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Abstract Traffic light control is one of the main means of controlling road traffic.
Improving traffic control is important because it can lead to higher traffic throughput
and reduced congestion. This chapter describes multiagent reinforcement learning
techniques for automatic optimization of traffic light controllers. Such techniques
are attractive because they can automatically discover efficient control strategies for
complex tasks, such as traffic control, for which it is hard or impossible to compute
optimal solutions directly and hard to develop hand-coded solutions. First the gen-
eral multi-agent reinforcement learning framework is described that is used to con-
trol traffic lights in this work. In this framework, multiple local controllers (agents)
are each responsible for the optimization of traffic lights around a single traffic junc-
tion, making use of locally perceived traffic state information (sensed cars on the
road), a learned probabilistic model of car behavior, and a learned value function
which indicates how traffic light decisions affect long-term utility, in terms of the
average waiting time of cars. Next, three extensions are described which improve
upon the basic framework in various ways: agents (traffic junction controllers) tak-
ing into account congestion information from neighboring agents; handling partial
observability of traffic states; and coordinating the behavior of multiple agents by
coordination graphs and the max-plus algorithm.
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1 Introduction

Traffic light control is one of the main means of controlling urban road traffic. Im-
proving traffic control is important because it can lead to higher traffic throughput,
reduced congestion, and traffic networks that are capable of handling higher traf-
fic loads. At the same time, improving traffic control is difficult because the traffic
system, when it is modeled with some degree of realism, is a complex, nonlinear
system with large state and action spaces, in which suboptimal control actions can
easily lead to congestions that spread quickly and that are hard to dissolve.

In practice, most traffic lights use very simple protocols that merely alternate red
and green lights for fixed intervals. The interval lengths may change during peak
hours but are not otherwise optimized. Since such controllers are far from opti-
mal, several researchers have investigated the application of artificial intelligence
and machine learning techniques to develop more efficient controllers. The methods
employed include fuzzy logic [7], neural networks [22] and evolutionary algorithms
[9]. These methods perform well but can only handle networks with a relatively
small number of controllers and roads.

Since traffic control is fundamentally a problem of sequential decision making,
and at the same time is a task that is too complex for straightforward computation of
optimal solutions or effective hand-coded solutions, it is perhaps best suited to the
framework of Markov Decision Processes (MDPs) and reinforcement learning (RL),
in which an agent learns from trial and error via interaction with its environment.
Each action results in immediate rewards and new observations about the state of
the world. Over time, the agent learns a control policy that maximizes the expected
long-term reward it receives.

One way to apply reinforcement learning to traffic control is to train a single
agent to control the entire system, i.e. to determine how every traffic light in the
network is set at each timestep. However, such centralized controllers scale very
poorly, since the size of the agent’s action set is exponential in the number of traffic
lights.

An alternative approach is to view the problem as a multiagent system where
each agent controls a single traffic light [3, 33]. Since each agent observes only
its local environment and selects only among actions related to one traffic light,
this approach can scale to large numbers of agents. This chapter describes mul-
tiagent reinforcement learning (MARL) techniques for automatic optimization of
traffic light controllers. This means that variations on the standard MDP framework
must be used to account for the multiagent aspects. This chapter does not contain a
full review of MDPs; see [26, 14] for such reviews, and [10, 31, 15] for reviews of
multi-agent variations of MDPs.

The controllers are trained and tested using a traffic simulator which provides a
simplified model of traffic, but that nevertheless captures many of the complexities
of real traffic. Next to the relevance for traffic control per se, this work provides a
case study of applying such machine learning techniques to large control problems,
and it provides suggestions of how such machine learning techniques can ultimately
be applied to real-world problems.
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This chapter first describes the general multiagent reinforcement learning frame-
work used to control traffic lights in this work. In this framework, multiple local
controllers (agents) are each responsible for the optimization of traffic lights around
a single traffic junction. They make use of locally perceived traffic state informa-
tion (sensed cars on the road), a learned probabilistic model of car behavior, and a
learned value function which indicates how traffic light decisions affect long-term
utility, in terms of average waiting time of cars.

Next, three extensions are described which improve upon the basic framework in
various ways. In the first extension, the local (traffic) state information that is used
by each local traffic light controller at one traffic junction is extended by incorpo-
rating additional information from neighboring junctions, reflecting the amount of
traffic (congestion) at those junctions. Using the same reinforcement learning tech-
niques, the controllers automatically learn to take this additional information into
account, effectively learning to avoid to send too much traffic to already congested
areas.

In the second extension, more realism is added to the model by having only
partial observability of the traffic state. Methods to deal with this situation, based
on belief state estimation and POMDP value function approximation, are presented
and shown to be effective.

The third extension extends the basic approach to include explicit coordination
between neighboring traffic lights. Coordination is achieved using the max-plus
algorithm, which estimates the optimal joint action by sending locally optimized
messages among connected agents. This extension presents the first application of
max-plus to a large-scale problem and thus verifies its efficacy in realistic settings.

The remainder of this chapter is organized as follows. Section 2 introduces the
traffic model used in our experiments. Section 3 describes the traffic control problem
as a reinforcement learning task. Section 4 describes the work on better handling
of congestion situations, section 5 describes the work on partial observability, and
Section 6 describes the work on coordination with coordination graphs and the max-
plus algorithm. Section 7 presents general conclusions.

2 Traffic Model

All experiments presented in this chapter were conducted using The Green Light
District (GLD) traffic simulator1 [3, 33]. GLD is a microscopic traffic model, i.e.
it simulates each vehicle individually, instead of simply modeling aggregate prop-
erties of traffic flow. The state variables of the model represent microscopic prop-
erties such as the position and velocity of each vehicle. Vehicles move through the
network according to their physical characteristics (e.g. length, speed, etc.), funda-
mental rules of motion, and predefined rules of driver behavior. GLD’s simulation is
based on cellular automata, in which discrete, partially connected cells can occupy

1 available at http://sourceforge.net/projects/stoplicht
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various states. For example, a road cell can be occupied by a vehicle or be empty.
Local transition rules determine the dynamics of the system and even simple rules
can lead to a highly dynamic system.

The GLD infrastructure consists of roads and nodes. A road connects two nodes,
and can have several lanes in each direction. The length of each road is expressed in
cells. A node is either an intersection where traffic lights are operational or an edge
node. There are two types of agents that occupy such an infrastructure: vehicles and
traffic lights (or intersections). All agents act autonomously and are updated every
timestep. Vehicles enter the network at edge nodes and each edge node has a certain
probability of generating a vehicle at each timestep (spawn rate). Each generated
vehicle is assigned one of the other edge nodes as a destination. The distribution of
destinations for each edge node can be adjusted.

There can be several types of vehicles, defined by their speed, length, and number
of passengers. In this chapter, all vehicles have equal length and an equal number of
passengers. The state of each vehicle is updated every timestep. It either moves the
distance determined by its speed and the state around it (e.g. vehicles in front may
limit how far it can travel) or remains in the same position (e.g. the next position is
occupied or a traffic light prevents its lane from moving).

