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Abstract

In this paper we propose an approach for personalising
the space in which a game is played (i.e., levels) depen-
dent on classifications of the user’s facial expression – to
the end of tailoring the affective game experience to the
individual user. Our approach is aimed at online game
personalisation, i.e., the game experience is personalised
during actual play of the game. A key insight of this pa-
per is that game personalisation techniques can leverage
novel computer vision-based techniques to unobtrusively
infer player experiences automatically based on facial ex-
pression analysis. Specifically, to the end of tailoring the
affective game experience to the individual user, in this
paper we (1) leverage the proven INSIGHT facial expres-
sion recognition SDK as a model of the user’s affective
state (Sightcorp 2014), and (2) employ this model for
guiding the online game personalisation process. User
studies that validate the game personalisation approach
in the actual video game INFINITE MARIO BROS. re-
veal that it provides an effective basis for converging to
an appropriate affective state for the individual human
player.

Introduction

Ideally, artificial intelligence (AI) in games provides satisfac-
tory and effective game experiences for players regardless of
gender, age, capabilities, or experience (Charles et al. 2005);
it allows for the creation of personalised games, where the
game experience is continuously tailored to fit the individual
player. Indeed, we are now at a point where modern computer
technology, simulation, and AI have opened up the possibil-
ity that more can be done with regard to on-demand and
just-in-time personalisation (Riedl 2010). However, achiev-
ing the ambition of creating personalised games requires
the development of novel techniques for assessing online
and unobtrusively which game adaptations are required for
optimizing the individual player’s experience.

The goal of this research is to online generate game spaces
(i.e. levels) such that the spaces optimise player challenge
for the individual player. A major challenge to this end, is
that in online gameplay only implicit feedback on the ap-
propriateness of the personalisation actions is available, i.e.,
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the AI can only observe the player interacting with the game,
while not being provided with labels on the player experience.
Still, methods for tailoring the affective game experience to
the individual user require an indication on how appropriate
the provided experience is to the player. However, explicitly
asking for player feedback during gameplay, is usually too
intrusive, and would gravely affect the game experience. It
is thus of the essence to use as much implicit feedback as
possible, to obtain an as accurate as possible model of the
player experience.

A key insight of this paper is that game personalisation
techniques can leverage novel computer vision-based tech-
niques to unobtrusively infer player experiences automat-
ically based on facial expression analysis. Specifically, to
the end of tailoring the affective game experience to the in-
dividual user, in this paper we (1) leverage the established
INSIGHT facial expression recognition SDK as a model of the
user’s affective state (Sightcorp 2014), and (2) employ this
model for guiding the online game personalisation process.

As such, we consider challenge to be a cognitive state
that might incorporate affective patterns that could be ex-
pressed through the face. We focus purely on attaining an
appropriate challenge level through the online learning from
affective signals; a relatively challenging task. This operates
by adjusting procedural parameters that control the intended
challenge level -per content type- within the game. This pro-
vides expressiveness to tailor the intended challenge level
to specific users (by adapting specific content in a distinct
manner). Specifically, we will control the intended challenge
level based on measured affective states; we do not make
assumptions on the relationship of affect and challenge.

Game Personalisation

Game personalisation is motivated by a significantly in-
creased involvement and extensive cognitive elaboration
when subjects are exposed to content of personal relevance
(Petty and Cacioppo 1979); they will exhibit stronger emo-
tional reactions (Darley and Lim 1992). Particularly, a posi-
tive effect on player satisfaction is indicated, i.e., game per-
sonalisation raises player loyalty and enjoyment, which in
turn can steer the gaming experience towards a (commer-
cial) success (Teng 2010). Indeed, the perspective of AI
researchers to increase the engagement and enjoyment of
the player is one that is consistent with the perspective of
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game designers (Riedl 2010), i.e., personalisation methods
are regarded as instrumental for achieving industry ambitions
(Molyneux 2006). Tailoring the game experience to the in-
dividual player particularly benefits from the use of player
models, and requires components that use these models to
adapt part of the game (Bakkes, Tan, and Pisan 2012).

Our research follows the emerging trend of employing AI
methods for adapting the game environment itself (as op-
posed to, more typically, adapting the behaviour of the game
characters) (Bakkes et al. 2014). In our investigation, we
choose to focus on personalising the game space to the indi-
vidual player with respect to experienced challenge. Related
work with regard to this scope is discussed next.

