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Abstract

We propose expected policy gradients (EPG), which unify stochastic policy gradients (SPG)
and deterministic policy gradients (DPG) for reinforcement learning. Inspired by expected
sarsa, EPG integrates (or sums) across actions when estimating the gradient, instead of
relying only on the action in the sampled trajectory. For continuous action spaces, we
first derive a practical result for Gaussian policies and quadratic critics and then extend
it to a universal analytical method, covering a broad class of actors and critics, including
Gaussian, exponential families, and policies with bounded support. For Gaussian policies,
we introduce an exploration method that uses covariance proportional to eH , where H is the
scaled Hessian of the critic with respect to the actions. For discrete action spaces, we derive
a variant of EPG based on softmax policies. We also establish a new general policy gradient
theorem, of which the stochastic and deterministic policy gradient theorems are special
cases. Furthermore, we prove that EPG reduces the variance of the gradient estimates
without requiring deterministic policies and with little computational overhead. Finally, we
provide an extensive experimental evaluation of EPG and show that it outperforms existing
approaches on multiple challenging control domains.

Keywords: policy gradients, exploration, bounded actions, reinforcement learning, Markov
decision process (MDP)

1. Introduction

In reinforcement learning, an agent aims to learn an optimal behavior policy from trajectories
sampled from the environment. In settings where it is feasible to explicitly represent the
policy, policy gradient methods (Sutton et al., 2000a; Peters and Schaal, 2006, 2008b; Silver
et al., 2014), which optimize policies by gradient ascent, have enjoyed great success, especially
with large or continuous action spaces. The archetypal algorithm optimizes an actor, i.e., a
policy, by following a policy gradient that is estimated using a critic, i.e., a value function.

The policy can be stochastic or deterministic, yielding stochastic policy gradients (SPG)
(Sutton et al., 2000a) or deterministic policy gradients (DPG) (Silver et al., 2014). The theory
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underpinning these methods is quite fragmented, as each approach has a separate policy
gradient theorem guaranteeing the policy gradient is unbiased under certain conditions.

Furthermore, both approaches have significant shortcomings. For SPG, variance in the
gradient estimates means that many trajectories are usually needed for learning. Since
gathering trajectories is typically expensive, there is a great need for more sample efficient
methods.

DPG’s use of deterministic policies mitigates the problem of variance in the gradient but
raises other difficulties. The theoretical support for DPG is limited since it assumes a critic
that approximates ∇aQ when in practice it approximates Q instead. In addition, DPG learns
off-policy,1 which means that, unless specifically designed otherwise, it explores in a way that
is oblivious to the reward signal. More importantly, learning off-policy necessitates designing
a suitable exploration policy, which is difficult in practice. In fact, efficient exploration in
DPG is an open problem and most applications simply use independent Gaussian noise or
the Ornstein-Uhlenbeck heuristic (Uhlenbeck and Ornstein, 1930; Lillicrap et al., 2015).

This article proposes a new approach called expected policy gradients (EPG) that unifies
policy gradients in a way that yields both theoretical and practical insights. Inspired by
expected sarsa (Sutton and Barto, 1998; van Seijen et al., 2009), the main idea is to integrate
across the action selected by the stochastic policy when estimating the gradient, instead of
relying only on the action selected during the sampled trajectory. While the idea of summing
over discrete actions and calculating analytic integrals has been proposed previously (Sutton
et al., 2000b; Bahdanau et al., 2016; Kakade, 2002) and concurrently (Asadi et al., 2017) in
some specific settings, EPG is the first method to treat the technique in a unified way for
both discrete and continuous action space on top of a single theoretical framework. The
detailed differences between EPG and these approaches are given in Section 7.7.

The contributions of this paper are threefold. First, EPG enables two general theoretical
contributions (Section 3.1): 1) a new general policy gradient theorem, of which the stochastic
and deterministic policy gradient theorems are special cases, and 2) a proof that (Section
3.2) EPG reduces the variance of the gradient estimates without requiring deterministic
policies and, for the Gaussian case, with no computational overhead over SPG. Second,
we define practical policy gradient methods. For the Gaussian case (Section 4), the EPG
solution is not only analytically tractable but also leads to a successful exploration strategy
(Section 4.2) for continuous problems, with an exploration covariance that is proportional to
eH , where H is the scaled Hessian of the critic with respect to the actions. In Section 5.5, we
derive a version of EPG for discrete control problems. We present empirical results (Section
6) confirming that this new approach to exploration substantially outperforms DPG with
Ornstein-Uhlenbeck exploration in MuJoCo continuous control tasks. Third, we provide a
way of deriving tractable EPG methods for the general case of policies coming from a certain
exponential family (Section 5) and for critics that can be reparameterized as polynomials,
thus yielding analytic EPG solutions that are tractable for a broad class of problems and
essentially making EPG a universal method. Finally, in Section 7, we relate EPG to other
RL approaches, including entropy-based methods and value gradient methods.

This paper is a revised and extended version of our AAAI conference submission (Ciosek
and Whiteson, 2018). On the theoretical side, we have added an analysis of softmax (Gibbs)

1. We show in this article that, in certain settings, off-policy DPG is equivalent to EPG, our on-policy
method.
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policies. For continuous actions, we have analyzed a more general policy class (exponential
families) and a critic class general enough to approximate any function (polynomials). We
provide an analysis of the off-policy version of EPG. We also compare EPG with methods
that adapt to the geometry of the policy space, entropy-based methods and value gradients.
In addition, we have greatly expanded the experimental section, which now includes a
comparison to reparameterized policy gradients and several ablations, in addition to results
about EPG with numerical quadrature.

2. Background

A Markov decision process (Puterman, 2014) is a tuple (S,A,Rd, p, p0, γ) where S is a
set of states, A is a set of actions (in practice either A = Rd or A is finite), Rd(a, s)
is a reward distribution (we introduce the notation R(a, s) = ERd [r | a, s] for the mean
state-action reward), p(s′ | a, s) is a transition kernel, p0 is an initial state distribution,
and γ ∈ [0, 1) is a discount factor. A policy π(a | s) is a distribution over actions given a
state. We denote trajectories as τπ = (s0, a0, r0, s1, a1, r1, . . . ), where s0 ∼ p0, at ∼ π(· | st),
st+1 ∼ p(· | st, at) and rt is the sampled reward. A policy π induces a Markov process with
transition kernel pπ(s′ | s) =

∫
a dπ(a | s)p(s′ | a, s) where we use the symbol dπ(a | s) to

denote Lebesgue integration against the measure π(a | s) where s is fixed. We assume the
induced Markov process is ergodic with a single invariant measure defined for the whole
state space. The value function is V π(s) = Eτ :s0=s [

∑∞
i=0 γiri] where actions are sampled

from π. The Q-function is Qπ(a, s) = ERd [r | a, s] + γEp(s
′|a,s) [V π(s′) | s] and the advantage

function is Aπ(a | s) = Qπ(a, s) − V π(s). An optimal policy maximizes the total return
J =

∫
s dp0(s)V π(s). Since we consider only on-policy learning with just one current policy,

we drop the π super/subscript where it is redundant.