When a vehicle crosses an intersection, its driving policy determines which lane
it goes to next. Once a lane is selected, the vehicle cannot switch to a different lane.
For each intersection, there are multiple light configurations that are safe. At each
timestep, the intersection must choose from among these configurations, given the
current state.

Figure 1 shows an example GLD intersection. It has four roads, each consisting
of four lanes (two in each direction). Vehicles occupy n cells of a lane, depending
on their length. Traffic on a given lane can only travel in the directions allowed on
that lane. This determines the possible safe light configurations. For example, the
figure shows a lane where traffic is only allowed to travel straight or right.

The behavior of each vehicle depends on how it selects a path to its destination
node and how it adjusts its speed over time. In our experiments, the vehicles always
select the shortest path to their destination node.

3 Multiagent Reinforcement Learning for Urban Traffic Control

Several techniques for learning traffic controllers with model-free reinforcement
learning methods like Sarsa [30] or Q-learning [1, 19] have previously been devel-
oped. However, they all suffer from the same problem: they do not scale to large net-
works since the size of the state space grows rapidly. Hence, they are either applied
only to small networks or are used to train homogeneous controllers (by training
on a single isolated intersection and copying the result to each intersection in the
network).

Even though there is little theoretical support, many authors (e.g. [2, 27, 4]) have
found that often, in practice, a more tractable approach, in terms of sample com-
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Fig. 1 An example GLD intersection.

plexity, is to use some variation of model-based reinforcement learning, in which
the transition and reward functions are estimated from experience and afterwards
or simultaneously used to find a policy via planning methods like dynamic pro-
gramming [5]. An intuitive reason for this is that such an approach can typically
make more effective use of each interaction with the environment than model-free
reinforcement learning. This is because the succession of states and rewards given
actions contains much useful information about the dynamics of the environment
which is ignored when one just learns a value function as in model-free learning,
whereas it is fully used when one learns to predict the environment when learn-
ing the model. In practice, a learned model can typically be sufficiently accurate
relatively quickly, and thus provide useful guidance for approximating the value
function relatively quickly, compared to model-free learning.

In the case of our traffic system, a full transition function would have to map
the location of every vehicle in the system at one timestep to the location of every
vehicle at the next timestep. Doing so is clearly infeasible, but learning a model is
nonetheless possible if a vehicle-based representation [33] is used. In this approach,
the global state is decomposed into local states based on each individual vehicle. The
transition function maps one vehicle’s location at a given timestep to its location at
the next timestep. As a result, the number of states grows linearly in the number
of cells and can scale to much larger networks. Furthermore, the transition function
can generalize from experience gathered in different locations, rather than having to
learn separate mappings for each location.
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To represent the model, we need only keep track of the number of times each
transition (s,a,s′) has occurred and each state-action pair (s,a) has been reached.
The transition model can then be estimated via the maximum likelihood probability,
as described below. Hence, each timestep produces new data which is used to update
the model. Every time the model changes, the value function computed via dynamic
programming must be updated too. However, rather than having to update each state,
we can update only the states most likely to be affected by the new data, using an
approach based on prioritized sweeping [2]. The remainder of this section describes
the process of learning the model in more detail.

Given a vehicle-based representation, the traffic control problem consists of the
following components:

• s ∈ S: the fully observable global state
• i ∈ I: an intersection (traffic junction) controller
• a ∈ A: an action, which consists of setting to green a subset of the traffic lights at

the intersection; Ai ⊆ A is the subset of actions that are safe at intersection i
• l ∈ L: a traffic lane; Li ⊆ L is the subset of incoming lanes for intersection i
• p ∈ P: a position; Pl ⊆ P is the subset of positions for lane l

The global transition model is P(s′|s,a) and the global state s decomposes into a
vector of local states, s = 〈spli

〉, with one for each position in the network.
The transition model can be estimated using maximum likelihoods by counting

state transitions and corresponding actions. The update is given by:

P(s′pli
|spli

,ai) :=
C(spli

,ai,s′pli j
)

C(spli
,ai)

(1)

where C(·) is a function that counts the number of times the event (state transition)
occurs. To estimate the value of local states (discussed below), we also need to
estimate the probability that a certain action will be taken given the state (and the
policy), which is done using the following update:

P(ai|spli
) :=

C(spli
,ai)

C(spli
)

(2)

It is important to note that this does not correspond to the action selection process
itself (cf. Eq. 9) or learning of the controller (cf. Eq. 7), but rather an estimate of
the expected action, which is necessary below in Equation 8. The global reward
function decomposes as:

r(s,s′) = ∑
i

∑
li

∑
pli

r(spli
,s′pli

) (3)

and

r(spli
,s′pli

) =
{

0 spli
6= s′pli−1 otherwise

(4)
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Thus, if and only if a car stays in the same place the reward (cost) is−1. This means
that values estimated by the value function learned using (multiagent) reinforcement
learning will reflect total waiting time of cars, which must be minimized. Since the
value function essentially represents the sum of the waiting times of individual cars
at individual junctions, the action-value function decomposes as:

Q(s,a) = ∑
i

Qi(si,ai) (5)

where si is the local state around intersection i and ai is the local action (safe traffic
light configuration) at this intersection, and

Qi(si,ai) = ∑
li

∑
pli

Qpli
(spli

,ai). (6)

Given the current model, the optimal value function is estimated using dynamic
programming, in this case value iteration [5, 26, 4], with a fixed number of iterations.
We perform only one iteration per timestep [4, 2] and use ε-greedy exploration to
ensure the estimated model obtains sufficiently diverse data. ε-greedy exploration
usually takes the action that is currently estimated to be optimal given the current
value function, but with probability ε takes a different random action. The vehicle-
based update rule is then given by:

Qpli
(spli

,ai) := ∑
s′pli

∈S′
P(s′pli

|ai,spli
)[r(spli

,s′pli
)+ γV (s′pli

)] (7)

where S′ are all possible states that can be reached from spli
given the current traffic

situation and the vehicle’s properties (e.g. its speed). V (spli
) estimates the expected

waiting time at pli and is given by:

V (spli
) := ∑

ai

P(ai|spli
)Q(spli

,ai). (8)

We use a discount parameter γ = 0.9. In reinforcement learning and dynamic pro-
gramming, the discount parameter discounts future rewards, and depending on the
value (between 0 and 1) lets the agent pay more attention to short-term reward as
opposed to long-term reward (see [26]). Note also that similar to prioritized sweep-
ing [2], at each timestep only local states that are directly affected (because there
are cars driving over their corresponding cells) are updated.

