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Abstract—In this paper we propose an approach for personal-
ising the space in which a game is played (i.e., levels) – to the end
of tailoring the experienced challenge to the individual user during
actual play of the game. Our approach specifically considers two
design challenges, namely implicit user feedback and high risk of
user abandonment. We contribute an approach that acknowledges
that for effective online game personalisation, one needs to (1)
offline learn a policy that is appropriate in expectation across
users – to be used for initialising the online game, (2) offline learn
a mapping from gameplay observations to the player experience
– to be used for guiding the online game personalisation, and (3)
rapidly converge to an appropriate policy for the individual user
in online gameplay – employing the learned feedback model and
a straightforward model of user abandonment. User studies that
validate the approach to online game personalisation in the actual
video game INFINITE MARIO BROS. indicate that it provides an
effective basis for automatically balancing the game’s challenge
level to the individual human player.

I. INTRODUCTION

Ideally, artificial intelligence (AI) in games provides satis-
factory and effective game experiences for players regardless
of gender, age, capabilities, or experience [1]; it allows for the
creation of personalised games, where the game experience is
continuously tailored to fit the individual player. Indeed, we are
now at a point where modern computer technology, simulation,
and artificial intelligence (AI) have opened up the possibility
that more can be done with regard to on-demand and just-in-
time personalisation [2]. As such, achieving the ambition of
creating personalised games requires the development of novel
techniques for assessing online and unobtrusively which game
adaptations are required for optimising the individual player’s
experience.

The goal of the present research is to online generate
game spaces (i.e. levels) such that the spaces optimise player
challenge for the individual player. This entails two challenges,
namely (1) in online gameplay only implicit feedback on the
appropriateness of the personalisation actions is available (i.e.,
the AI can only observe the player interacting with the game,
while not being provided with labels on the player experience),
and (2) there is a high risk of user abandonment when
inappropriate game personalisation actions are performed.

Our contribution is an approach built on three features
that address these challenges. Addressing the first challenge,
a feedback model needs to be learned which maps gameplay
observations to an estimate of the player experience. The feed-
back model is learned offline and is subsequently employed for
decision-making in online gameplay. Addressing the second
challenge, a policy needs to be learned that is appropriate
in expectation across users. This policy is learned offline

and is subsequently employed to initialise online gameplay.
Also addressing the second challenge, in online gameplay we
rapidly converge to an appropriate policy for the individual
user. To do this well, we employ the learned feedback model
and a straightforward model of user abandonment to guide
state-space exploration.

II. GAME PERSONALISATION

Game personalisation is motivated by a significantly in-
creased involvement and extensive cognitive elaboration when
subjects are exposed to content of personal relevance [3]; they
will exhibit stronger emotional reactions [4]. Particularly, a
positive effect on player satisfaction is indicated, i.e., game
personalisation raises player loyalty and enjoyment, which in
turn can steer the gaming experience towards a (commercial)
success [5]. Indeed, the perspective of AI researchers to
increase the engagement and enjoyment of the player is one
that is consistent with the perspective of game designers [2],
i.e., personalisation methods are regarded as instrumental for
achieving industry ambitions [6]. Tailoring the game expe-
rience to the individual player particularly benefits from the
use of player models, and requires components that use these
models to adapt part of the game [7].

Our research follows the emerging trend of employing
AI methods for adapting the game environment itself (as
opposed to, more typically, adapting the behaviour of the game
characters) [7]. In our investigation, we choose to focus on per-
sonalising the game space to the individual player with respect
to experienced challenge1; it can be considered an instantiation
of experience-driven procedural content generation (EDPCG)
[8]. Related work with regard to this scope is discussed next.

A. Challenge balancing

Challenge balancing concerns automatically adapting the
challenge that a game poses to the skills of a player [9], [10].
It aims at achieving a ‘balanced game’, i.e., a game wherein the
player is neither challenged too little, nor challenged too much.
In most games, the only implemented means of challenge
balancing is provided by a difficulty setting, i.e., a discrete
parameter that determines how challenging the game will be.
However, as the challenge provided by a game is typically
multi-faceted, it is hard for the player to estimate reliably
the challenge level that is appropriate for her. Furthermore,
generally only a limited set of discrete difficulty settings
is available (e.g., easy, normal, hard). This entails that the

1Typically, in a video game setting, the game space will be the levels in
which the game takes place. Game space personalisation, in this context, gen-
erally concerns the online learning of the next set of level design parameters.



available settings are not fine-tuned to be appropriate for
each player. As such, researchers have developed advanced
techniques for balancing the challenge level of games. Hunicke
and Chapman [11] explored challenge balancing by controlling
the strength of opponent characters (i.e., controlling the op-
ponent character’s health, accuracy, and employed weapons).
Spronck et al. [10] investigated methods for automatically
adjusting weights assigned to possible game scripts. Zook
and Riedl [12] investigated a temporal data-driven player
model for dynamic difficulty adjustment. Indeed, knowledge
on the specific effect of game adaptations can be employed for
maintaining a challenge level [13], and may be incorporated
to steer the procedural generation of game content [14].