Player Experience Analysis

We build on the novel perspective that computer vision tech-
niques can automatically infer gameplay experience metrics
(Tan and Pisan 2012; Tan et al. 2012), a field broadly catego-
rized into qualitative and quantitative methods.

Qualitative methods involve the collection and analysis of
subjective data for games; this often includes direct observa-
tions, interviews and think-aloud protocols. These methods
are most common amongst game practitioners and usually
require formal playtest sessions in artificial play environ-
ments (Tan et al. 2012). Although these methods have been
shown to usually reflect accurate states, they have several
shortcomings. Firstly, they might inhibit true play experi-
ences, as players might not be totally at ease when someone
is watching or questioning them. Players might not be able
to properly self-articulate their play experiences concurrently
during gameplay and might not remember important details
when post interviews are performed. Secondly, the sessions
also often require a lot of time and resources to conduct and
analyze. Hence there is a need for more efficient, accurate
and versatile (ability to conduct in non-laboratory settings)
ways to perform player experience analysis.

These reasons have driven much research towards quan-
titative methods that work on objective data. Quantitative
methods have the potential to represent true player experi-
ences in the game and are able to continuously capture a more
diverse body of information. Common approaches include
telemetry and psychophysiology.

Telemetry primarily deals with the logging of player in-
game interactions to build player models, and several studies
have been performed (Zammitto, Seif El-Nasr, and Newton
2010; Medler, John, and Lane 2011; Moura, Seif El-Nasr,
and Shaw 2011; Gagne, Seif El-Nasr, and Shaw 2011). The
advantage of Telemetry over qualitative methods is that it is
non-disruptive and that it can continuously capture objective
gameplay statistics in non-laboratory settings. However, the
data is limited to the in-game actions available to the player
and events in the game world. Hence these “virtual obser-
vations” do not capture full experiences and might not even
represent the true experiences of the player in real life. For
example, a player might take a long time to clear a level,
but he might be having a high level of arousal in real life,
having fun exploring the level, or simply be stimulated by
the aesthetics.

Psychophysiology is the other main branch of quantita-
tive player experience research, which consists of methods
to infer psychological states from physiological measure-
ments, that commonly include electrodermal activity (EDA),
electromyography (EMG), electrocardiogram (ECG), elec-
troencephalography (EEG), body temperature and pupil dila-
tions. Current work (Mandryk, Atkins, and Inkpen 2006;
Nacke and Lindley 2008; Yannakakis and Hallam 2009;
Nacke, Grimshaw, and Lindley 2010; Zammitto, Seif El-Nasr,
and Newton 2010; Drachen et al. 2010) mostly involve infer-
ring emotional valence and arousal by employing a combi-
nation of the measurements. Amongst them, EDA and EMG
seems to be most popular as they correspond accurately to
emotional dimensions of arousal and valence respectively
(Russell 1980). Similar to telemetry, physiological measure-
ments are able to capture player experiences continuously in
real-time. In addition, physiological data represent the real
life experiences of the player. Unfortunately, most current
approaches deal with expensive specialised equipment that
are obtrusive, which are usually only viable in controlled
laboratory settings. As such, we propose to investigate using
a video-based approach to capture data in way that is more
efficient, versatile, and does not affect natural gameplay.

Facial Expression Recognition

The first step in any facial expressions analysis system is to
recognize facial expressions; being a fairly mature domain
in computer vision with techniques that boast a high level of
accuracy and robustness (Bartlett et al. 1999; Michel and El
Kaliouby 2003; Buenaposada, Muñoz, and Baumela 2007;
McDuff et al. 2011). For example, Buenaposada et al. 2007
have reported an 89% recognition accuracy in video se-
quences in unconstrained environments with strong changes
in illumination and face locations.

In terms of using it for analysis of user experiences, there
has been a limited number of works performed in non-game
applications (Branco 2006; Zaman and Shrimpton-Smith
2006). Branco 2006 showed some encouraging results evalu-
ating positive and negative expressions of users of an online
shopping website. Zaman and Shrimpton-Smith 2006 eval-
uated an automated facial expressions analysis system to
infer emotions that users had whilst performing common
computer usage tasks. They generally reported a high level
of correlation between the system’s findings and human
expert analyses. In other domains, general emotion detec-
tion based on facial expression recognition (Ghijsen 2004;
Baltrusaitis et al. 2011) have also shown promising results.