If π is parametrized by θ, then stochastic policy gradients (SPG) (Sutton et al., 2000a;
Peters and Schaal, 2006, 2008b) perform gradient ascent on ∇θJ , the gradient of J with
respect to θ. For stochastic policies, we have

∇θJ =
∫
s dρ(s)

∫
a dπ(a | s)∇θ log π(a | s)(Qπθ(a, s) + b(s)),

where ρ is the discounted-ergodic occupancy measure, defined in the Appendix, and b(s)
is a baseline,2 which can be any function that depends on the state but not the action,
since

∫
a dπ(a | s)∇θ log π(a | s)b(s) = 0. Typically, because of ergodicity and Lemma 19 (see

Appendix), we can approximate (2) from samples from a trajectory τ of length T , giving

∇̂θJ =
∑T

t=0 γ
t∇θ log π(at | st)(Q̂(at, st) + b(st)).

Here, Q̂(at, st) is a critic, discussed below. If the policy is deterministic (we denote it π(s)),
we can use deterministic policy gradients (Silver et al., 2014) instead, so that the gradient
becomes

∇θJ =
∫
s dρ(s)∇θπ(s) [∇aQ(a, s)]a=π(s) .

2. See also the work on action-dependent baselines by Thomas and Brunskill (2017) and Wu et al. (2018).
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This update is then approximated using samples, giving the estimate

∇̂θJ =
∑T

t=0 γ
t∇θπ(s)

[
∇aQ̂(a, st)

]
a=π(st)

.

Since the policy is deterministic, the problem of exploration is addressed using an external
source of noise, typically modeled using a zero-mean Ornstein-Uhlenbeck (OU) process
(Uhlenbeck and Ornstein, 1930; Lillicrap et al., 2015) parameterized by ψ and σ and
generated as

nt ← −nt−1ψ +N (0, σI) and at ∼ π(st) + nt.

In (2) and (2), Q̂ is a critic that approximates Q and can be learned by sarsa (Rummery
and Niranjan, 1994; Sutton, 1996), using the update

Q̂(at, st)←Q̂(at, st) + α
[
rt+1 + γQ̂(st+1, at+1)− Q̂(at, st)

]
.

Alternatively, we can use expected sarsa (Sutton and Barto, 1998; van Seijen et al., 2009),
which marginalizes out at+1, the distribution over which is specified by the known policy, to
reduce the variance, using the update

Q̂(at, st)← Q̂(at, st) + α
[
rt+1 + γ

∫
a dπ(a | s)Q̂(a, st+1)− Q̂(at, st)

]
.

Instead, we could also use advantage learning (Baird et al., 1995) or LSTDQ (Lagoudakis
and Parr, 2003). This update also has the advantage that actions at sampled from a policy
different than π can be used during learning, giving an off-policy algorithm.

The theory behind policy gradient methods says that the actor follows the gradient of
the total discounted return J (Sutton et al., 2000a) and therefore finds its local maximum if
the critic’s function approximator is compatible.3

Instead of learning Q̂, we can set b(s) = −V πθ(s) so that Qπθ(a, s) + b(s) = A(a, s) and
then use the TD error δ(r, s′, s) = r+γV πθ(s′)−V πθ(s) as an estimate of A(a, s) (Bhatnagar
et al., 2008). The policy gradient estimate then becomes

∇̂θJ =
∑T

t=0 γ
t∇θ log π(at | st)(r + γV̂ (st+1)− V̂ (st)), (1)

where V̂ (s) is an approximate value function learned using any policy evaluation algorithm.
Equation (1) works because E [δ(r, s′, s) | a, s] = A(a, s), i.e., the TD error is an unbiased
estimate of the advantage function. The benefit of this approach is that it is sometimes
easier to approximate V than Q and that the return in the TD error is unprojected, i.e., it
is not distorted by function approximation. However, for stochastic MDPs, the TD error is
noisy, introducing variance in the gradient.

To cope with this variance, we can use an optimizer that adaptively reduces the learning
rate when the variance of the gradient is high, using, e.g., Adam (Kingma and Ba, 2015) or
RMSprop (Tieleman and Hinton, 2012). However, this results in slow learning when the
variance is high. We discuss other variance reduction techniques in Section 7.

3. This holds under the idealized setting where the critic is run to convergence and minimizes a weighted
L2-loss. In practice, the critic is not run until convergence and, even if it were, it is not guaranteed to
minimize the weighted L2 loss. Compatible critics are rarely used in practice.
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3. Expected Policy Gradients

In this section, we propose expected policy gradients (EPG). First, we introduce IQπ (s) to
denote the inner integral in (2), rewriting the policy gradient as

∇θJ =

∫
s
dρ(s)

∫
a
dπ(a | s)∇θ log π(a | s)(Qπθ(a, s) + b(s))︸ ︷︷ ︸

IQπ (s)

=

∫
s
dρ(s)

∫
a
dπ(a | s)∇θ log π(a | s)Qπθ(a, s)

=

∫
s
dρ(s)IQπ (s). (2)

This suggests a new way to write the approximate gradient, giving4

∇̂θJ =

T∑
t=0

γtIQ̂π (st)︸ ︷︷ ︸
gt

, where IQ̂π (s) =

∫
a
dπ(a | s)∇θ log π(a | s)Q̂(a, s).

Here, we used Lemma 19 in the Appendix to sample from ρ(s). This approach makes explicit

that one step in estimating the gradient is to evaluate an integral included in the term IQ̂π (s).

The main insight behind EPG is that, given a state, IQ̂π (s) is expressed fully in terms of
known quantities. Hence we can manipulate it analytically to obtain a formula or we can
just compute the integral using numerical quadrature if an analytical solution is impossible

(in Section 5.1 we show that this is rare). For a discrete action space, IQ̂π (st) becomes a sum
over actions (see Section 5.5 for more details).

SPG as given in (2) performs this quadrature using a simple one-sample Monte Carlo
method, using the action at ∼ π(· | st). It uses the update

IQ̂π (s) =

∫
a
dπ(a | s)∇θ log π(a | s)Q̂(a, s) ≈ ∇θ log π(at | st)(Q̂(at, st) + b(st)).

Moreover, SPG assumes that the action at used in the above estimation is the same action
that is executed in the environment. However, relying on such a method is unnecessary.
In fact, the actions used to interact with the environment need not be used at all in the
evaluation of ÎQπ (s) since a is a bound variable in the definition of IQπ (s). The motivation is
thus similar to that of expected sarsa but applied to the actor’s gradient estimate instead
of the critic’s update rule. EPG, shown in Algorithm 1, uses (3) to form a policy gradient
algorithm that repeatedly estimates ÎQπ (s) with an integration subroutine.