At each time step, using the decomposition of the global state, the joint action
(traffic light settings) currently estimated to be optimal (given the value function) is
determined as follows:

π∗(s) = argmax
a

Q(s,a) (9)

where argmaxa Q(s,a), which is the optimal global action vector a, in this model
corresponds to the optimal local action for each intersection i, i.e. argmaxai Q(si,ai),
which can in turn be decomposed as
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argmax
ai

Q(si,ai) = argmax
ai

∑
li

∑
pli

Opli
Qpli

(spli
,ai) (10)

where Opli
is a binary operator which indicates occupancy at pli :

Opli
=

{
0 if pli not occupied
1 otherwise (11)

4 Representing and handling traffic congestion

The method described above has already been shown to outperform alternative, non-
learning traffic light controllers [33, 34, 35]. Nevertheless, there is still considerable
room for improvement. In the basic method (called Traffic Controller-1 or TC-1 in
the original papers [33, 34, 35], and for this reason we will stay with this naming
convention), traffic light decisions are made based only on local state information
around a single junction. Taking into account traffic situations at other junctions
may improve overall performance, especially if these traffic situations are highly
dynamic and may include both free flowing traffic and traffic jams (congestion). For
example, there is no use in setting lights to green for cars that, further on in their
route, will have to wait anyway because there traffic is congested completely.

The two extensions described in this section extend the method described above
based on these considerations. The basic idea in both new methods is to keep the
principle of local optimization of traffic light junctions, in order to keep the methods
computationally feasible. However, traffic light junctions will now take into account,
as extra information, the amount of traffic at neighboring junctions, a “congestion
factor”. This means that next to local state information, more distant, global (non-
local) information is also used for traffic light optimization.

4.1 TC-SBC method

The first extension proposed in this section takes into account traffic situations at
other places in the traffic network by including congestion information in the state
representation. The cost of including such congestion information is a larger state
space and potentially slower learning.

The value function Qpli
(spli

,ai) is extended to Qpli
(spli

,cpli
,ai) where cpli

∈
{0,1} is a single bit indicating the congestion level at the next lane for the vehicle
currently at pli . If the congestion at the next lane exceeds a threshold then cpli

= 1
and otherwise it is set to 0. This extension allows the agents to learn different state
transition probabilities and value functions when the outbound lanes are congested.
We call this method the “State Bit for Congestion” (TC-SBC) method. Specifically,
first a real-valued congestion factor kdestpli

is computed for each car at pli :
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kdestpli
=

wdestpli

Ddestpli

(12)

where wdestpli
is the number of cars on destination lane destpli

, and Ddestpli
is the

number of available positions on that destination lane destpli
. The congestion bit cpli

,
which determines the table entry for the value function, is computed according to

cpli
=

{
1 if kdestpli

> θ
0 otherwise

(13)

where θ is a parameter acting as a threshold.
Like before, the transition model and value function are estimated online using

maximum likelihood estimation and dynamic programming. But unlike before, now
the system effectively learns different state transition probabilities and value func-
tions when the neighboring roads are congested and when they are not congested
(determined by the congestion bit). This makes sense, because the state transition
probabilities and expected waiting times are likely to be widely different for these
two cases. This allows the system to effectively learn different controllers for the
cases of congestion and no congestion. An example of how this may lead to im-
proved traffic flow is that a traffic light may learn that if (and only if) traffic at the
next junction is congested, the expected waiting time for cars in that direction is al-
most identical when this traffic light is set to green compared to when it is set to red.
Therefore, it will give precedence to cars going in another direction, where there
is no congestion. At the same time, this will give the neighboring congested traffic
light junction more time to resolve the congestion.

4.2 TC-GAC method

A disadvantage of the TC-SBC method described above (cf. Section 4.1, Eq. 12 and
13) is that it increases the size of the state space. That is, in fact, the main reason
for restricting the state expansion to only one bit indicating congestion for only the
immediate neighbor. The second new method to deal with congestion investigated
in this section does not expand the state space, but instead uses the congestion factor
kdestpli

(described above) in a different way.

Rather than quantizing the real-valued kdestpli
to obtain an additional state bit,

it is used in the computation of the estimated optimal traffic light configuration
(cf. Eq. 10):

argmax
ai

Q(si,ai) = argmax
ai

∑
li

∑
pli

Opli
(1− kdestpli

)Qpli
(spli

,ai) (14)
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Thus, the congestion factor kdestpli
is subtracted from 1 such that the calculated

value for an individual car occupying position pli given a particular traffic light
configuration (representing its estimated waiting time given that it will see a red
or a green light) will be taken fully into account when its next lane is empty (it is
then multiplied by 1), or will not be taken into account at all if the next lane is fully
congested (it is then multiplied by 0).

We call this method the “Gain Adapted by Congestion” (TC-GAC) method, be-
cause it does not affect the value function estimation itself, but only the computation
of the gain, in the decision theory sense, of setting traffic lights to green as opposed
to red for cars that face or do not face congestion in their desitination lanes. The ad-
vantage of this method is that it does not increase the size of the state space, while
making full use of real-valued congestion information. The disadvantage is that un-
like TC-SBC, TC-GAC never learns anything permanent about congestion, and the
method is even more specific to this particular application domain and even less
generalizable to other domains—at least the principle of extending the state space
to represent specific relevant situations that may require different control, as used
by TC-SBC, can be generalized to other domains. Note that GAC can in fact be
combined with SBC, because it is, in a sense, an orthogonal extension. We call the
combination of the two the TC-SBC+GAC method.

4.3 Experimental Results

4.3.1 Test domains

We tested our algorithms using the GLD simulator (section 2). We used the same
traffic network, named Jillesville, as the one used in [34, 35] (see Figure 2), and
compared our test results to the results of the basic MARL algorithm (TC-1, section
3).

The original experiments [34, 35, 33] were all done with fixed spawning rates,
i.e. fixed rates of cars entering the network at the edge nodes. We replicate some of
those experiments, but also added experiments (using the same road network) with
dynamic spawning rates. In these experiments, spawning rates change over time,
simulating the more realistic situation of changes in the amount of traffic entering
and leaving a city, due to rush hours etc.

In all simulations we measure the Average Trip Waiting Time (ATWT), which
corresponds to the amount of time spent waiting rather than driving. It is possible
that traffic becomes completely jammed due to the large numbers of cars entering
the road network. In that case we set ATWT to a very large value (50).

We did preliminary experiments to find a good parameter setting of the conges-
tion threshold parameter θ for the TC-SBC method. θ = 0.8 gave the best results
in all cases, also for the TC-SBC+GAC method, so we are using that value in the
experiments described below. It is worth noting that even though TC-SBC adds an-
other parameter, apparently one parameter value works well for different variations
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Fig. 2 The Jillesville infrastructure.

of the problem and the algorithm, and no parameter tuning is required for every
specific case.

4.3.2 Experiment 1: Fixed spawning rate

As described above, we performed simulations to compare our new congestion-
based RL controllers (TC-SBC, TC-GAC, TC-SBC+GAC, section 3) to the original
RL controller (TC-1, section 2.3) in one of the original test problems. This test
problem corresponds to Wiering’s experiment 1 [34, 35] and uses the road network
depicted in Figure 2. The spawning rate is fixed and set to 0.4. Each run corresponds
to 50,000 cycles. For each experimental condition (controller type) 5 runs were done
and the results were averaged. We found that 5 runs sufficed to obtain sufficiently
clear and distinct results for the different experimental conditions, but no statistical
significance was determined.