In our research, we take the distinct focus of balancing
the game’s challenge level by adapting the content that is
placed within the game environment dependent on facial
expression analysis. Particularly, we focus on procedural
content generation (cf. Togelius et al. 2011; Yannakakis 2011)
for tailoring the player experience. Our distinct focus in this
matter, is to assess online and unobtrusively which game
adaptations are required for optimizing the individual player’s
experience while the game is being played, so as to have
assessments on the experienced player challenge impact the
procedural process (cf. Bakkes et al. 2014).
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Figure 1: Our enhanced version of INFINITE MARIO BROS.
During gameplay it generates short new level segments of
specific content on-the-fly, on the basis of classifications of
the facial expression.

Domain description

We consider a typical video game: INFINITE MARIO BROS.
(Persson 2009); an open-source clone of the classic video
game SUPER MARIO BROS. It can be regarded an archety-
pal platform game; despite its relatively straightforward ap-
pearance it provides a diverse and challenging gameplay
experience. We build upon a version of INFINITE MARIO
BROS. that has been extended to procedurally generate en-
tire Mario levels. These extensions have been made by
Shaker et al. (2011; 2012; 2013), Pedersen et al. (2009b;
2009a), and Togelius et al. (2010).

We have made two further enhancements to the 2011 Mario
AI Championship game engine of INFINITE MARIO BROS.
First, it now is able to procedurally generate segments of
Mario levels while the game is in progress (Figure 1). Second,
we can now inject short chunks of specific game content: (1) a
straight chunk, containing enemies and jumpable blocks, (2)
a hill chunk, also containing enemies, (3) a chunk with tubes,
containing enemy plants, (4) a jump, and (5) a chunk with
cannons. Each chunk can have six distinct implementations,
stemming from a per-chunk parameter value ∈ [0, 5]. The
challenge level of the chunk monotonically increases with
the parameter value. In online gameplay, the only action that
the personalisation algorithm can take is to output a vector
of five integers (chunk parameters) ∈ [0, 5] to the procedural
process which in turn generates the next level segment. While
the action space is relatively modest in size, its resulting
expressiveness ranges from overly easy to exasperatedly hard
level segments.

Approach

The goal of our approach is to online generate game spaces
(i.e. levels) such that the spaces optimise player challenge
for the individual player. To this end, a key insight is that
game personalisation techniques can leverage novel computer
vision-based techniques to unobtrusively infer player expe-
riences automatically based on facial expression analysis.
We perform emotion tracking, with the established INSIGHT
facial expression recognition SDK (Sightcorp 2014), and gra-
dient ascent optimisation of the individual game experience.

Emotion tracking

In our approach, player emotions are tracked with the IN-
SIGHT facial expression recognition SDK (Sightcorp 2014)
through the duration of a game session, yet are taken into
account real-time and are chunk specific. As such we are
not measuring, e.g., general happiness, but instead can map
(parameters that generated) specific game content to specific

Figure 2: Classifications of the facial expressions of one hu-
man participant, over the course of a ten-minute game play-
ing session. We observe that the dominant affective stance is
‘neutral’.

affective states. We hereby assume that the classification
probability of an affective stance indicates how strongly it is
expressed by the player.

INSIGHT classifies facial expressions at approximately 15
frames per second. For each frame, it outputs a probability
distribution over seven distinct emotions, namely (1) neutral-
ity, (2) happiness, (3) disgust, (4) anger, (5) fear, (6) sadness,
and (7) surprise. Depending on the progress of the player
through the Mario game, a game chunk is typically interacted
with for 2 to 10 seconds, resulting in a total of 30 to 150
classifications for each game chunk separately. The result-
ing probability distributions are averaged at the end of each
chunk, into an estimate of a players’s emotional stance; it is
an estimate that is relatively insensitive to classification noise
of the facial expression system (which may occur in individ-
ual frames). INSIGHT has an average accuracy of 93.2% over
all classified emotions (Sightcorp 2014).

There are two events at which assessments on the player’s
affective state are used to adapt the game; namely (1) when
the next level segment needs to be generated, and (2) when
the game resets due to player death. To this end, we take into
consideration not only player assessments made during actual
play of the game, but also in between in-game deaths of the
human player – as we observed that during this observational
period many game players express high emotional activity.
Furthermore, we particularly consider that – following our
experience with the target domain – most game players tend
to maintain a relatively neutral facial expression during game-
play, with most emotional ‘bursts’ occurring when human
players experience an in-game death. Figure 2 supports this
intuition; it illustrates that ‘neutral’ is the dominant affective
stance, as measured for one player over the course of a game
play session of approximately ten minutes, with bursts of
anger, happiness, and sadness being measured as well.