One of the motivations of DPG was precisely that the simple one-sample Monte-Carlo
quadrature implicitly used by SPG often yields high variance gradient estimates, even with a
good baseline. To see why, consider the setting in Figure 1, where we use the parametrization
θ = µ. On the left, a simple Monte Carlo method evaluates the integral by sampling one or
more times from π(a | s) (blue) and evaluating ∇µ log π(a | s)Qπθ(a, s) (red) as a function

4. The idea behind EPG was also independently and concurrently developed as Mean Actor Critic (Asadi
et al., 2017), though only for discrete actions and without a supporting theoretical analysis.
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Algorithm 1 Expected policy gradients
1: s← s0, t← 0
2: initialize optimizer, initialize policy π parameterized by θ
3: while not converged do
4: gt ← γt do-integral(Q̂, s, πθ) . gt is the estimated policy gradient as per (3)
5: θ ← θ + optimizer.update(gt)
6: a ∼ π(· | s)
7: s′, r ← simulator.perform-action(a)
8: Q̂.update(s, a, r, s′)
9: t← t+ 1

10: s← s′

11: end while
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Figure 1: At left, π(a | s) for a Gaussian policy with mean µ = θ = 0 at a given state and
constant σ2 (blue) and ∇θ log π(a | s)Qπθ(a, s) for Q = 1

2 + 1
2a (red). At right,

the variance of a simple single-sample Monte Carlo estimator as a function of the
baseline. In a simple multi-sample Monte Carlo method, the variance would go
down as the number of samples.

of a. A baseline can decrease the variance by adding a multiple of ∇µ log π(a | s) to the red
curve. However, whatever the baseline, substantial variance persists, even with a simple
linear Q-function, as shown in Figure 1 (right). DPG addressed this problem for deterministic
policies but EPG extends it to stochastic ones. We show in Section 5 that an analytical
EPG solution, and thus the corresponding reduction in the variance, is possible for a wide
array of critics. We also discuss the rare case where numerical quadrature is necessary in
Section 5.4.

3.1. General Policy Gradient Theorem

We begin by stating our most general result, showing that EPG can be seen as a generalization
of both SPG and DPG. To do this, we first state a new general policy gradient theorem.

Theorem 1 (General Policy Gradient Theorem)
If the value function V (s) is bounded, continuously differentiable in the policy parameters θ

6
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and measurable in s then

∇θJ =

∫
s
dρ(s)

[
∇θV πθ(s)−

∫
a
dπ(a|s)∇θQπθ(a, s)

]
︸ ︷︷ ︸

IG(s)

=

∫
s
dρ(s)IG(s).

Proof We start with the expression on the left and begin expanding. We have∫
s dρ(s)

∫
adπ(a|s)∇θQπθ(a, s)

=
∫
s dρ(s)

∫
a dπ(a|s)∇θ(R(a, s) + γ

∫
s′ dp(s

′ | a, s)V πθ(s′))

=
∫
s dρ(s)

∫
a dπ(a|s)(∇θR(a, s)︸ ︷︷ ︸

0

+γ
∫
s′ dp(s

′ | a, s)∇θV πθ(s′))

= γ
∫
s dρ(s)

∫
s′ dpπ(s′ | s)∇θV πθ(s′))

=
∫
s dρ(s)∇θV πθ(s)−

∫
s dp0(s)∇θV πθ(s)︸ ︷︷ ︸

∇θJ

=
∫
s dρ(s)∇θV πθ(s)−∇θJ.

In the above, we used the notation pπ(s′ | s) =
∫
a dπ(a | s)p(s′ | a, s). The first equality

follows by expanding the definition of Q and the penultimate one follows from Lemma 20 in
the Appendix. Then the theorem follows by rearranging terms.

The crucial benefit of Theorem 1 is that it works for all policies, both stochastic and
deterministic, unifying previously separate derivations for the two settings. To show this,
in the following two corollaries, we use Theorem 1 to recover the stochastic policy gradient
theorem (Sutton et al., 2000a) and the deterministic policy gradient theorem (Silver et al.,
2014), in each case by introducing additional assumptions to obtain a formula for IG(s)
expressible in terms of known quantities.

Corollary 2 (Stochastic Policy Gradient Theorem) If π(a | s), considered as a prob-
ability density function, is continuous in s and continuously differentiable in θ and if R(a, s)
is continuous in s and bounded then

∇θJ =
∫
s dρ(s)IG(s) =

∫
s dρ(s)

∫
a dπ(a | s)∇θ log π(a | s)Qπθ(a, s).

Proof We expand ∇θV , obtaining

∇θV = ∇θ
∫
a dπ(a|s)Qπθ(a, s) =

∫
a da(∇θπ(a|s))Qπθ(a, s) +

∫
a dπ(a|s)(∇θQπθ(a, s)). (3)

We obtain IG(s) =
∫
a dπ(a | s)∇θ log π(a | s)Qπθ(a, s) = IQπ (s) by plugging (3) into the

definition of IG(s) as given in (1). We obtain ∇θJ by invoking Theorem 1, plugging in the
above expression for IG(s) and observing that the regularity conditions on V follow from
the regularity conditions on π(· | s) and R(a, s).

7
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Corollary 3 (Deterministic Policy Gradient Theorem) If π(· | s) is a Dirac-delta
measure, and π(s) is continuously differentiable in θ and continuous in s, if R(a, s) is
continuous in s, differentiable in a and bounded and the transition kernel p(s′ | a, s) is
continuous in s and differentiable in a, then

∇θJ =
∫
s dρ(s)IG(s) =

∫
s dρ(s)∇θπ(s) [∇aQπθ(a, s)]a=π(s) .

Here, we overload the notation of π slightly. We denote by π(s) the action taken at state s,
i.e. π(s) =

∫
a adπ(a | s), where π(· | s) is the corresponding Dirac-delta measure.

Proof We begin by expanding the term for ∇θV πθ(s), which will be useful later on. We
have

∇θV πθ(s) = ∇θQ(π(s), s) = [∇θQπθ(a, s)]a=π(s) +∇θπ(s) [∇aQπθ(a, s)]a=π(s) .

The above results from applying the multivariate chain rule—observe that both π(s) and
Qπθ(a, s) depend on the policy parameters θ; hence, the dependency appears twice in
Q(π(s), s).

We proceed to obtain an expression for IG(s). We have

IG(s) = ∇θV πθ(s)−
∫
a dπ(a|s)∇θQπθ(a, s)

= ∇θV πθ(s)− [∇θQπθ(a, s)]a=π(s)

= ∇θπ(s) [∇aQπθ(a, s)]a=π(s) .

Here, the second equality follows by observing that the policy is a Dirac-delta and the third
one follows from using (3.1). We can then obtain ∇θJ by invoking Theorem 1 and plugging
in the above expression for IG(s). The regularity conditions on V follow from the regularity
conditions on π(s), R(a, s) and p(s′ | a, s).