In our research, we take the distinct focus of balancing the
game’s challenge level by adapting the content that is placed
within the game environment.

B. Player modelling

Player modelling is of increasing importance in modern
video games [15]; it is almost a necessity when the purpose of
AI is ‘entertaining the human player’ rather than ‘defeating the
human player’ [16]. A challenge for player modelling in video
games is that models of the player have to be established (1)
in game environments that generally are relatively complex,
(2) with typically little time for observation, and (3) often
with only partial observability of the environment [17], [18].
A recent development with regard to player modelling is
to automatically establish psychologically or sociologically
verified player profiles [18]. Such models provide motives or
explanations for observed behaviour. A solid profile can be
used to, for instance, predict a player’s affective state during
play of the game.

In our research, we take the distinct approach of utilising
player models for the purpose of optimising the player expe-
rience (cf. the work of Yannakakis et al. [19]).

C. Space adaptation

Game space adaptation concerns allowing the space in
which the game is played to adapt, ideally in response to the
user experience [20]. Game space adaptation is an active area
of research [14], [21], [22], [20], [23], which falls within the
scope of experience-driven procedural content generation [8].
Research is increasingly focussing on how procedural tech-
niques may be employed specifically for enhancing the player
experience. Indeed, the feasibility of procedurally generating
a personalised race track has already been demonstrated by
Togelius et al. [24], [25]. Furthermore, Adrian et al. [26] and
Traichioiu et al. [27] investigated the procedural generation
of levels with respect to a difficulty curve. Dormans and
Bakkes [20], [28] investigated the procedural generation of
entire levels for action-adventure games, which distinguishes
between missions and spaces as two separate structures that
need to be generated in two individual steps. Lopes et al. [29]
developed a framework aimed at creating personalised content
for complex and immersive game worlds; by modelling which
content provided the context for a given personal gameplay
experience. Sorenson et al. [30] developed an approach to au-
tomatic video game level design consisting of a computational
model of player enjoyment and a generative system based on
evolutionary computing.

Fig. 1: Our enhanced version of INFINITE MARIO BROS. During gameplay it
generates short new level segments of specific content on-the-fly, on the basis
of an implicit reward signal (given by an offline learned feedback model).

In our research, we also focus on procedural content
generation for tailoring the player experience. Our distinct
focus in this matter, is to assess online and unobtrusively which
game adaptations are required for optimising the individual
player’s experience while the game is being played, so as to
have assessments on the experienced player challenge impact
the procedural process.

III. DOMAIN DESCRIPTION

We consider a typical video game: INFINITE MARIO BROS.
[31]; an open-source clone of the classic video game SUPER
MARIO BROS. It can be regarded an archetypal platform game;
despite its relatively straightforward appearance it provides a
diverse and challenging gameplay experience. We build upon
a version of INFINITE MARIO BROS. that has been extended
by Shaker et al. [32], [33], [34], Pedersen et al. [22], [35], and
Togelius et al. [36] to procedurally generate Mario levels.

We have made two further enhancements to the 2011
Mario AI Championship game engine of INFINITE MARIO
BROS. First, we enhanced the engine such that it is able to
procedurally generate segments of Mario levels while the game
is in progress (Figure 1). One game segment has a width of 112
game objects, and generally takes a player approximately 20 to
30 seconds to complete. This enhancement enables feedback
on the observed player experience to rapidly impact the
procedural process that generates the upcoming level segments.
The upcoming level segments are generated seamlessly, such
that no screen tears occur when the user is transitioning from
one segment to the next (i.e., before the next segment can be
observed a short ‘gap’ block is injected in the game space).