During actual play of the first segment of each game
session, we calculate the variance in classification of each
emotional stance e, from which we derive a factor α =
1− var(e1). This factor α is employed as a baseline for the
gradient ascent algorithm; it aims at assessing the “emotional
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Algorithm 1 Facial Expression-based Gradient Ascent Optimisation

1: procedure GAOPTIMIZE(et, et−1) � Emotion vectors of current and previous segment

2: α ← 5 ∗ (1 − V ar(e1)) � Calculate α, scale to action space
3: for each : chunk do

4: if playerDies(t) then

5: φ = round(5 ∗ α ∗ et[Anger])

6: chunk.decreaseChallengeLevel(φ)

7: else if segmentFinished(t) then

8: if et[Neutral] <= 0.8 ∗ α then

9: chunk.decreaseChallengeLevel(1)

10: else

11: ε ← argmaxe|et − et−1|
12: nextAction ← round(ε ∗ α)

13: if e ∈ {angry, neutral} then

14: nextAction ← −nextAction

15: nextChallengeLevel ← previousChallengeLevel +
nextAction

16: return newChallengeLevel

expressiveness” of each individual player. In our approach,
the lower the variance in affective states (i.e., an observed
player is not very expressive), the larger the gameplay adap-
tations to specific chunks when emotional bursts actually do
occur (in either direction of intended challenge), considering
that var(e1) is higher when a user shows high emotionality
levels. Factor α is then multiplied to thresholds defined in the
gradient ascent optimiser.

Gradient Ascent Optimisation

To map classifications of the human player’s facial expres-
sions to appropriate in-game challenge levels, we employ
a Gradient Ascent Optimisation (GAO) technique. It is em-
ployed for optimising the challenge levels for each content
type in the game (i.e., for each chunk) such that human in-
teractions with the content yield affective stances that have
positive valence (i.e., happiness), while minimising affective
stances that have negative valence (i.e., neutrality and anger).

Our implementation of GAO is relatively straightforward
(Algorithm 1). After a game segment has been completed by
the human player, the probability-distribution vector of the
measured emotional stances are retrieved for each individual
chunk. The emotions taken into consideration for the present
experiments are (1) neutrality, (2) happiness, and (3) anger;
our preliminary trials with the Mario game suggested that
these emotions were most likely to be expressed by human
players (cf. Figure 2).

At each iteration of GAO, when a game segment is fin-
ished, the emotion vectors – of each individual chunk – of
the recently played (finished) segment (St), plus the previ-
ously completed segment St−1, are fed into the algorithm.
For each emotion that is taken into consideration (neutral-
ity, happiness and anger), the difference between its current
(et) and previous iteration (et−1) value is obtained. Next,
the maximum of the three differences is determined, namely
argmax(et − et−1). Since the three emotions are equally
weighted, the maximum value calculated could be considered
as the “most significant” change in emotional status of the
user between two game segments. This value can be consid-
ered the desired challenge level of the next segment, St+1.
Since emotions are probabilistic estimates, their difference
between two segments follows De ∈ [−1...1]. In order to
determine the next segment’s challenge level per chunk, De

has to be scaled up to action space of the employed procedu-
ral level generator of the Mario game, namely [0...5]. Thus,
action at = round(5De), at ∈ [−5...5] is calculated and
defines the change in challenge level that will be presented
in the next segment, where negative values define a drop in
challenge and positive values define a respective increase.
To summarize, the challenge level of a chunk in the next
segment will be: dSt+1

= dSt
+ at. This calculation will be

individually applied to all chunks within a game segment.
In practice, the algorithm will increase the game challenge
level if the probability estimate of an emotion is higher in
timestep t compared to t − 1. However, we condition on
which emotion is the one defining at, for the reason that an
increase in “negative” emotions (neutrality and anger) should
generate a decrease in game difficulty. That is why in these
cases, we consider at to be −at.

In order to tailor GAO to the specific target domain, heuris-
tic values are introduced in special occasions; all heuristic
values follow from experimentation. Generally, as mentioned,
users tend to show highly neutral expressions during game-
play, especially in gameplay settings of low challenge level.
In order to prevent “stalling” the game at a certain challenge
level due to lack of expressed emotionality, we introduce a
heuristic threshold τ = 0.8α. The threshold is derived from
our observations on player behaviour in the Mario game (Fig-
ure 2). If, by the end of a game segment, the level of neutrality
of a player during a chunk was higher than the theshold τ , the
level generator will force an increase in challenge by a unit
measure (+1) in the next segment’s respective chunk. This
heuristic corresponds to the insight that the possibility of fail-
ure (and the positive affect that is provided by overcoming
an obstacle) is an important factor to an appropriate game
experience (Juul 2013).