These corollaries show that the choice between deterministic and stochastic policy
gradients is fundamentally a choice of quadrature method. Hence, the empirical success of
DPG relative to SPG (Silver et al., 2014; Lillicrap et al., 2015) can be understood in a new
light. In particular, it can be attributed, not to a fundamental limitation of stochastic policies
(indeed, stochastic policies are sometimes preferred), but instead to superior quadrature.
DPG integrates over Dirac-delta measures, which is known to be easy, while SPG typically
relies on simple Monte Carlo integration. Thanks to EPG, a deterministic approach is no
longer required to obtain a method with low variance.

3.2. Variance Analysis

In stochastic policy gradients, there are two reasons why the actor update can be inaccurate
(Gu et al., 2017). First, using an approximation in place of the original quadrature means
that the integral estimate is stochastic and has nonzero variance. In, particular, the value of
the integral ∫

a
dπ(a | s)∇θ log π(a | s)(Q̂(a, s) + b(s))

8
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is different from its one-sample Monte-Carlo approximation

∇θ log π(at | st)(Q̂(at, st) + b(st)), where at ∼ π(· | st).

Second, the learned critic value Q̂ itself can be inaccurate – if we use a neural net to learn
Q̂, it will have some approximation error, while if we use an advantage estimate as in (1),
there will be additional variance which comes from this advantage estimate.

We now prove that EPG completely eliminates the first kind of variance. In particular,
for any policy, the EPG estimator of (3) has lower variance than the SPG estimator of (2).

Lemma 4 If for all s ∈ S, the random variable ∇θ log π(a | s)Q̂(a, s) where a ∼ π(·|s) has
nonzero variance, then

Vτ
[∑∞

t=0 γ
t∇θ log π(at | st)(Q̂(at, st) + b(st))

]
> Vτ

[∑∞
t=0 γ

tIQ̂π (st)
]
.

Proof Both random variables have the same mean so we need only show that

Eτ
[(∑∞

t=0 γ
t∇θ log π(at | st)(Q̂(at, st) + b(st))

)2
]
> Eτ

[(∑∞
t=0 γ

tIQ̂π (st)
)2
]
.

We start by applying Lemma 22 to the left-hand side and setting

X = X1(st) = ∇θ log π(at | st)(Q̂(at, st) + b(st))

where at ∼ π(at|st). This shows that

Eτ
[(∑∞

t=0 γ
t∇θ log π(at | st)(Q̂(at, st) + b(st))

)2
]

is the total return of the Markov reward process (MRP)5 (p, p0, u1, γ
2), where

u1(s) = VX1(x|s) [x] +
(
EX1(x|s) [x]

)2
+ 2γEX1(x|s) [x]Ep(s′|s)

[
V πθ(s)′)

]
.

Likewise, applying Lemma 22 again to the right-hand side, instantiating X as a deterministic

random variable X2(st) = IQ̂π (st), we have that Eτ
[∑∞

t=0

(
γtIQ̂π (st)

)2
]

is the total return

of the MRP (p, p0, u2, γ
2), where

u2(s) =
(
EX2(x|s) [x]

)2
+ 2γEX2(x|s) [x]Ep(s′|s)

[
V πθ(s)′)

]
.

Note that EX1(x|s) [x] = EX2(x|s) [x] and therefore u1(s) ≥ u2(s) for all states s. Furthermore,
by assumption of the lemma, the inequality is strict. The lemma then follows by applying
Observation 23.

5. See Definition 21 in the Appendix.
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For convenience, Lemma 4 also assumes infinite length trajectories. However, this is not
a practical limitation since all policy gradient methods implicitly assume trajectories are
long enough to be modeled as infinite. Furthermore, a finite trajectory variant also holds,
though the proof is messier.

Lemma 4’s assumption is reasonable since the only way a random variable

∇θ log π(a | s) Q̂(a, s)

could have zero variance is if it were the same for all actions in the policy’s support (except
for sets of measure zero), in which case optimizing the policy would be unnecessary. Since
we know that both the estimators of (2) and (3) are unbiased,6 the estimator with lower
variance has lower MSE. Moreover, we observe that Lemma 4 holds for the case where the

computation of IQ̂π is exact. Section 5 shows that this is often possible.

4. Expected policy gradients for Gaussian Policies

EPG is particularly useful when we make the common assumption of a Gaussian policy: we
can then perform the integration analytically under reasonable conditions. We show below
(see Corollary 7) that the update to the policy mean computed by EPG is equivalent to
the DPG update. Moreover, we derive a simple formula for the covariance (see Lemma 6).
Algorithms 2 and 3 show the resulting special case of EPG, which we call Gaussian policy
gradients (GPG).

Algorithm 2 Gaussian policy gradients
1: s← s0, t← 0
2: initialize optimizer
3: while not converged do
4: gt ← γt do-integral-Gauss(Q̂, s, πθ)
5: θ ← θ + optimiser.update(gt) . policy parameters θ are updated using gradient

6: Σ
1/2
s ← get-covariance(Q̂, s, πθ) . Σ

1/2
s computed from scratch

7: a ∼ π(· | s) . π(· | s) = N(µs,Σs)
8: s′, r ← simulator.perform-action(a)
9: Q̂.update(s, a, r, s′)

10: t← t+ 1
11: s← s′

12: end while

Surprisingly, GPG is on-policy but nonetheless fully equivalent to DPG, an off-policy
method, with a particular form of exploration. Hence, GPG, by specifying the policy’s
covariance, can be seen as a derivation of an exploration strategy for DPG. In this way,
GPG addresses an important open question. As we show in Section 6, this leads to improved
performance in practice.

The computational cost of GPG is small: while it must store a Hessian matrix H(a, s) =
∇2
aQ̂(a, s), its size is only d × d, where A = Rd, which is typically small, e.g., d = 6 for

6. They provide an unbiased estimate of an integral that includes Q̂. Of course the gradient can still be
biased if Q̂ itself is biased.

10
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Algorithm 3 Gaussian integrals

1: function do-integral-Gauss(Q̂, s, πθ)

2: IQ̂π(s),µs
← (∇θµs)∇aQ̂(a = µs, s) . Use Lemma 5

3: return IQ̂π(s),µs
4: end function
5:

6: function get-covariance(Q̂, s, πθ)
7: H ← compute-Hessian(Q̂(µs, s))
8: return σ0e

cH . Use Lemma 6
9: end function

HalfCheetah, one of the MuJoCo tasks we use for our experiments in Section 6. This Hessian
is the same size as the policy’s covariance matrix, which any policy gradient must store
anyway, and should not be confused with the Hessian with respect to the parameters of
the neural network, as used with Newton’s or natural gradient methods (Peters and Schaal,
2008a; Furmston et al., 2016), which can easily have thousands of entries. Hence, GPG
obtains EPG’s variance reduction essentially for free.