Our second enhancement to the game engine, is that within
every segment we can now inject short chunks of specific
game content. We enabled the game engine to generate five
different types of chunks, (1) a straight chunk, containing
enemies and jumpable blocks, (2) a hill chunk, also containing
enemies, (3) a chunk with tubes, containing enemy plants,
(4) a jump, and (5) a chunk with cannons. Each chunk can
have six distinct implementations, stemming from a per-chunk
parameter value ∈ [0, 5]. The intended challenge level of a
chunk monotonically increases with the parameter value (e.g.,
a hill parameter value of 0 entails a chunk with no hills
and no enemies, while a value of 5 entails five procedurally-
generated hills with five relatively difficult enemies). Our
enhanced engine has the desired property that the generated
chunks are largely independent of each other, i.e., only in rare
cases will one chunk be able to affect player behaviour in
the surrounding chunks (e.g., in case a cannon bullet follows
the player to the next chunk). To benefit playability and level
aesthetics, the order in which the chunks are encountered is
randomized for each new segment. The five chunks (each 16



game objects in length) are preceded and succeeded by a flat,
neutral chunk (also 16 game objects in length), to allow the
player to prepare for the next game segment.

In online gameplay, the AI that personalises the game
space is input with a vector of 65 real-numbered features
values of observed player behaviour. The features encom-
pass the full logging capability of the game’s data recorder
(45 features, such as timesjumped, coinscollected, kills-red-
turtle), appended by 15 hand-coded features (such as jump-
totalruntime, cannons-totallefttime) and 5 parameters (such as
parameter-cannons).2 The only action that the AI can take is
to output a vector of five integers (chunk parameters) ∈ [0, 5]
to the procedural process which in turn generates the next
level segment. While the action space is relatively modest in
size, its resulting expressiveness ranges from overly easy to
exasperatedly hard level segments.

IV. APPROACH

The goal of the present research is to online generate
game spaces (i.e. levels) such that the spaces optimise player
challenge for the individual player, without interrupting the
game experience for gathering player feedback. This entails
two challenges, namely (1) in online gameplay only implicit
feedback on the appropriateness of the personalisation actions
is available (i.e., the AI can only observe the player interacting
with the game, while not being provided with labels on
the player experience), and (2) there is a high risk of user
abandonment when inappropriate game personalisation actions
are performed.

Our contribution is an approach built on three features
that address these challenges. Addressing the first challenge,
a feedback model needs to be learned which maps gameplay
observations to an estimate of the player experience. The feed-
back model is learned offline and is subsequently employed for
decision-making in online gameplay. Addressing the second
challenge, a policy needs to be learned that is appropriate
in expectation across users. This policy is learned offline
and is subsequently employed to initialise online gameplay.
Also addressing the second challenge, in online gameplay we
rapidly converge to an appropriate policy for the individual
user. To do this well, we employ the learned feedback model
and a straightforward model of user abandonment to guide
state-space exploration. We now describe these ideas in more
detail.

A. Phase 1 – Learn the global safe policy (offline)

The procedure adopted for learning the global safe policy,
while intelligently generating a set of training instances, is
illustrated in Figure 2a; it concerns labelling sessions with
human participants.O indicates a gameplay observation (a vec-
tor of 65 real-numbered features), P indicates the parameters
used for generating a level segment (a vector of five integers
∈ [0, 5]), L indicates the user-provided label of the gameplay
experience; it concerns a 5-point Likert scale, being 1=Too
easy, 2=Somewhat easy, 3=Just right, 4=Somewhat hard, and
5=Too hard. Each labelling session starts by providing the
participant with a ‘tutorial’ segment of the easiest possible

2A complete description of the employed features is provided on http://ieva.
landofsand.com/not-from-ieva/description-of-features.pdf

ALGORITHM 1: Exploration policy for experience labelling.

1 i = number-of-controllable-features; j = range-of-feature-values;
2 fine-tuning = false; GSP[] = p[] = 0; generateNextSegment(p[]);
3 while playing do
4 if player-at-procedural-checkpoint then
5 if !fine-tuning then
6 if player-prefers-current-segment then
7 GSP[] = p[]; inc(p[]);
8 else
9 fine-tuning = true; p[] = GSP[]; p[rand(0,i-1)] = rand(0,j);