On the other hand, lasting, excessively high challenge lev-
els may impose an unpleasant experience on game players.
In order to avoid player abandonment resulting from an inap-
propriately high challenge level, a second heuristic is applied
onto emotions observed during in-game death. A threshold
φ = 5α× εanger is introduced regarding the anger measure-
ment during death. The chunk in which death happened will
instantly drop by round(φ) units of challenge level in an
attempt to reduce player anger and boost player progress in
the game. Note that εanger ∈ {0...1} is multiplied by 5 in
order to directly map emotion probability scale into game
challenge scale.

Experiments

Here we discuss the experiments that validate our approach
in the actual video game INFINITE MARIO BROS.

Online personalisation – Pilot study

In the pilot study, we analyse the personalisation system’s
performance by observing one human participant interact
with the system under controlled experimental conditions.
The participant is placed in a room with stable lighting condi-
tions, and is instructed to interact with the personalised Mario
game as she would at home, while attempting to refrain from
blocking the face (e.g., by moving a hand through the hair,
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drinking coffee, etc.). The participant will interact with the
game for ten minutes, starting at an initial challenge level
of ‘easy’ (all parameter values being ‘1’). Our hypothesis is
that when facial expressions can be classified accurately, our
online personalisation method will converge to a challenge
level that yields an appropriate affective state for the user.

Figure 3 illustrates the obtained results. For all chunks
(Figure 3b – 3f), we observe the general trend where the al-
gorithm decreases the per chunk challenge levels (Figure 3f)
in the face of user anger, and increases the challenge levels in
the face of user neutrality or happiness. Thereby, the online
personalisation method operates as expected. For instance,
Figure 3a reveals that the challenge level for the cannons
chunk (Figure 3f) is initially increased because of high neu-
tral levels. However, later in the game, high anger levels
cause a drop in the challenge level. When lastly the angry
emotion disappears, the challenge level becomes stable as
well. Furthermore, in Figure 3b we observe that the online
personalisation method appears stable in the face of classifica-
tion noise. That is, after approximately 1000 classified frames,
the human player suddenly expresses a ‘mix’ of emotions;
denoting, in practise, that the player is talking or moving
too much. As expected, the associated challenge level (see
Figure 3a) remains stable in the face of this noise from the
facial expression classifier.

Online personalisation – Pairwise tests

In this experiment, we investigate how human participants
experience the personalised game under actual game playing
conditions, in comparison with a realistic (baseline) static
game.1 To this end, in accordance with procedures employed
by Shaker et al. 2011, we query for pairwise preferences (i.e.,
“is system A preferred over system B?”), a methodology with
numerous advantages over rating-based questionnaires (e.g.,
no significant order of reporting effects) (Yannakakis and
Hallam 2011). We perform pairwise tests of a static system
s, with a fixed difficulty level, and a personalised system p.
The experiment follows a within-subjects design composed
of two randomised conditions (first s then p, or inversely),
each condition consisting of a series of three sequentially
performed pairwise tests, in randomized order. A pairwise
test compares the static system vs. the personalised system,
both starting at one of the three available challenge levels
(easy, normal, or hard).

The experiment is performed by ten human participants.
To minimise user fatigue impacting the experimental results,
each of the three game-playing session is ended after a maxi-
mum of 4 level segments (i.e., approximately three minutes
of play). After completing a pair of two games, we query
the participants’s preference through a 4-alternative forced
choice (4-AFC) questionnaire protocol (e.g., s is preferred
to p, p is preferred to s, both are preferred equally, neither is
preferred; both are equally unpreferred). The question pre-

1The static levels are built from chunks of a predetermined chal-
lenge level, in random order of occurrence for each new segment,
so as to ensure variation and playability. Given this randomisation,
the experimental trials are sufficiently short to prevent players from
easily noticing possible chunk repetitions.

Table 1: Pairwise preferences of participants, per initial chal-
lenge level. The legenda is a follows, ‘P’ indicates a prefer-
ence for the personalised system, ‘S’ indicates a preference
for the static system, ‘B’ indicates that both are preferred
equally, and ‘N’ indicates that neither is preferred; both are
equally unpreferred.