Figure 3 shows the overall results of the experiment. The Average Trip Waiting
Time (ATWT) is depicted over time. Each curve represents the average of 5 runs.
The most important result is that all of our new methods lead, in the long run, to
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Fig. 3 Performance of our congestion-based controllers versus TC-1, in the fixed spawning rate
simulation (experiment 1).

better performance, i.e. lower ATWT, than the original method TC-1. The best per-
formance in this test problem is obtained by TC-SBC+GAC, the method that com-
bines both ways of using congestion information. Interestingly, in the initial stages
of learning this method has, for a while, the worst average performance, but then it
apparently learns a very good value function and corresponding policy, and reduces
ATWT to a very low level. This relatively late learning of the best policy may be
caused by the learning system first learning a basic policy and later fine-tuning this
based on the experienced effects of the GAC component.

Figure 4 shows a snapshot of part of the traffic network in the traffic simulator
during one run, where the controller was TC-SBC+GAC. A darker traffic junction
indicates a more congested traffic situation around that junction. The lower right
junction is fairly congested, which results in the traffic lights leading to that junction
to be set to red more often and for longer periods of time.

4.3.3 Experiment 2: Dynamic spawning rate, rush hours

Experiment 2 uses the same traffic network (Figure 2) as experiment 1, but uses
dynamic spawning rates rather than fixed ones. These simulations similarly last for
50,000 cycles and start with spawning rate 0.4. Every run is divided into five blocks
of 10,000 cycles, within each of which at cycle 5,000 “rush hour” starts and the
spawning rate is set to 0.7. At cycle 5,500 the spawning rate is set to 0.2, and at
cycle 8,000 the spawning rate is set back to 0.4 again. The idea is that especially
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Fig. 4 Snapshot of part of the traffic network in the traffic simulator. Darker nodes indicate more
congested traffic.

in these dynamic situations traffic flow may benefit from our new methods, which
dynamically take into account congestion.

Figure 5 shows the results. As in experiment 1, all of our new methods outper-
form the original, TC-1 method. As expected, the difference is actually more pro-
nounced (note the scale of the graph): TC-SBC, TC-GAC, and TC-SBC+GAC are
much better in dealing with the changes in traffic flow due to rush hours. Rush hours
do lead to longer waiting times temporarily (the upward “bumps” in the graph).
However, unlike the original, TC-1 method, our methods avoid getting complete
traffic jams, and after rush hours they manage to reduce the Average Trip Waiting
Time. The best method in this experiment is TC-GAC. It is not entirely clear why
TC-GAC outperforms the version with SBC, but it may have to do with the fact that
the increased state space associated with SBC makes it difficult to obtain a sufficient
amount of experience for each state in this experiment where there is much variation
in traffic flow.

5 Partial observability

In the work described so far we assumed that the traffic light controllers have access,
in principle, to all traffic state information, even if the system is designed such that
agents make decisions based only on local state information. In other words, we
made the assumption of complete observability of the MDP (see Figure 6). In the
real world it is often not realistic to assume that all state information can be gathered
or that the gathered information is perfectly accurate. Thus decisions typically have
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Fig. 5 Performance of our congestion-based controllers versus TC-1, in the dynamic spawning
rate simulation (experiment 2, “rush hours”).

to be made based on incomplete or erroneous information. This implies dealing with
partial observability.

In order to obtain full observability in a real world implementation of the traffic
control system, a similar grid like state discretization as is the case in our GLD traffic
simulation would have to be made on roads, with a car sensor (e.g. an induction
loop sensor) for each discrete state. On a real road the amount of sensors needed to
realize this is immense; moreover, road users do not move from one discrete state
to another, but move continuously. Approximating the state space by using fewer
sensors converts the problem from completely to partially observable. The controller
no longer has direct access to all state information. The quality of the sensors, i.e. the
possibility of faulty sensor readings, also plays a role in partial observability.

In this section we study partial observability within our multiagent reinforce-
ment learning for traffic light control framework. To model partial observability in
the —up to now fully observable— traffic simulator an observation layer is added.
This allows algorithms to get their state information through this observation layer
instead.

Multiagent systems with partial observability constitute a domain not heavily
explored, but an important one to make a link to real world application and real-
istic traffic light control. Most of the already developed algorithms for partial ob-
servability focus on single agent problems. Another problem is that many are too
computationally intensive to solve tasks more complex than toy problems. Adding
the multiagent aspect increases the complexity considerably, because the size of the
joint action space is exponential in the number of agents. Instead of having to com-
pute a best action based on one agent, the combined (joint) best action needs to
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be chosen from all the combinations of best actions of single agents. In the traffic
light controller work described in this chapter so far, this problem is addressed by
decomposing into local actions, each of which is optimized individually, and this
same approach is used here.

For the single agent case, to diminish the computational complexity several
heuristic approximations for dealing with partial observability have been proposed.
Primary examples of these heuristic approximations are the Most Likely State
(MLS) approach and Q-MDP [6]. Our approach will be be based on these approxi-
mations, and can be viewed as a multiagent extension.

5.1 POMDPs

Partially Observable Markov Decision Processes, or POMDPs for short, are Markov
Decision Processes (the basis for all work described above) in which the state of
the environment, which itself has the Markov property, is only partially observable,
such that the resulting observations do not have the Markov property (see [6, 13, 20]
for introductions to POMDPs). For clarity we will, in this section, refer to MDPs,
including the traffic light systems described above which are non-standard variations
of MDPs, as Completely Observable MDPs (or COMDPs).

A POMDP is denoted by the tuple Ξ = (S,A,Z,R,P,M), where S, A, P, and R
are the same as in COMDPs. Z is the set of observations. After a state transition one
of these observations o is perceived by the agent(s). M is the observation function,
M : S×A→Π(Z), mapping states-action pairs to a probability distribution over the
observations the agent will see after doing that action from that state. As can be seen,
the observation function is dependent on the state the agents is in and the action
it executes. Importantly, in contrast to (standard) COMDPs, the agent no longer
directly perceives the state (see Figure 6), but instead perceives an observation which
may give ambiguous information regarding the underlying state (i.e. there is hidden
state), and must do state estimation to obtain its best estimate of the current state
(see Figure 7).

5.2 Belief states

A POMDP agent’s best estimate of the current state is obtained when it remembers
the entire history of the process [32][6]. However it is possible to “compress” the
entire history intto a summary state, a belief state, which is a sufficient statistic
for the history. The belief state is a probability distribution over the state space:
B = Π(S), denoting for each state the probability that the agent is in that state,
given the history of observations and actions. The policy can then be based on the
entire history, π : B→ A. Unlike the complete history however, the belief state B is
of fixed size, while the history grows with each time step. In contrast to the POMDP
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Fig. 6 The generic model of an agent in a (completely observable) MDP. At each time step, the
agent performs actions in its environment, and in response receives information about the new state
that it is in as well as an immediate reward (or cost).