10 end
11 else
12 if player-prefers-current-segment then
13 GSP[] = p[];
14 else
15 p[] = GSP[];
16 end
17 p[rand(0,i-1)] = rand(0,j);
18 end
19 generateNextSegment(p[]);
20 end
21 if player-dies then
22 i = feature-associated-to-chunk-of-death;
23 p[i] = max(p[i] - rand(0,5), 0); generateNextSegment(p[]);
24 end
25 end

challenge level – so that the participant may get accustomed
to interacting with the Mario game and the game controls.
Upon completing the tutorial segment, the second segment is
generated with a challenge level that is uniformly increased
across all parameters by one step size. Upon completing the
second segment, we query the participant on two types of feed-
back, namely (1) the experienced challenge level, on a 5-point
Likert scale, and (2) her preference for the segment that she just
played, or for the segment before. Depending on the answer
on this second type of feedback, a heuristically-determined
exploration function is employed for regulating which point in
the parameter space should be explored next (the first type of
feedback is employed for learning the feedback model, not for
exploration at training time).3 Given the selected point in the
parameter space, the next segment is generated and presented
to the participant, and the process repeats. For each labelling
session, labels are collected till the user chooses to abandon
the game.

Given that human-provided labels are a scarce resource, the
exploration policy (Algorithm 1) is aimed at (a) ensuring that
the earlier provided labels are as informative as possible, (b)
ensuring that the participant will keep playing the game for as
long as possible, and (c) enabling an anytime solution, which
– in case the participant suddenly abandons the game – at
any time can return a reasonable estimate on the participant’s
preferred challenge level. The algorithm attempts to rapidly
assess a challenge level that is roughly appropriate to the con-
cerning participant, and optimise the assessment by exploring
around this rough estimate. In case the participant inadvertently
dies, the policy decreases the challenge level on specifically
the aspect that caused the participant to die (e.g., an excess of
cannons in the game space), such that the participant does not
get stuck in the game and will continue labelling.

The result of each labelling session is an estimate on
the participant’s preferred challenge level. Given that (1) the
features that express the challenge level are largely indepen-
dent of each other, and that (2) the intended challenge level

3This links to advanced techniques for active player modelling [37].



(a) Phase 1: Learn the global safe policy (offline) (b) Phase 2: Learn the feedback model (offline) (c) Phase 3: Online personalisation (online)

Fig. 2: Approach to game-space personalisation (legenda explained in the text).

monotonically increases with the feature value, we consider the
global safe policy to be the statistical mean over the preferred
challenge levels.

B. Phase 2 – Learn the feedback model (offline)

The procedure adopted for learning the feedback model
is illustrated in Figure 2b. Given the intelligently generated
set of training instances (Phase 1), a random forest decision-
tree classifier [38] is built. The training instances concern
tuples of gameplay observations O, the procedural parameters
P that were used to generate the observed level segment,
and the labels L of the user’s experience when playing the
segment. We refer to the built random forest decision-tree
classifier as a feedback model. The random forest decision-tree
classifier consists of a combination of tree classifiers where
each classifier is generated using a random vector sampled
independently from the input vector, and each tree casts a unit
vote for the most popular class to classify an input vector [39].
The advantage of using random forest classification is that it
returns a probability distribution of the classification (and not
solely a, less informative, single classification).

The feedback model returns a classification C, being a
probability distribution of the newly observed instance re-
sulting from the five Likert-scale classes of challenge. We
employ the classification C for two purposes (during online
personalisation), namely (1) to calculate the expected reward,
and (2) to calculate the expected Likert-class of experienced
challenge. Given the classification C the expectation of the
reward R is defined as:

E[R] =
5∑
k=1

rkpk, (1)

where rk is the heuristically-determined reward value for
Likert-challenge class k, and pk is the probability of observed
player behaviour resulting from challenge class k. We have
heuristically determined the following reward values: a chal-
lenge label of 3 yields a reward rk of 1.0, label 2 and 4 yield
a reward of 0.33, and label 1 and 5 yield a reward of 0.0.
Given the classification C the expectation of the Likert class
K is defined as:

E[K] =
5∑
k=1

kpk, (2)

where k is the Likert-challenge class, and pk is the probability
of observed player behaviour resulting from Likert class k.
Both Equation 1 and 2 are used for online game personalisa-
tion.