Participant Easy Normal Hard

1 P P S
2 P P N
3 S P P
4 P P N
5 P P P
6 P P S
7 P S S
8 S S N
9 P S P
10 S P P

Totals 70% P 70% P 40% P

30% S 30% S 30% S
0% B 0% B 0% B
0% N 0% N 30% N

sented to the participant is: “For which game did you find the
challenge level more appropriate?”.

Table 1 lists the pairwise preferences as reported by the hu-
man participants. The results reveals that when both gaming
systems are set to an initial challenge level of ‘easy’, a signif-
icant majority (p = 0.037) of human participants prefers the
personalised system over the static system (70% over 30%).
Furthermore, we observe that when both gaming systems
are set to an initial challenge level of ‘normal’, a significant
majority (p = 0.037) of human participants prefers the per-
sonalised system over the static system (also 70% over 30%).
When both gaming systems are set to an initial challenge
level of ‘hard’, a narrow majority 40% of the human partici-
pants prefers the personalised system over the static system
(30%), with the remaining 30% of the participants preferring
neither; both are equally unpreferred.

From these results we may conclude that, generally, a ma-
jority of human participants prefers the personalised system
over the static system. In the case the initial challenge level
is ‘easy’ or ‘normal’, it concerns a significant majority. In the
case the initial challenge level is ‘hard’, it concerns a narrow
majority. A discussion on this latter phenomenon is provided
next.

Discussion

The pairwise tests revealed that when a gaming system was
initialised with a ‘hard’ challenge level, 30% of the partici-
pants preferred neither the static nor the personalised gaming
system; both were equally unpreferred. Our data shows that
these participants abandoned both the personalised and the
static system, presumably because the employed challenge
level was consistently too hard. While such user abandonment
might be expected in the static system, one would however
expect the personalised system to be able to adapt to these
circumstances.
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(a) Challenge parameter values (b) Facial expressions in Straight chunk (c) Facial expressions in Hills chunk

(d) Facial expressions in Tubes chunk (e) Facial expressions in Jumps chunk (f) Facial expressions in Cannons chunk

Figure 3: Pilot study. Learned challenge parameter values (Figure 3a) given the measured facial expressions per chunk (Figure 3b
– 3f).

Indeed, our personalised system generally does decrease
the challenge level when it measures the human player being
angry. However, in these particular cases, no such measure-
ments were made by the facial expression recognition SDK.
We observed that the anger (frustration) of the human partic-
ipants was not expressed in terms of facial expression, but
in terms of hand gesturing, verbal actions, or head move-
ments that prevented facial expressions from being assessed
accurately. While this characteristic of the facial expression
recognition SDK is outside of our control, we believe that
more accurately assessments on player anger can nevertheless
be obtained by simultaneously tracking additional features
such as gaze and head movement.

Conclusion

In this paper we proposed an approach for personalising the
space in which a game is played (i.e., levels) dependent on
classifications of the user’s facial expression – to the end of
tailoring the affective game experience to the individual user.
Our approach is aimed at online game personalisation (i.e.,
the game experience is personalised during actual play of
the game). A key insight of this paper is that game personali-
sation techniques can leverage novel computer vision-based
techniques to unobtrusively infer player experiences auto-
matically based on facial expression analysis. Specifically,
to the end of tailoring the affective game experience to the
individual user, in this paper we (1) leveraged the established
INSIGHT facial expression recognition SDK as a model of the
user’s affective state (Sightcorp 2014), and (2) employed this
model for guiding the online game personalisation process.

The pilot study that tested the online personalisation

method indicated that the method operates as expected – it
decreases specific challenge levels in the face of user anger,
and increases specific challenge levels in the face of user
neutrality or happiness – and appears stable in the face of
classification noise. The pairwise tests across ten human
participants revealed that a significant majority of human
participants prefers the personalised system over the static
system, except in cases when anger (frustration) of the human
participants was not expressed in terms of facial expression,
but in terms of hand gesturing, verbal actions, or head move-
ments that prevented facial expressions from being assessed
accurately. From these results, we may conclude that the de-
veloped online personalisation method provides an effective
basis for converging to an appropriate affective state for the
individual human player.

For future work we will investigate how online game per-
sonalisation dependent on a player’s facial expressions, can
be made more accurate by tracking additional features such as
gaze and head movement, and combining it with alternative
(multi-objective) feedback models.
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