Fig. 7 The POMDP model: since states are no longer directly observable, they will have to be
estimated from the sequence of observations following actions. This is done by the state estimation
module, which outputs a belief state b to be used by the policy.

observations, the POMDP belief state has the Markov property, subsequent belief
states only depend on the current belief state and no additional amount of history
about the observations and actions can improve the information contained in the
belief state. The notation for the belief state probability will be b(s), the probabilities
that the agent is in each (global) state s ∈ S. The next belief state depends only on
the previous belief state and the current action and observation, and is computed
using Bayes’ rule [6].
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Fig. 8 Sensors on fully and partially observable roads.

5.3 Partial observability in the traffic system

Figure 8 shows a single traffic lane in our simulator, both for the completely (fully)
observable case, as was used in the work described in the previous sections, and for
the partially observable case. In the latter case, there are car sensors e which provide
noisy information e(s) about the occupation of the network position where they are
placed, and they are placed only at the very beginning and very end of each lane,
which means that for the intermediate positions nontrivial state estimation must be
done.

In order to get a good belief state of a drive lane bd such as depicted in Figure
8, it is necessary first of all to create a belief state for individual road users, b f . To
create b f , sensor information can be used in combination with assumptions that can
be made for a road user.

Actions u f are the actions of the road user f . Suppose the sensors inform the
system of road user being on the beginning of the road on time step t = 0, then
given that cars may move at different speeds, the car may move 1, 2, or 3 steps
forward. This means that the road user is on either position 1, position 2, or position
3 of the road on time step t = 1. By the same logic, the whole b f of all cars can be
computed for all time steps, using the Bayes update rule:

b f (st) = p(zt |st) ∑
st−1

p(st |u f ,t ,st−1)p(st−1|zt−1,ut−1) (15)

Since there are many cars, calculating only belief states of individual road users
and assuming that those individual road users are not dependent on each other’s
position is not correct. Therefore, to calculate the belief state for the whole driving
lane, bd , all the b f for that driving lane must be combined, taking into account their
respective positions. bd

pli
denotes the individual probability, according to the com-

plete belief state bd , of a car being at position p of lane l at intersection (junction)
i. Three additional principles guide the algorithm that computes the belief state for
the combination of all cars in the network. Firstly, road users that arrive on a lane
at a later t cannot pass road users that arrived at an earlier t. Secondly, road users
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cannot be on top of each other. Thirdly, road users always move forward as far as
they can, leaving room behind them when they can, such that road users arriving at
a later time step have a spot on the road. The exact algorithm incorporating this can
be found in [24]. Figure 9 shows an example belief state for the whole driving lane,
bd , for one lane in a traffic network.

Fig. 9 The probability distribution of bd is shown for a drive lane of the Jillesville infrastructure.

5.4 Multiagent Most-Likely-State and Q-MDP

This section describes multiagent variations to two well-known heuristic approxi-
mations for POMDPs, the Most Likely State (MLS) approach and Q-MDP [6]. Both
are based on estimating the value function as if the system is completely observable,
which is not optimal but works well in many cases, and then combining this value
function with the belief state.

The MLS approach simply assumes that the most likely state in the belief state
is the actual state, and chooses actions accordingly. Two types of Most Likely State
implementations are investigated here. In the first, we use the individual road user
beliefstate (for all road users):
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sMLS
f = argmax

s
b f (s) (16)

and, as before, a binary operator which indicates occupancy of a position in the road
network by a car is defined:

OMLS
pli

=
{

1 if pli corresponds to an spli
∈ sMLS

f
0 otherwise.

(17)

Thus, the difference with occupancy as defined in the standard model in Eq. 11 is
that here occupancy is assumed if this is indicated by the most likely state estima-
tion. Action selection is done as follows:

argmax
ai

Q(si,ai) = argmax
ai

∑
li

∑
pli

OMLS
pli

Qpli
(spli

,ai) (18)

The second type of MLS implementation uses bd , the belief state defined for a drive
lane, which is more sophisticated and takes into account mutual constraints between
cars. With this belief state the state can be seen as the possible queues of road users
for that drive lane. The MLS approximation for this queue is called the Most Likely
Queue, or MLQ. The most like queue is:

sMLQ
d = argmax

s
bd(s) (19)

and

OMLQ
pli

=

{
1 if pli corresponds to an spli

∈ sMLQ
d

0 otherwise
(20)

and action selection is done as follows:

argmax
ai

Q(si,ai) = argmax
ai

∑
li

∑
pli

OMLQ
pli

Qpli
(spli

,ai). (21)

Instead of selecting the most like state (or queue) from the belief state, the idea
of Q-MDP is to use the entire belief state: the state-action value function is weighed
by the probabilities defined by the belief state, allowing all possible occupied states
to have a “vote” in the action selection process and giving greater weight to more
likely states. Thus, action selection becomes:

argmax
ai

Q(si,ai) = argmax
ai

∑
li

∑
pli

bd
pli

Qpli
(spli

,ai). (22)

In single agent POMDPs, Q-MDP usually leads to better results than MLS [6].
To provide a baseline method for comparison, a simple method was implemented

as well: the All In Front, or AIF, method assumes that all the road users that are de-
tected by the first sensor are immediately at the end of the lane, in front of the traffic
light. The road users are not placed on top of each other. Then the decision for the
configuration of the traffic lights is based on this simplistic assumption. Further-
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more, we compare with the standard TC-1 RL controller, referred to as COMDP
here, that has complete observability of the state.

5.5 Learning the Model

MLS/MLQ and Q-MDP provide approximate solutions for the partially observable
traffic light control system, given that the state transition model and value function
can still be learned as usual. However, in the partially observable case the model
cannot be learned by counting state transitions, because the states cannot directly
be accessed. Instead, all the transitions between the belief state probabilities of the
current state and the probabilities of the next belief states should be counted to be
able to learn the model. Recall, however, that belief states have a continuous state
space even if the original state space is discrete, so there will in effect be an infinite
number of possible state transitions to count at each time step. This is not possible.
An approximation is therefore needed.

The following approximation is used: learning the model without using the full
belief state space, but just using the belief state point that has the highest probability,
as in MLS/MLQ. Using the combined road user beliefstate bd , the most likely states
in this beliefstate are sMLQ. The local state (being occupied or not) at position p
of lane l at intersection (junction) i, according to the most likely queue estimate,
is denoted by sMLQ

pli
. Assuming these most likely states are the correct states, the

system can again estimate the state transition model by counting the transitions of
road users as if the state were fully observable (cf. eq. 1:

P(s′pli
|spli

,ai) :=
C(sMLQ

pli
,ai,s

MLQ
pli j

)

C(sMLQ
pli

,ai)
(23)

and likewise for the other update rules (cf. section 3). Although this approximation
is not optimal, it provides a way to sample the model and the intuition is that with
many samples it provides a fair approximation.

5.6 Test Domains

The new algorithms were tested on two different traffic networks, namely the
Jillesville traffic network used before (see Figure 2), and a newly designed simple
network named LongestRoad.