4.1. Analytical Quadrature for Gaussian Policies

We now derive a lemma supporting GPG.

Lemma 5 (Gaussian Policy Gradients) For Gaussian policies, i.e. π(·|s) ∼ N (µs,Σs)

with µs and Σ
1/2
s parametrized by θ, where Σ

1/2
s is symmetric, Σ

1/2
s Σ

1/2
s = Σs and the critic

is of the form Q̂(a, s) = a>A(s)a + a>B(s) + const where A(s) is symmetric for every s,

then IQ̂π (s) = IQ̂π(s),µs
+ IQ̂

π(s),Σ
1/2
s

, where the mean and covariance components are given by

IQ̂π(s),µs
= (∇θµs)(2A(s)µ+B(s)) and

IQ̂
π(s),Σ

1/2
s

= (∇θΣ1/2
s )2A(s)Σ1/2

s . (4)

Proof

First, we observe that the critic Q̂ defined in the statement of the lemma does not depend
on the policy parameters θ because Q̂ is an approximation to the Q-function maintained by
the algorithm, as opposed to the true Q-function, which is defined with respect to the policy
and does depend on it.

We can hence move the differentiation outside of the integral, obtaining

IQ̂π (s) = ∇θ
∫
a
π(a|s)Q̂(a, s)da = ∇θEπ

[
Q̂(a, s)

]
.

11



Ciosek and Whiteson

We now expand the expectation using the expression Eπ
[
Q̂(a, s)

]
= trace(A(s)Σ) +

µ>A(s)µ+B(s)>µ for the expectation of a quadratic form. This yields the derivatives

∇Σ1/2Eπ [Q(a, s)] = ∇Σ1/2(trace(A(s)Σ) + µ>A(s)µ+B(s)>µ) = 2A(s)Σ1/2 and

∇µEπ
[
Q̂(a, s)

]
= ∇µ(trace(A(s)Σ) + µ>A(s)µ+B(s)>µ) = 2A(s)µ+B(s).

We now obtain the result by applying the chain rule, giving

IQ̂π (s) = IQ̂π(s),µs
+ IQ̂

π(s),Σ
1/2
s

= (∇θµ)(2A(s)µ+B(s)) + (∇θΣ1/2)(2A(s)Σ1/2).

While Lemma 5 requires the critic to be quadratic in the actions, this assumption is not
very restrictive since the coefficients B(s) and A(s) can be arbitrary continuous functions of
the state, e.g., a neural network.

4.2. Exploration using the Hessian

Equation (4) suggests that we can include the covariance in the actor network and learn it
along with the mean, using the update rule

Σ1/2
s ← Σ1/2

s + αH(s)Σ1/2
s .

In practice, this update has two disadvantages. First, our policy network must include
outputs for the covariance. Second, we must constrain our covariance matrix to be positive
semi-definite, which is not trivial in a deep learning setup without influencing the gradient
norm in a way that slows learning. Instead, we sidestep the issue by not performing
incremental covariance updates at all. Instead, we analytically compute the matrix that
would have been obtained if we ran the update (4.2) for long enough.

The following lemma derives the covariance from scratch at each iteration by analytically
computing the result of applying (4.2) infinitely many times.

Lemma 6 (Exploration Limit) For any fixed total number of iterations n and the same
constant learning rate α = 1/n applied at every iteration, the iterative procedure defined by

(4.2) applied n times yields (Σ
1/2
s )n+1 = U(I + 1

nΛ)nU>σ0. Moreover, the limit as n→∞,

is Σ
1/2
s ∝ eH(s).

Proof First, let n be fixed. Consider the sequence (Σ
1/2
s )1 = σ0I, (Σ

1/2
s )n = (Σ

1/2
s )n−1 +

1
nH(s)(Σ

1/2
s )n−1. We diagonalize the Hessian as H(s) = UΛU> for some orthonormal matrix

U and obtain the following expression for the n-th element of the sequence

(Σ1/2
s )n+1 =

(
I +

1

n
H(s)

)n
σ0 = U

(
I +

1

n
Λ

)n
U>σ0.

We now let n→∞. Since we have limn→∞(1 + 1
nλ)n = eλ for each eigenvalue of the Hessian,

we obtain the identity

lim
n→∞

U

(
I +

1

n
Λ

)n
U>σ0 = σ0e

H(s).

12
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The practical implication of Lemma 6 is that, in a policy gradient method, it is justified7

to use Gaussian exploration with covariance proportional to ecH for some reward scaling
constant c, as in

Σ = σ0e
H = σ0Ue

ΛU> where H(s) = UΛU>.

Thus, by exploring with (scaled) covariance ecH , we obtain a critic-driven alternative to the
Ornstein-Uhlenbeck heuristic of (2). Our results below show that it also performs much
better in practice.

In order to show that exponentiating the eigenvalues is really necessary, we also imple-
mented a simpler version, which we call 1-step EPG. It approximates the matrix exponential
as

σ0e
H ≈ σ0U max(1 + Λ, 0)U> where H(s) = UΛU>.

Here, the max operator applies to each entry in the diagonal matrix separately. This process
corresponds to truncating the Taylor series of an exponential function after the linear term
and then constraining the eigenvalues to be positive. It can also be interpreted as performing
just one iteration of (4.2), starting with initial covariance σ0I.

Lemma 6 has an intuitive interpretation. If H(s) has a large positive eigenvalue λ, then
Q̂(·, s) has a sharp minimum along the corresponding eigenvector, and the corresponding
eigenvalue of Σ1/2 is eλ, i.e., also large. This is easiest to see with a one-dimensional action
space, where the Hessian and its only eigenvalue are scalar. The exploration mechanism in
the one-dimensional case is illustrated in Figure 2. If λ is positive, we have a minimum and
apply exploration noise. If, on the other hand, λ is negative, then Q̂(·, s) has a maximum
and so eλ is small, leading to a policy that does not deviate too much from the existing
maximum.

In the multi-dimensional case, the critic can have saddle points, as shown in Figure
3. For the case shown in the figure, we explore little along the blue eigenvector (since
the intersection of Q(·, s) with the blue plane shows a maximum) and much more along
the red eigenvector (since the intersection of Q(·, s) with the red plane shows a minimum,
which we want to escape). In essence, we apply the one-dimensional reasoning shown in
Figure 2 to each plane separately, where the planes are spanned by the corresponding
eigenvector and the z-axis. This way, we can escape saddle points and minima.8 In practice,
we show experimentally that good performance is obtained if we consider quadratic functions
constrained to have a diagonal Hessian, i.e., where eigenvectors are axis-aligned.
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eigenvalue increases

sharp maximum, sharp minimum,moderate exploration
very little exploration lots of exploration

Figure 2: The parabolas show different possible curvatures of the critic Q̂(·, s). We set
exploration to be the strongest for sharp mimima, on the left side of the figure.
The exploration strength then increases as we move towards the right. There is
almost no exploration to the far left, where we have a sharp maximum.