C. Phase 3 – Online personalisation (online)

In online play of the game, we initialise the game with
a challenge level that is most appropriate in expectation
across users (given the global safe policy learned in Phase 1).
Subsequently, during play of the game we employ the learned
feedback model (learned in Phase 2) to guide the search
through the state space. A naive approach to this end would
be to perform gradient-ascent optimisation, using the classi-
fication of the observed player behaviour to determine the
search direction and step-size.4 We enhance the naive gradient-
ascent optimisation approach by incorporating a basic, straight-
forward model of user abandonment. Indeed, such a model
may effectively guide the online state-space exploration; game
content that is associated with a high probability of user
abandonment should be adapted differently from game content
that is associated with a low probability of user abandonment.
Our abandonment model follows the intuition that the risk
that a player takes when playing the game is proportionally
related to the probability of abandonment. Our assumption
is that when a player exhibits risky behaviour in specific
Mario chunks (e.g., the player is continuously running in the
cannons section), she may be doing so because the chunk is not
sufficiently challenging (and vice versa). Consequently, for the
Mario domain, we consider the fraction of time that a player
spent running in the concerning chunk as a rough estimate of
the probability of user abandonment.

The procedure adopted for online personalisation is illus-
trated in Figure 2c. First, at the start of a game, the global safe
policy GSP (learned in Phase 1) is fed into the parameters
P that are employed for generating the first level segment

4Were the implicit feedback reliable enough to be interpreted as supervised
labels, it could be employed to directly jump to the predicted best parameter
values. Instead, the feedback provides relative information (basically an
implicit reward signal), which can be used to determine a gradient to follow.
This is a safer approach, since it leads to incremental changes that accumulate
over time, rather than a big jump based only on a single data point.



ALGORITHM 2: Online personalisation.

1 i = number-of-controllable-features; j = range-of-feature-values; p[] = GSP[];
2 generateNextSegment(p[]);
3 while playing do
4 if player-at-procedural-checkpoint then
5 E[R] = cf. Equation 1; E[K] = cf. Equation 2;
6 stepSize = α · maxStep · (1 - E[R]);
7 for n=0; n<i; n++ do
8 if E[K] <= desired-Likert-class then
9 p[n] = p[n] + (probUserAbandonment[n] · stepSize);

10 else
11 p[n] = p[n] - ((1-probUserAbandonment[n]) · stepSize);
12 end
13 end
14 generateNextSegment(p[]);
15 end
16 if player-dies then
17 i = feature-associated-to-chunk-of-death;
18 p[i] = max(p[i] - 1, 0); updateCurrentSegment(p[]);
19 end
20 end

(it is appropriate in expectation across users). Just before
completion of a level segment by the player (i.e., after having
completed a segment length of 96 out of the total length
of 112), gameplay observations O are fed into the feedback
model (learned in Phase 2). The resulting classification C by
the feedback model – a probability distribution over the five
Likert classes, as returned by the learned feedback model –
is input to the gradient-ascent optimisation method, together
with the actual gameplay observations O and the parameters P
that were used to generate the level segment. In the gradient-
ascent method, the parameters P are mutated in a direction that
is more appropriate in expectation to the challenge experienced
by the player. The resulting updated P is fed into the procedural
level segment generator. With a new level segment being
generated, the process now repeats. In some additional detail
(cf. Algorithm 2); at every procedural checkpoint, given the
classification C, the expected reward E[R] and expected Likert
class E[K] are estimated by Equation 1 and 2, respectively. The
E[R] estimate is used to determine the step size for the gradient
ascent optimisation. The E[K] estimate is used to determine the
search direction; it increases (decreases) the challenge level
with an E[K] below or equal (above) the desired level. The
actual step taken in this direction per procedural parameter,
is weighted according to the estimated probability of user
abandonment.

V. EXPERIMENTS

Here we discuss the experiments that validate our approach
in the actual video game INFINITE MARIO BROS.

A. Learning the global safe policy (Phase 1)

Following the procedure described in Section IV, we
gathered training instances from 52 unique user sessions;
the employed parameters were i=5 and j=5. Each session
yielded the preferred challenge policy per participant. Given
the described procedure, the global safe policy across users
was calculated to be: straights=2, hills=3, tubes=3, jumps=2,
and cannons=2. This global safe policy concerns a moderately
easy challenge level.

The learned global safe policy is strictly data driven, and
reflects the statistical mean of preferred challenge levels across

Fig. 3: Histogram of the preferred challenge level across users. The bins reflect
the average attribute values over all dimensions.

users. Further analysis (Figure 3) reveals that the majority of
human participants prefer an easy to moderately easy challenge
level; while few to no participants prefer a hard to very hard
challenge level, respectively. These observations are in line
with our own expertise with the problem domain.