Since Jillesville was used in previous work it is interesting to use it for partial
observability as well, and to see if it can still be controlled well under partial ob-
servability. Jillesville is a traffic network with 16 junctions, 12 edge nodes or spawn
nodes and 36 roads with 4 drive lanes each.
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Fig. 10 The LongestRoad infrastructure.

LongestRoad (Figure 10) is, in most respects, a much simpler traffic network
than Jillesville because it only has 1 junction, 4 edge nodes and 4 roads with 4 drive
lanes each. The biggest challenge, however, in this set-up is that the drive lanes
themselves are much longer than in Jillesville, making the probabilities of being
wrong with the belief states a lot higher, given sensors only at the beginnings and
ends of lanes. This was used to test the robustness of the POMDP algorithms.

In the experiments described above (Section 4.3) the main performance measure
was average traffic waiting time (ATWT). However, in the case of partial observ-
ability we found that many suboptimal controllers lead to complete congestion with
no cars moving any more, in which case ATWT is not the most informative mea-
sure. Instead, here we use a measure called Total Arrived Road Users (TAR) which,
as the name implies, is the number of total road users that actually reached their
goal node. TAR measures effectively how many road users actually arrive at their
goal and don’t just stand still forever. Furthermore, we specifically measure TAR as
a function of the spawning rate, i.e. the rate at which new cars enter the network
at edge nodes. This allows us to gauge the level of traffic load that the system can
handle correctly, and observe when it breaks down and leads to complete or almost
complete catastrophic congestion.
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5.7 Experimental results: COMDP vs. POMDP algorithms

Figure 11 shows the results, TAR as a function of spawning rate, for the different al-
gorithms described above, when tested on the partially observable Jillesville traffic
infrastructure. A straight monotically increasingly line indicates that all additional
road users injected at higher spawning rates arrive at their destinations (because
TAR scales linearly with the spawning rate, unless there are congestions). Here we
do not yet have model learning under partial observability; the model is learned un-
der full observability, and the focus in on how the controllers function under partial
obsrvability.

The results in Figure 11 show that Q-MDP performs very well, and is compara-
ble to COMDP, with MLQ slightly behind the two top algorithms. AIF and MLS
perform much worse; this is not very surprising as they make assumptions which
are overly simplistic. The highest throughput is thus reached by Q-MDP since that
algorithm has the most Total Arrived Road Users. This test also shows that the
robustness of Q-MDP is better than the alternative POMDP methods since the max-
imum spawn rates for Q-MDP before the simulation gets into a “deadlock” situation
(the sudden drop in the curves when spawn rates are pushed beyond a certain level)
are higher. Generally the algorithms MLQ, Q-MDP, and COMDP perform at almost
an equal level.
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Fig. 11 Results on the partially observable Jillesville traffic infrastructure, comparing POMDP
with COMDP algorithms.

With the LongestRoad network, in which individual roads are substantially
longer, a slightly different result can be observed (see Figure 12). In the Jillesville
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Fig. 12 Results on the partially observable LongestRoad traffic infrastructure, comparing POMDP
with COMDP algorithms.

traffic network, MLS was underperforming, compared to the other methods. On the
LongestRoad network on the other hand the performance is not bad. COMDP ap-
pears to perform slightly worse than the POMDP methods (except for AIF). In the-
ory COMDP should be the upper bound, since its state space is directly accessible
and the RL approach should then perform best. One possibility is that the COMDP
algorithm has some difficulties converging on this infrastructure compared to other
infrastructures because of the greater lengths of the roads. Longer roads provide
more states and since a road user will generally not come across all states when it
passes through (with higher speeds many cells are skipped), many road users are
needed in order to get good model and value function approximations. The POMDP
algorithms’ state estimation mechanism is somewhat crude, but perhaps this effec-
tively leads to fewer states being considered and less sensitivity to inaccuracies of
value estimations for some states.

In any case, the performance of the most advanced POMDP and COMDP meth-
ods is comparable, and only the baseline AIF method and the simple MLS method
perform much worse.



24 Bram Bakker and Shimon Whiteson and Leon J.H.M. Kester and Frans C.A. Groen

5.8 Experimental results: Learning the model under partial
observability

The experiment described above showed good results of making decisions under
partial observability. Next we test the effectiveness of learning the model under
partial observability. The methods doing that do so using the MLQ state (see above)
and are indicated by MLQLearnt suffixes. We again compare with COMDP, and
with the POMDP methods with complete observability model learning. We do not
include AIF in this comparison, as it was already shown to be inferior above.

The results on Jillesville are shown in Figure 13. It can be seen that the MLQLearnt
methods works very well. MLQ-MLQLearnt (MLQ action selection and model
learning based on MLQ) does not perform as well as Q-MDP-MLQLearnt (Q-MDP
action selection and model learning based on MLQ), but still has a good perfor-
mance on Jillesville. It can be concluded that in this domain, when there is par-
tial observability, both action selection and model learning can be done effectively,
given that proper approximation technques are used.

We can derive the same conclusion from a similar experiment with the Longe-
stRoad traffic network (see Figure 14). Again learning the model under partial ob-
servability based on the MLQ state does not negatively affect behavior.
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Fig. 13 Results on the partially observable Jillesville traffic infrastructure, comparing POMDP al-
gorithms which learn the model under partial observability (MLQLearnt) with POMDP algorithms
which do not have this additional difficulty.
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Fig. 14 Results on the partially observable LongestRoad traffic infrastructure, comparing POMDP
algorithms which learn the model under partial observability (MLQLearnt) with POMDP algo-
rithms which do not have this additional difficulty.

6 Multiagent coordination of traffic light controllers

In the third and final extension to the basic multiagent reinforcement learning ap-
proach to traffic light control, we return to the situation of complete observability
of the state (as opposed to partial observability considered in the previous section),
but focus on the issue of multiagent coordination. The primary limitation of the
approaches described above is that the individual agents (controllers for individ-
ual traffic junctions) do not coordinate their behavior. Consequently, agents may
select individual actions that are locally optimal but that together result in global
inefficiencies. Coordinating actions, here and in general in multiagent systems, can
be difficult since the size of the joint action space is exponential in the number of
agents. However, in many cases, the best action for a given agent may depend on
only a small subset of the other agents. If so, the global reward function can be de-
composed into local functions involving only subsets of agents. The optimal joint
action can then be estimated by finding the joint action that maximizes the sum of
the local rewards.

A coordination graph [10], which can be used to describe the dependencies be-
tween agents, is an undirected graph G = (V,E) in which each node i∈V represents
an agent and each edge e(i, j) ∈ E between agents i and j indicates a dependency
between them. The global coordination problem is then decomposed into a set of
local coordination problems, each involving a subset of the agents. Since any arbi-
trary graph can be converted to one with only pairwise dependencies [36], the global
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action-value function can be decomposed into pairwise value functions given by:

Q(s,a) = ∑
i, j∈E

Qi j(s,ai,a j) (24)

where ai and a j are the corresponding actions of agents i and j, respectively. Us-
ing such a decomposition, the variable elimination [10] algorithm can compute the
optimal joint action by iteratively eliminating agents and creating new conditional
functions that compute the maximal value the agent can achieve given the actions
of the other agents on which it depends. Although this algorithm always finds the
optimal joint action, it is computationally expensive, as the execution time is expo-
nential in the induced width of the graph [31]. Furthermore, the actions are known
only when the entire computation completes, which can be a problem for systems
that must perform under time constraints. In such cases, it is desirable to have an
anytime algorithm that improves its solution gradually.