Q(·, s)

u1

u2

Figure 3: In multi-dimensional action spaces, the critic Q̂(·, s) can have saddle points. In
this case, we define exploration along each eigenvector separately.

4.3. Behavior of Policy Gradients across Optimization Time

To provide additional intuition about Lemma 6, we now analyze how Gaussian Policy
Gradients behave across optimization time. Consider a simple bandit task shown in Figure
4a, where there is only one state and the critic is defined by Q̂(a) = −a2. Applying equation
(4), we have that, as the policy gradient update is applied again and again, the variance
evolves according to the equation σ̇ = −σ. Assuming the initial value of σ is 1, the standard
deviation at time t is given by e−t. In this equation, t is optimization time, which is external
to the bandit problem.

7. Lemma 6 relies crucially on the use of special constant step sizes that diminish as we consider longer and
longer trajectories. This step sequence serves as a useful intermediate stage between simply taking one
PG step of (4.2) and using conventional step sizes, which would mean that the covariance would either
converge to zero or diverge to infinity.

8. Of course the optimization is still local and there is no guarantee of finding a global optimum—we can
merely increase our chances.
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(b) Policy variance as a function of optimization time.

Figure 4: Policy Gradient on a bandit problem across optimization time.

Figure 4b plots the standard deviation as a function of optimization time. The plot
confirms the intuition that policy gradient algorithms try to find the policy with the maximum
expected value of Q̂. In particular, σ2 decays to zero because the critic Q̂ has one maximum
a = 0, where the optimal policy puts all the probability mass. This is also consistent with
Lemma 6, which corresponds to fixing t = 1.

4.4. Action Clipping

We now describe how GPG works in environments where the action space has bounded
support9. This setting occurs frequently in practice, since real-world systems often have
physical constraints such as a bound on how fast a robot arm can accelerate. The typical
solution to this problem is simply to start with a policy πb with unbounded support and
then, when an action is to be taken, clip it to the desired range, so that sampling an action

a ∼ π(a | s) is equivalent to a = max(min(b, 1), 0) with b ∼ πb(b | s).

The justification for this process is that we can simply treat the clipping operation
max(min(b, 1), 0) as part of the environment specification. Formally, this means that
we transform the original MDP M defined as M = (S,A,Rd, p, p0, γ) with A = [0, 1]d into
another MDP M ′ = (S,A′, R′d, p

′, p0, γ), where A′ = Rd and p′ and R′d are defined as

p′(s′|b, s) = p
(
s′|max(min(b, 1), 0), s

)
and R′d(r|b, s) = Rd

(
r|max(min(b, 1), 0), s

)
.

Since M ′ has an unbounded action space, we can use the RL machinery for unbounded
actions to solve it. Since any MDP is guaranteed to have an optimal deterministic policy,
we call this deterministic solution π?D : S → A. Now, π?D can be transformed into a policy
for M of the form max(min(π?D(s), 1), 0). In practice, the MDP M ′ is never constructed
explicitly—the described process in equivalent to using an RL algorithm meant for A = Rd
and then, when the action is generated, simply clipping it (Algorithm 4).

However, while such an algorithm does not introduce new bias in the sense that reward
obtained in M and M ′ will be the same, it can lead to problems with slow convergence in
the policy gradient settings. To see why, consider the one-dimensional example in Figure

9. We assume without loss of generality that the support interval is [0, 1].
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Algorithm 4 Policy gradients with clipped actions.
1: s← s0, t← 0
2: initialize optimizer, initialize policy π parameterized by θ
3: while not converged do
4: gt ← γt do-integral(Q̂b, s, πθ)
5: θ ← θ + optimizer.update(gt)
6: b ∼ π(· | s)
7: a = c(b) . Clipping function c(b) = max(min(π?D(s), 1), 0).
8: s′, r ← simulator.perform-action(a)
9: Q̂b.update(s, b, r, s′) . Update using the unclipped action b.

10: t← t+ 1
11: s← s′

12: end while

g(b)

b

π

{b : g′(b) 6= 0}
b2b1bL

Figure 5: Vanishing gradients when using hard clipping. The agent cannot determine
whether b is too small or too large from b1 and b2 alone. It is necessary to sample
from the interval {b : g′(b) 6= 0} in order to obtain a meaningful policy update
but this is unlikely for the current policy (shown as the red curve).

5, where the policy mean is located far away from the clipping boundary. This can arise
due to a combination of random initialization of the policy network and generalization error
across states.

With hard clipping, the agent cannot distinguish between b1 and b2 since squashing
reduces them both to the same value, i.e., g(b1) = g(b2). Hence, the corresponding Q values
are identical and, based on trajectories using b1 and b2, there is no way of knowing how the
mean of the policy should be adjusted. In order to get a useful gradient that moves the
distribution into the interval [0, bL], a sample b? < bL has to be chosen. Since the b’s are
samples from a Gaussian with infinite support, it will eventually happen, yielding a nonzero
gradient. However, if this interval falls into a distant part of the tail of πb, convergence will
be slow.

GPG mitigates this problem because it always explores with standard deviation σ0 in
the flat region. This is shown in Figure 6. For actions b > bL, the critic is constant. Since a
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g(b)

b
{b : g′(b) 6= 0}

bL

Figure 6: GPG avoids the vanishing gradient problem. Once a policy with a small variance
(denoted in red) enters the flat area where b > bL, exploration noise is set to σ0

(the new distribution is in blue).

constant critic has a zero Hessian, the standard deviation of the policy is set to σ0e
0 = σ0,

which makes it likely that a point b < bL is sampled and a useful gradient is obtained for
typical values of σ0. In contrast, consider the case where stochastic policy gradients were
used to tune the standard deviation. It follows from setting A(s) = 0 in (4)) that for SPG,
the policy gradient would be zero in expectation. Then, if the policy standard deviation is
initialized to a small value, it likely to to remain stuck and take prohibitively long to leave
the plateau. Another way of mitigating the hard clipping problem is to use a differentiable
squashing function, which we describe in Section 5.

4.5. Quadratic Critics and their Approximations

Gaussian policy gradients require a quadratic critic given the state. This assumption, which
is different from assuming a quadratic dependency on the state, is typically sufficient for two
reasons. First, discrete-time linear quadratic regulators (LQR) with time-varying feedback, a
class of problems widely studied in classical control10 theory, are known to have a Q-function
that is quadratic in the action vector given the state (Bradtke 1993, Equation 1; ten Hagen,
S.H.G. et al. 1998, Equation 10; Peters et al. 2003; Crassidis and Junkins 2011, Equation
8.81). Second, it is often assumed (Li and Todorov, 2004) that a quadratic critic (or a
quadratic approximation to a general critic) is enough to capture enough local structure
to perform a policy optimization step, in much the same way as Newton’s method for
deterministic unconstrained optimization, which locally approximates a function with a
quadratic, can be used to optimize a non-quadratic function across several iterations. In
Corollary 7 below, we describe such an approximation method applied to GPG where we
approximate Q with a quadratic function in the neighborhood of the policy mean.