B. Learning the feedback model (Phase 2)

While exploring the parameter space for the purpose of
learning a global safe policy, we have de facto explored
that part of the parameter space that is most informative for
learning a feedback model (i.e., the part of the parameter
space that is not covered by domain knowledge of the game
designer). The so gathered training instances are used for
learning the feedback model; they are used for building a
random forest decision-tree classifier [38]. The classifier is
built from 435 labelled instances, generated from 52 unique
user sessions.

Utilising 10-fold cross validation, over the five distinct
classes of experienced challenge, the random forest classifier
achieves an accuracy of 54.02%. In comparison, a random
classification yields an accuracy of 20%, and a Naive Bayes-,
J48-, and RBF network classifier yield an accuracy of 38.16%,
40.92%, and 46.66%, respectively. As such, we consider the
learned feedback model comparatively accurate, particularly
as in our experiments we are interested in the skew of the
probability distribution that is returned by the random forest
classifier (as opposed to being concerned with the classification
of a single class). That is, the skew of the probability distri-
bution determines the search direction of the gradient-ascent
optimisation in online gameplay. The skew accuracy of the
learned feedback model is 95.40% (the baseline of selecting a
random direction having an accuracy of 50%), with 2.07% of
the instances being incorrectly classified as over-challenging,
and 2.53% of the instances being incorrectly classified as
under-challenging.

We examined which features are of most merit (i.e., con-
cerning information gain) in classifying the experienced player
challenge, via the ReliefF attribute evaluation method [40];
a robust and noise-tolerant algorithm for attribute evaluation
[41]. The features with the most merit are given in Table I.
We observe that the majority of these features concern (1)



TABLE I: Top ranking features according to the ReliefF atribution evaluation
method. Controllable features are highlighted in bold-face.

Average merit Feature

0.032 ± 0.004 parameter-hills
0.027 ± 0.003 parameter-jump
0.021 ± 0.003 parameter-cannons
0.020 ± 0.002 parameter-tubes
0.015 ± 0.002 feature-tubes-totalruntime
0.013 ± 0.002 feature26-aimlessJumps
0.013 ± 0.002 parameter-straight
0.012 ± 0.002 feature21-emenies
0.011 ± 0.002 feature-straight-totalruntime
0.010 ± 0.001 feature-straight-totallefttime

controllable features (highlighted in bold-face), and (2) the
time that a participant has spent running through part of
the level. These latter features reflect the exhibited risk that
a participant is taking while playing the game. These two
findings support our intuition that (a) the adopted controllable
features (i.e., the parameters of the generative process) may
well be employed for controlling the challenge level, and
that (b) at least in the Mario game, indicators on exhibited
player risk effectively contribute to the classification of the
experienced player challenge.

C. Online personalisation (Phase 3) – Performance analysis

In this experiment, we analyse the system’s performance by
observing human participants interact with the gaming system
under four experimental conditions, namely (1a) starting at a
random challenge level + maintaining that level, (1b) starting at
a random challenge level + game personalisation, (1c) starting
at the global safe policy + maintaining the policy, and (1d)
starting at the global safe policy + game personalisation. Our
hypothesis is that in condition 1b the experienced challenge
level will converge to the desired level (whereas in 1a it will
plateau at an undesired level), and that in condition 1d the
experience challenge will converge more rapidly (whereas in
condition 1c it will plateau as well; albeit at a more desired
level than in condition 1a).

The performance of the system is evaluated in terms of the
system’s ability to converge to – and maintain – a state that
is considered appropriate to the human participants (i.e., an
adequately balanced challenge level of ‘3’).5 We employed
the learned global safe policy (Section V-A), the learned
feedback model (Section V-B), and the parameters i=5, j=5,
GSP={2,3,3,2,2}, α=0.8, and maxStep=5.

The experiment is performed by twenty-five humans par-
ticipants. To minimise user fatigue impacting the experimental
results, each of the four game-playing session is ended after
a maximum of 10 level segments (i.e., approximately seven
minutes of play). An experiment coordinator observes the
human participant play the game, and at the end of every
segment denotes the experienced challenge – as vocalised by
the participant as the applicable Likert-scale class ranging from
1 to 5. Should the participant decide to abandon the session,
then this is denoted as ‘DNF’. The participant demographics
for this experiments were, gender: 24% female, 76% male,

5Depending on the context, one may prefer to converge to a challenge level
that is, e.g., slightly above what is deemed appropriate to the individual user.

Fig. 4: Online personalisation – Learning performance after the first segment.

age: 27 years (sd=4), hours spent on video games per week: 6
hours (sd=8), has played Mario before: yes for all participants.