One such algorithm is max-plus [16, 15], which approximates the optimal joint
action by iteratively sending locally optimized messages between connected nodes
in the graph. While in state s, a message from agent i to neighboring agent j de-
scribes a local reward function for agent j and is defined by:

µi j(a j) = max
ai
{Qi j(s,ai,a j)+ ∑

k∈Γ (i)\ j
µki(ai)}+ ci j (25)

where Γ (i)\ j denotes all neighbors of i except for j and ci j is either zero or can
be used to normalize the messages. The message approximates the maximum value
agent i can achieve for each action of agent j based on the function defined between
them and incoming messages to agent i from other connected agents (except j).
Once the algorithm converges or time runs out, each agent i can select the action

a∗i = argmax
ai

∑
j∈Γ (i)

µ ji(ai) (26)

Max-plus has been proven to converge to the optimal action in finite iterations,
but only for tree-structured graphs, not those with cycles. Nevertheless, the algo-
rithm has been successfully applied to such graphs [8, 15, 36].

6.1 Max-Plus for Urban Traffic Control

Max-plus enables agents to coordinate their actions and learn cooperatively. Do-
ing so can increase robustness, as the system can become unstable and inconsistent
when agents do not coordinate. By exploiting coordination graphs, max-plus mini-
mizes the expense of computing joint actions and allows them to be approximated
within time constraints.

In this chapter, we combine max-plus with the model-based approach to traffic
control described above. We use the vehicle-based representation defined in Sec-
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tion 3 but add dependence relationships between certain agents. If i, j ∈ J are two
intersections connected by a road, then they become neighbors in the coordination
graph, i.e. i ∈ Γ ( j) and j ∈ Γ (i). The local value functions are:

Qi(si,ai,a j) = ∑
li

∑
pli

Qpli
(spli

,ai,a j) (27)

Using the above, we can define the pairwise value functions used by max-plus:

Qi j(s,ai,a j) = ∑
pli

Opli
Qpli

(spli
,ai,a j)+∑

pl j

Opl j
Qpl j

(spl j
,a j,ai) (28)

where Opli
is the binary operator which indicates occupancy at pli (eq. 11).

These local functions are plugged directly into Equation 25 to implement max-
plus. Note that the functions are symmetric such that Qi j(s,ai,a j) = Q ji(s,a j,ai).
Thus, using Equation 28, the joint action can be estimated directly by the max-plus
algorithm. Like before, we use one iteration of dynamic programming per timestep
and ε-greedy exploration. We also limit max-plus to 3 iterations per timestep.

Note that there are two levels of value propagation among agents. On the lower
level, the vehicle-based representation enables estimated values to be propagated
between neighboring agents and eventually through the entire network, as before.
On the higher level, agents use max-plus when computing joint actions to inform
their neighbors of the best value they can achieve, given the current state and the
values received from other agents.

Using this approach, agents can learn cooperative behavior, since they share
value functions with their neighbors. Furthermore, they can do so efficiently, since
the number of value functions is linear in the induced width of the graph. Stronger
dependence relationships could also be modeled, i.e. between intersections not di-
rectly connected by a road, but we make the simplifying assumption that it is suf-
ficient to model the dependencies between immediate neighbors in the traffic net-
work.

6.2 Experimental Results

In this section, we compare the novel approach described in Section 6.1 to the TC-
1 (Traffic Controller 1) described in section 3 and the TC-SBC (Traffic Controller
with State Bit for Congestion) extension described in section 4 (we do not compare
to TC-GAC as that is not really a learning method and is very specific to the partic-
ular application domain and not easily generalizable). We focus our experiments on
comparisons between the coordination graph/max-plus method, TC-1, and TC-SBC
in saturated traffic conditions (i.e. a lot of traffic, close to congestion), as these are
conditions in which differences between traffic light controllers become apparent
and coordination may be important.
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These experiments are designed to test the hypothesis that, under highly saturated
conditions, coordination is beneficial when the amount of local traffic is small. Local
traffic consists of vehicles that cross a single intersection and then exit the network,
thereby interacting with just one learning agent (traffic junction controller). If this
hypothesis is correct, coordinated learning with max-plus should substantially out-
perform TC-1 and TC-SBC in particular when most vehicles pass through multiple
intersections.

In particular, we consider three different scenarios. In the baseline scenario, the
traffic network includes routes, i.e. paths from one edge node to another, that cross
only a single intersection. Since each vehicle’s destination is chosen from a uniform
distribution, there is a substantial amount of local traffic. In the nonuniform destina-
tions scenario, the same network is used but destinations are selected to ensure that
each vehicle crosses two or more intersections, thereby eliminating local traffic. To
ensure that any performance differences we observe are due to the absence of local
traffic and not just to a lack of uniform destinations, we also consider the long routes
scenario. In this case, destinations are selected uniformly but the network is altered
such that all routes contain at least two intersections, again eliminating local traffic.

While a small amount of local traffic will occur in real-world scenarios, the vast
majority is likely to be non-local. Thus, the baseline scenario is used, not for its
realism, but to help isolate the effect of local traffic on each method’s performance.
The nonuniform destinations and long routes scenarios are more challenging and
realistic, as they require the methods to cope with an abundance of non-local traffic.

We present initial proof-of-concept results in small networks and then study the
same three scenarios in larger networks to show that the max-plus approach scales
well and that the qualitative differences between the methods are the same in more
realistic scenarios.

For each case, we consider again the metric of average trip waiting time (ATWT):
the total waiting time of all vehicles that have reached their destination divided by
the number of such vehicles. All results are averaged over 10 independent runs.

6.2.1 Small Networks

Figure 15 shows the small network used for the baseline and nonuniform destina-
tions scenarios. Each intersection allows traffic to cross from only one direction at
a time. All lanes have equal length and all edge nodes have equal spawning rates
(vehicles are generated with probability 0.2 per timestep). The left side of Figure 16
shows results from the baseline scenario, which have uniform destinations. As a re-
sult, much of the traffic is local and hence there is no significant performance differ-
ence between TC-1 and max-plus. TC-SBC performs worse than the other methods,
which is likely due to slower learning as a result of a larger state space, and a lack
of serious congestion, which is the situation that TC-SBC was designed for.

The right side of Figure 16 shows results from the nonuniform destinations sce-
nario. In this case, all traffic from intersections 1 and 3 is directed to intersection
2. Traffic from the top edge node of intersection 2 is directed to intersection 1 and
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Fig. 15 The small network used in the baseline and nonuniform destinations scenarios.

traffic from the left edge node is directed to intersection 3. Consequently, there is
no local traffic. This results in a dramatic performance difference between max-plus
and the other two methods.