Corollary 7 (Approximate Gaussian Policy Gradients with Arbitrary Critic)

If the policy is Gaussian, i.e. π(·|s) ∼ N (µs,Σ
1/2
s ) with µs and Σ

1/2
s parameterized by θ

as in Lemma 5 and any critic Q̂(a, s) doubly differentiable with respect to actions for each

10. Indeed, the Hessian discussed in Section 4.2 can be considered a type of reward model.
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state, then IQ̂π(s),µs
≈ (∇θµs)∇aQ̂(a = µs, s) and IQ̂

π(s),Σ
1/2
s

≈ (∇θΣ
1/2
s )H(µs, s)Σ

1/2
s , where

H(µs, s) is the Hessian of Q̂ with respect to a, evaluated at µs for a fixed s.

Proof We begin by approximating the critic (for a given s) using the first two terms of the
Taylor expansion of Q̂ in µs. This allows us to approximate the critic as

Q̂(a, s) ≈ Q̂(µs, s) + (a− µs)>
[
∇aQ̂(a, s)

]
a=µs

+ 1
2(a− µs)>H(µs, s)(a− µs)

= 1
2a
>H(µs, s)a+ a>

([
∇aQ̂(a, s)

]
a=µs

−H(µs, s)µs

)
+ consts.

We used the notation consts to denote a term constant in the action (but dependent on the
state). Because of the series truncation, the function on the right-hand side is quadratic and
we can then use Lemma 5, obtaining

IQ̂π(s),µs
= ∇θµs(21

2H(µs, s)µs +
[
∇aQ̂(a, s)

]
a=µs

−H(µs, s)µs)

= ∇θµs
[
∇aQ̂(a, s)

]
a=µs

, and

IQ̂
π(s),Σ

1/2
s

= ∇
Σ

1/2
s

(21
2H(µs, s)Σ

1/2
s ) = ∇

Σ
1/2
s
H(µs, s)Σ

1/2
s .

To actually obtain the Hessian, we could use automatic differentiation to compute it
analytically. Sometimes this may not be possible—for example when ReLU units are used,
the Hessian is always zero or undefined. In these cases, we can approximate the Hessian
by generating a number of random action-values around µs, computing the Q̂ values, and
(locally) fitting a quadratic, akin to sigma-point methods in control (Roth et al., 2016).

5. Universal Expected Policy Gradients

Having covered the most common case of continuous Gaussian policies, we now extend
the analysis to other policy classes. We provide two cases of such results in the following
sections: exponential family policies with multivariate polynomial critics (of arbitrary order)
and arbitrary policies (possessing a mean) with linear critics. Our main claim is that an
analytic solution to the EPG integral is possible for almost any system; hence we describe
EPG as a universal method.11

5.1. Exponential Family Policies and Polynomial Critics

We now describe a general technique to obtain analytic EPG updates for the case when
the policy belongs to a certain exponential family and the critic is an arbitrary polynomial.

11. Of course no method can be truly universal for a completely arbitrary problem. Our claim is that EPG is
universal for the class of systems arising from lemmas in this section. However, this class is so broad
that we feel the term ‘universal‘ is justified. This is similar to the claim that neural networks based on
sigmoid nonlinearities are universal, even though then can only approximate continuous functions, as
opposed to completely arbitrary ones.
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This result is significant since polynomials can approximate any continuous function on a
bounded interval with arbitrary accuracy (Weierstrass, 1885; Stone, 1948). Since our result
holds for a nontrivial class of distributions in the exponential family, it implies that analytic
solutions for EPG can almost always be obtained in practice and hence that the Monte
Carlo sampling to estimate the inner integral that is typical in SPG is not necessary in many
cases.

Lemma 8 (EPG for Exponential Families w. Polynomial Sufficient Statistics)
Consider the class of policies parameterized by θ defined by the formula

π(a | s) = e
(ηsθ)>T s(a)−Us

ηs
θ

+W s(a)
,

where each entry in the vector T s(a) is a (possibly multivariate) polynomial in the entries of
the vector a. Moreover, assume that the critic Q̂(a, s) is (a possibly multivariate) polynomial
in the entries of a. Then, the policy gradient update is a closed form expression in terms of
the uncentered moments of π(· | s) and can be written as

IQπ (s) = (∇θ(ηsθ)>)((CsTQ)>mπ)− (∇θU sηsθ)((C
s
Q)>mπ),

where CsQ is the vector containing the coefficients of the polynomial Q̂(·, s), CsTQ is the vector

containing the coefficients of the polynomial T s(a)Q̂(a, s), i.e., a multiplication of T s and
Q̂(a, s). Moreover, mπ is a vector of uncentered moments of π (in the order matching the
polynomials).

The lemma is proved in the Appendix. The cross-moments themselves can be obtained
from the moment generating function (MGF) of π. Indeed, for a distribution of the form of
(8), the MGF of T s(a) is guaranteed to exist and has a closed form (Bickel and Doksum,
2006). Hence, the computation of the moments reduces to the computation of derivatives.
See details in Appendix A.3.

In Lemma 8, the assumption that T s and Q̂(a, s) are polynomial is with respect to the
action a. The dependence on the state can be arbitrary, e.g., a multi-layered neural network.

Of course, while polynomials are universal approximators, they may not be the most
efficient or stable ones. The importance of Lemma 8 is currently mainly conceptual—analytic
EPG is possible for a universal class of approximators (polynomials) which shows that EPG
is analytically tractable in principle for any continuous Q-function.12 It is an open research
question whether more suitable universal approximators admitting analytic EPG solutions
can be identified.

5.2. Reparameterized Exponential Families and Reparameterized Critics

In Lemma 8, we assumed that the function T s(a) (called the sufficient statistic of the
exponential family) is polynomial. We now relax this assumption. Our approach is to start

12. The universality of polynomials holds only for bounded intervals (Weierstrass, 1885), while the support
of the policy may be unbounded. We do not address the unbounded approximation case here other than
by saying that, in practice, the critic is learned from samples and is thus typically only accurate on a
bounded interval anyway.

19



Ciosek and Whiteson

with a policy πb which does have a polynomial sufficient statistic and then introduce a
suitable reparameterization function g : Rd → A. The policy is then defined so that sampling
an action

a ∼ π(a | s) is equivalent to a = g(b) with b ∼ πb(b | s) = e
(ηsθ)>T s(b)−Us

ηs
θ

+W s(b)
,

where b is the random variable representing the action before the squashing. Assuming that
g−1 exists and the Jacobian13 Jbθg is non-singular almost everywhere, the PDF14 of the
policy π can be written as

π(a | s) = πb(g
−1(a) | s) 1

det Jbθg(g−1(a))
= πb(b | s)

1

det Jbθg(b)
.