Figure 4 illustrates the measured difference to the target
Likert-class after a human participant has completed the first
segment. Our target Likert-class is 3, so the maximum obtain-
able difference is 2. We observe that for condition 1a and 1b,
the difference to the target Likert-class averaged 0.92 (sd=0.76)
and 0.56 (sd=0.58), respectively. This substantial difference
(p=0.066) suggests that when online personalisation is enabled
(condition 1b), our approach can rapidly learn an appropriate
policy: already before the first segment is completed by the
human participant. Indeed, it reveals the importance of learning
from specific gameplay events already early in the game (i.e.,
player deaths in the Mario game). Furthermore, we observe
that for condition 1c and 1d, the difference to the target Likert-
class averaged 0.6 (sd=0.5) and 0.32 (sd=0.56), respectively.
This substantial difference (p=0.068) suggests that starting at
an appropriate global safe policy (condition 1d), effectively
assists the online learning process.

While the variance in the results is large due to the
low number of participants, the personalisation system does
appear to learn fast and effectively at the beginning of the
game, so that further improvements may not be necessary or
possible. What we desire from the system at this point, is
to stably maintain what it has learned. Figure 5 illustrates
the performance of the approach over the course of 10 level
segments, after appropriate behaviour has been learned in the
first segment (condition 1b). The data points are averaged over
25 game sessions, with missing data points resulting from
abandoned sessions being excluded from the average. The
figure suggests that the personalisation approach is indeed able
to maintain the learned policy in the face of behavioural noise.

Table II lists the number of sessions that were abandoned
by the human participants. We observe that when online game
personalisation was not employed (condition 1a + 1c), 6 out
of 50 sessions were abandoned by the human participants. In
contrast, we observe that when online game personalisation
was employed (condition 1b & 1d), only 1 out of 50 sessions
were abandoned by the human participant. This result suggests
that, in the face of user abandonment, online game personali-



Fig. 5: Relative stability of the online personalisation approach after appro-
priate behaviour has been learned in the first segment (condition 1b).

TABLE II: Online personalisation – Sessions abandoned.

Experimental condition Sessions started Sessions abandoned

1a. Random & Maintain 25 6
1b. Random & Personalise 25 0
1c. GSP & Maintain 25 0
1d. GSP & Personalise 25 1

sation is an effective method for recovering from inappropriate
starting conditions.

D. Online personalisation (Phase 3) – Pairwise tests

In this experiment, we investigate how human participants
experience the personalised game under actual game playing
conditions, in comparison with a realistic (baseline) static
game. To this end, in accordance with procedures employed
by Shaker et al. [34], we query for pairwise preferences (i.e.,
“is system A preferred over system B?”), a methodology with
numerous advantages over rating-based questionnaires (e.g.,
no significant order of reporting effects) [42]. We perform
pairwise tests of a static system s, with a fixed difficulty
level, and a personalised system p. The experiment follows a
within-subjects design composed of two randomised conditions
(first s then p, or inversely), each condition consisting of
a series of three sequentially performed pairwise tests, in
randomized order (i.e., both the condition is randomised, and
the order of each pair-wise test is randomised). The pairwise
tests compare (2a) the static system vs. the personalised
system, both starting at identical challenge levels (i.e., disabled
smart cold-start initialisation), (2b) the static system vs. the
personalised system with enabled smart cold-start initialisation
(i.e., starting at the learned global safe policy), and (2c) the
personalised system with disabled smart cold-start initialisation
vs. the personalisation system with enabled smart cold-start
initialisation. Table III gives an overview of the resulting
experimental conditions, with the initial challenge level of a
system indicated between brackets.

The experiment is performed by fifteen human participants.
To minimise user fatigue impacting the experimental results,
each of the nine game-playing session is ended after a maxi-
mum of 3 level segments (i.e., approximately two minutes of
play). After completing a pair of two games, we query the
participants’s preference through a 4-alternative forced choice
(4-AFC) questionnaire protocol (e.g., s is preferred to p, p is

TABLE III: Experiment 2 – Pairwise tests of the static system versus the
personalised system. The initial challenge level is indicated between brackets.