This result is not surprising since the lack of uniform destinations creates a clear
incentive for the intersections to coordinate their actions. For example, the lane from
intersection 1 to 2 is likely to become saturated, as all traffic from edge nodes con-
nected to intersection 1 must travel through it. When such saturation occurs, it is
important for the two intersections to coordinate, since allowing incoming traffic to
cross intersection 1 is pointless unless intersection 2 allows that same traffic to cross
in a “green wave”.

To ensure that the performance difference between the baseline and nonuniform
destinations scenarios is due to the removal of local traffic and not some other effect
of nonuniform destinations, we also consider the long routes scenario. Destinations
are kept uniform, but the network structure is altered such that all routes involve
at least two intersections. Figure 17 shows the new network, which has a fourth
intersection that makes local traffic impossible. Figure 18 shows the results from
this scenario.

As before, max-plus substantially outperforms the other two methods, suggesting
its advantage is due to the absence of local traffic rather than other factors. TC-1
achieves a lower ATWT than TC-SBC but actually performs much worse. In fact,
TC-1’s joint actions are so poor that the outbound lanes of some edge nodes become
full. As a result, the ATWT is not updated, leading to an artificially low score. At the
end of each run, TC-1 had a much higher number cars waiting to enter the network
than TC-SBC, and max-plus had none.
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Fig. 16 Average ATWT per timestep for each method in the small network for the baseline (top)
and nonuniform destinations (bottom) scenarios.

6.2.2 Large Networks

We also consider the same three scenarios in larger networks, similar to the Jillesville
network we worked with before (see Figure 2), to show that the max-plus approach
scales well and that the qualitative differences between the methods are the same
in more realistic scenarios. Figure 19 shows the network used for the baseline and
nonuniform destinations scenarios. It includes 15 agents and roads with four lanes.
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Fig. 17 The small network used in the long routes scenario.
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Fig. 18 Average ATWT per timestep in the small network for the long routes scenario.

The left side of Figure 20 shows results from the baseline scenario, which has uni-
form destinations. As with the smaller network, max-plus and TC-1 perform very
similarly in this scenario, though max-plus’s coordination results in slightly slower
learning. However, TC-SBC no longer performs worse than the other two methods,
probably because the network is now large enough to incur substantial congestion.
TC-SBC, thanks to its congestion bit, can cope with this occurrence better than TC-
1.

The right side of Figure 20 shows results from the nonuniform destinations sce-
nario. In this case, traffic from the top edge nodes travel only to the bottom edge
nodes and vice versa. Similarly, traffic from the left edge nodes travel only to right
edge nodes and vice versa. As a result, all local traffic is eliminated and max-plus
performs much better than TC-1 and TC-SBC. TC-SBC performs substantially bet-
ter than TC-1, as the value of its congestion bit is even greater in this scenario.
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Fig. 19 The large network, similar to Jillesville, used in the baseline and nonuniform destinations
scenarios.

To implement the long routes scenario, we remove one edge node from the two
intersections that have two edge nodes (the top and bottom right nodes in Figure 19).
Traffic destinations are uniformly distributed but the new network structure ensures
that no local traffic occurs. The results of the long routes scenario are shown in
Figure 21. As before, max-plus substantially outperforms the other two methods,
confirming that its advantage is due to the absence of local traffic rather than other
factors.

6.3 Discussion of max-plus results

The experiments presented above demonstrate a strong correlation between the
amount of local traffic and the value of coordinated learning. The max-plus method
consistently outperforms both non-coordinated methods in each scenario where lo-
cal traffic has been eliminated. Hence, these results help explain under what circum-
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Fig. 20 Average ATWT per timestep for each method in the large network for the baseline (top)
and nonuniform destinations (bottom) scenarios.

stances coordinated methods can be expected to perform better. More specifically,
they confirm the hypothesis that, under highly saturated conditions, coordination is
beneficial when the amount of local traffic is small.

Even when there is substantial local traffic, the max-plus method achieves the
same performance as the alternatives, though it learns more slowly. Hence, this
method appears to be substantially more robust, as it can perform well in a much
broader range of scenarios.
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Fig. 21 Average ATWT per timestep for each method in the long routes scenario.

By testing both small and large networks, the results also demonstrate that max-
plus is practical in realistic settings. While max-plus has succeeded in small applica-
tions before [15], this chapter presents its first application to a large-scale problem.
In fact, in the scenarios without local traffic, the performance gap between max-
plus and the other methods was consistently larger in the big networks than the
small ones. In other words, as the number of agents in the system grows, the need
for coordination increases. This property makes the max-plus approach particularly
attractive for solving large problems with complex networks and numerous agents.

Finally, these results also provide additional confirmation that max-plus can per-
form well on cyclic graphs. The algorithm has been shown to converge only for
tree-structured graphs, though empirical evidence suggests it also excels on small
cyclic graphs [15]. The results presented in this chapter show that this performance
also occurs in larger graphs, even if they are not tree-structured.

7 Conclusions

This chapter presented several methods for learning efficient urban traffic controllers
by multiagent reinforcement learning. First, the general multiagent reinforcement
learning framework used to control traffic lights in this chapter was described. Next,
three extensions were described which improve upon the basic framework in various
ways: agents (traffic junctions) taking into account congestion information from
neighboring agents; handling partial observability of traffic states; and coordinating
the behavior of multiple agents by coordination graphs.
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In the first extension, letting traffic lights take into account the level of traffic con-
gestion at neighboring traffic lights had a beneficial influence on the performance
of the algorithms. The algorithms using this new approach always performed better
than the original method if there is traffic congestion, in particular when traffic con-
ditions are highly dynamic such as is the case when there are both quiet times and
rush hours.

In the second extension, partial observability of the traffic state was successfully
overcome by estimating belief states and combining this with multiagent variants
of approximate POMDP solution methods. These variants are the Most Likely State
(MLS) approach and Q-MDP, previously only used in the single case. It was shown
that the state transition model and value function could also be estimated (learned)
effectively under partial observability.

The third extension extends the MARL approach to traffic control to include
explicit coordination between neighboring traffic lights. Coordination is achieved
using the max-plus algorithm, which estimates the optimal joint action by sending
locally optimized messages among connected agents. This work presents the first
application of max-plus to a large-scale problem and thus verifies its efficacy in
realistic settings. Empirical results on both large and small traffic networks demon-
strate that max-plus performs well on cyclic graphs, though it has been proven to
converge only for tree-structured graphs. Furthermore, the results provide a new un-
derstanding of the properties a traffic network must have for such coordination to be
beneficial and show that max-plus outperforms previous methods on networks that
possess those properties.
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23. M. Steingröver, R. Schouten, S. Peelen, E. Nijhuis, and B. Bakker. Reinforcement learn-

ing of traffic light controllers adapting to traffic congestion. In Proceedings of the Belgium-
Netherlands Artificial Intelligence Conference, BNAIC05, 2005.
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