be a pair of sets, with N finite. A premise structure over (X,N) is an

element of the set X× Labg(N)× X. A conclusion structure over (X,N) is a tuple in the set

ΣS,SetN
(X)× Labg(N)× TS+sub,SetN

(X).

(Here, Labg(N) is a set of formal ground labels with names in N.) A rule structure for name-passing

over (X,N) is a pair of a finite set of premise structures over (X,N) and a conclusion structure

over (X,N).
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� -GSOS+-1. Every term variable appears in the conclusion source or as a premise target.

� -GSOS
+-2. The source of each premise appears in the conclusion source.

� -GSOS
+-3. The target of any premise does not appear in any other premise.

� -GSOS
+-4. The target of any premise does not appear in the conclusion source.

� -GSOS
+-5. Each variable in the conclusion source is distinct.

—————

� -GSOS
+-6. The binding variables in the conclusion source are not also free.

� -GSOS
+-7. For each term parameter in the conclusion source, the binding variables are all

distinct.

� -GSOS
+-8. Bound names in premise labels are fresh for the premise sources.

� -GSOS
+-9. Free names of the conclusion label appear in the conclusion source or in the

premises.

� -GSOS
+-10. Bound names of the conclusion label are fresh for the conclusion source.

� -GSOS+-11. Renamings in the conclusion target only affect relevant names.

� -GSOS
+-12. No names become unbound in the induced transition.

The � -GSOS
+ format: conditions on a rule structure for name-passing (abbreviated from Figures 8.2

and 8.3 in the thesis). Conditions � -GSOS
+-1–5 are essentially the conditions of Positive GSOS. The

remaining conditions are specific for name-passing.

For instance, the π-calculus rule for communication can be written as a rule structure:

x
c!d
−+ y x′

c?(a)
−+ y′

par(x,x′)
τ
−+ par(y,sub(d, 〈a〉y′))

This rule structure has term variables X =
�

x,x′,y,y′
	

, and name variables N= {a,c,d}. It con-

sists of two premise structures, and one conclusion structure. Notice the explicit substitution that

appears on the right hand side of the conclusion.

The rule structure can be considered as an axiom of nominal logic, in the nominal logic signa-

ture for nominal ground labelled transition system combined with the nominal algebraic signature

for a parallel composition operator and a substitution operator. On the other hand, the rule struc-

ture satisfies Conditions � -GSOS
+-1–12, and hence describes abstract rule, and hence a monad

lifting.

Other π-calculus rules are written as rule structures in Fig. 8.1 of the thesis (not reproduced

here). They all satisfy Conditions � -GSOS
+-1–12 above.

We conclude with the principle theorem of the second part of the thesis.

Theorem 8.4.16. The intended model of the nominal logic theory arising from a class of rule

structures in the � -GSOS+ format has the following properties:

1. Axioms � g1 and � g2 (see page 14) are satisfied.

2. Wide open bisimilarity is a congruence.
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F. Beyond the thesis

The thesis provides a thorough study of operational models and structural operational semantics

of name-passing calculi. This is an important contribution in itself, but it also provides a stepping

stone towards the study of the foundations of more elaborate languages.

I am currently pursuing work in this direction, and I hold a Research Fellowship from the UK

EPSRC with project title Mathematical Operational Semantics for Data-Passing Processes. Roughly

speaking, the idea is to investigate the extent to which ‘mathematical operational semantics’ is rel-

evant to increasingly sophisticated languages. One fruitful direction of research involves applying

the theory of structured coalgebras to higher-order process calculi. This is mentioned briefly in

Ch. 9 of the thesis, and research is now taking shape. Another exciting direction that I have been

investigating recently is the possibility of using dependent type theory to formalize techniques for

operational semantics. When the type theory is interpreted in the category of sets, we get first-order

results; in the category of nominal substitutions, we get results that are relevant for name-passing

calculi, and so on. This gives a treatment that is very general, but at the same time, the rule-formats

that arise are quite concrete. I will present this work at LICS, later this year [Staton, 2008].
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