Experiment Condition 1 Condition 2

2a s(easy) vs. p(easy) p(easy) vs. s(easy)
s(normal) vs. p(normal) p(normal) vs. s(normal)
s(hard) vs. p(hard) p(hard) vs. s(hard)

2b s(easy) vs. p(gsp) p(gsp) vs. s(easy)
s(normal) vs. p(gsp) p(gsp) vs. s(normal)
s(hard) vs. p(gsp) p(gsp) vs. s(hard)

2c p(easy) vs. p(gsp) p(gsp) vs. p(easy)
p(normal) vs. p(gsp) p(gsp) vs. p(normal)
p(hard) vs. p(gsp) p(gsp) vs. p(hard)

TABLE IV: Online personalisation – Pairwise preferences of participants.

Experiment Pers.(gsp) Pers.(fixed) Static Both Neither

2a – 62.22% 22.22% 11.11% 4.44%
2b 68.89% – 20.00% 6.67% 4.44%
2c 64.44% 28.89% – 2.22% 4.44%

preferred to s, both are preferred equally, neither is preferred;
both are equally unpreferred). The question presented to the
participant is: “For which game did you find the challenge
level more appropriate?”. The participant demographics for
this experiments were, gender: 27% female, 73% male, age:
27 years (sd=5), hours spent on video games per week: 5
hours (sd=6), has played Mario before: yes for all participants.
We employ the same feedback model, global safe policy, and
parameter settings as in Experiment 1. The challenge levels
easy, normal, and hard reflect parameter values of {1,1,1,1,1},
{3,3,3,3,3}, and {5,5,5,5,5}, respectively.

Table IV lists the pairwise preferences as reported by
the human participants. We observe that, in condition 2a, a
significant majority (p=0.0206) of human participants prefer
the personalised system over the static system (62.22% over
22.22%) when both systems are initialised with the same
policy. In addition, in condition 2b, we observe that when the
personalised system is initialised with the learned global safe
policy, the significant preference for this system increases to
68.89% (while the preference for the static system remains
low, at 20.00%). Finally, in condition 2c, we observe that the
personalised system – initialised with the learned global safe
policy – is significantly preferred over the personalised sys-
tem with fixed (easy/normal/hard) initialisations (p=0.0456),
64.44% over 28.89%, respectively.

From these results we may conclude that (a) human par-
ticipants consistently prefer the personalised gaming system
over the static gaming system, and (b) learning an appropriate
global safe policy for initialising the game positively affects
participant preferences.

VI. CONCLUSION

In this paper we proposed an approach for personalising
the space in which a game is played (i.e., levels) – to the
end of tailoring the experienced challenge to the individual
user during actual play of the game. Our approach specifi-
cally considers two design challenges, namely implicit user
feedback and high risk of user abandonment. We contributed
an approach that acknowledges that for effective online game
personalisation, one needs to (1) offline learn a policy that



is appropriate in expectation across users – to be used for
initialising the online game, (2) offline learn a mapping from
gameplay observations to the player experience – to be used
for guiding the online game personalisation, and (3) rapidly
converge to an appropriate policy for the individual user in
online gameplay – employing the learned feedback model and
a straightforward model of user abandonment.

Conclusion. User studies that validated the approach to
online game personalisation in the actual video game INFINITE
MARIO BROS. indicate that (a) the approach can rapidly
learn an appropriate policy: already before the first segment
is completed by the human participant, (b) starting at an
appropriate global safe policy effectively assists the online
learning process, (c) the approach can maintain the learned
policy in the face of behavioural noise, (d) in the context of
user abandonment, online game personalisation is an effective
method for recovering from inappropriate starting conditions,
(e) in pairwise tests, a significant majority of human partic-
ipants prefer the personalised gaming system over a static
gaming system, and (f) learning an appropriate global safe
policy for initialising the game positively affects participant
preferences. From these results, we may conclude that the
proposed approach to online game personalisation provides an
effective basis for automatically balancing the game experience
in actual video games.

Future work. The present research serves as a demon-
strator for online game-space personalisation in actual video
games. When implementing the developed personalisation ap-
proach in the game INFINITE MARIO BROS. we made the
assumption that (1) assessments on exhibited behavioural risk
can serve as a proxy for models of user abandonment, (2)
the perceived challenge levels monotonically increase with
parameter values of the procedural process, and (3) the learned
feedback model is constructed from appropriately selected
observational features. (Additional) empirical evaluation of
these assumptions may further enhance the effectiveness of
the approach. In addition, while indicating that human par-
ticipants consistently prefer the personalised gaming system,
additional user studies will decrease experimental variance,
and shall further investigate which precise factors lead to a
human preferring a personalised system. Indeed, online game
personalisation may be considered a multi-objective learning
problem in which factors such as challenge, engagement, and
frustration need to be balanced.
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