The following lemma develops an EPG method for such policies.

Lemma 9 Consider an invertible and differentiable function g. Define a policy π as in (5.2).
Assume that the Jacobian of g is non-singular except on a set of πb-measure zero. Consider
a critic Q̂. Denote as Q̂b a reparameterized critic such that for all a, Q̂b(g

−1(a), s) = Q̂(a, s).

Then the policy gradient update is given by the formula IQ̂π (s) = IQ̂bπb (s).

We are now ready to state our universality result. The idea is to obtain a reparameterized
version of EPG (and Lemma 8) by reparametrizing the critic and the policy using the same
transformation g. We do so in the following corollary, which is the most general constructive
result in this article.

Corollary 10 (EPG for Exponential Families with Reparametrization)
Consider the class of policies, parameterized by θ, defined as in (8). Consider reparametriza-
tion function g and define T sb , V s

b and Q̂sb as T sb (g−1(a)) = T s(a), W s
b (g−1(a)) = W s(a) and

Q̂b(g
−1(a), s) = Q̂(a, s) for every a. Assume the following:

1. g is invertible;

2. The Jacobian of g exists and is non-singular except on a set of πb-measure zero, where
πb is the reparameterized policy as in (5.2); and

3. T sb and Q̂sb are polynomial as in Lemma 8.

Then a closed-form policy gradient update can be obtained as

IQ̂π (s) = (∇θη>θ )((CsTbQb)
>ms

πb
)− (∇θU sηθ)((C

s
Qb

)>ms
πb

).

Proof Apply Lemmas 9 and then 8.

Lemma 9 also has a practical application in case we want to deal with bounded action
spaces. As we discussed in Section 4.4, hard clipping can cause the problem of vanishing
gradients and the default solution should be to use GPG. In case we can’t use GPG, for

13. We avoid the standard Jacobian notation J because it is too similar to the total RL return J .
14. We abuse notation slightly by using π(a | s) for both the probability distribution and its PDF.
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instance when the dimensionality of the action space is so large that computing the covariance
of the policy is too costly, we can alleviate the vanishing gradients problem by using a
strictly monotonic squashing function g. One implication of Lemma 9 is that, if we set πb
to be Gaussian, we can invoke Lemma 5 to obtain exact analytic updates for useful policy
classes such as Log-Normal and Logit-Normal (obtained by setting g to the sigmoid and
the exponential function respectively), as long as we choose our critic Q̂s to be quadratic
in g−1(a), i.e., Q̂sb is quadratic in b. The reparameterized version of EPG is the same as
Algorithm 4 except it uses a squashing function g instead of the clipping function c.

5.3. Arbitrary Policies and Linear Critics

Next, we consider the case where the stochastic policy is almost completely arbitrary, i.e., it
only has to possess a mean and need not even be in the already general exponential family
of policies used in Lemma 8 and Corollary 10, but the critic is constrained to be linear in
the actions. We have the following lemma, which is a slight modification of an observation
made in connection with the Q-Prop algorithm (Gu et al., 2016a, Eq. 7).

Lemma 11 (EPG for Arbitrary Stochastic Policies and Linear Critics)
Consider an arbitrary (non-degenerate) probability distribution π(· | s) which has a mean.
Assume that the critic Q̂(a, s) is of the form A>s a for some coefficient vector As. Then the

policy gradient update is given by IQ̂π (s) = A>s ∇θµπ(·|s) where µπ(·|s) denotes the integral∫
a adπ(a | s) (the mean).

Proof The lemma is proven by rewriting the policy gradient update as

IQπ (s) =

∫
a
∇θπ(a | s)Q̂(a, s)da =

∫
a
∇θπ(a | s)A>s ada

= A>s ∇θ
∫
a
π(a | s)ada︸ ︷︷ ︸
µπ(·|s)

= A>s ∇θ(µπ(·|s)).

Since DPG already provides the same result for Dirac-delta policies (see Corollary 3), we
conclude that using linear critics means we can have an analytic solution for any reasonable
policy class.

To see why the above lemma is useful, first consider systems that arise as a discretization
of continuous time systems with a fine enough time scale and differentiable dynamics and
rewards. If we assume that the true Q is smooth in the actions and that the magnitude of
the allowed action goes to zero as the time step decreases, then a linear critic is sufficient
as an approximation of Q because we can approximate any smooth function with a linear
function in any sufficiently small neighborhood of a given point and then choose the time
step to be small enough so an action does not leave that neighborhood. We can then use
Lemma 11 to perform policy gradients with any policy.15

15. Of course the update derived in Lemma 11 only provides a direction in which to change the policy mean
(which means that exploration has to be performed using some other mechanism). This is because a
linear critic does not contain enough information to determine exploration.
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5.4. If All Else Fails: EPG with Numerical Quadrature

If, despite the broad framework shown in this article, an analytical solution is impossible,
we can still perform integration numerically. EPG can still be beneficial in these cases: if
the action space is low dimensional, numerical quadrature is cheap; if it is high dimensional,
it is still often worthwhile to balance the expense of simulating the system with the cost of
quadrature. Actually, even in the extreme case of expensive quadrature but cheap simulation,
the limited resources available for quadrature could still be better spent on EPG with smart
quadrature than SPG with simple Monte Carlo.

The crucial insight behind numerical EPG is that the integral given as16

IQ̂π =

∫
a
dπ(a | s)∇θ log π(a | s)Q̂(a, s) =

∫
a
dπ(a | s)∇θQ̂(π(ai), s)

only depends on two fully known quantities: the current policy π and the current approximate
critic Q̂. Therefore, we can use any standard numerical integration method to compute it.
For example, multi-sample Monte-Carlo quadrature for the policy gradient with respect to
the mean is given by

IQ̂π(s),µs
=

1

m

m∑
i=1

(∇θQ̂(π(ai), s)) where ai ∼ π(·|s).

The actions at which the integrand is evaluated do not have to be sampled—one can also
use a method such as the Gauss-Legendre quadrature where the abscissae are designed.

5.5. Probability Distributions over Discrete Actions and Softmax Policies

The main idea of EPG can also be applied to the setting of discrete actions. In this case,
the integral in IQπ (s) becomes a sum, and the policy gradient update takes the form

IQπ (s) =
∑
a

π(a | s)∇ log π(a | s)Q(a, s) =
∑
a

∇π(a | s)Q(a, s).

In this case, a softmax parametrization of the discrete policy, also known as a Gibbs or
Boltzmann policy, is often chosen. The following observation provides a slightly optimized
formula for the sum.

Observation 12 (Expected Policy Gradients for Discrete Softmax Policies)
If the action space is discrete, and the policy is a discrete softmax distribution, i.e., π(·|s) ∝
ehθ(·,s) for some function hθ parametrized by θ, then

IQπ (s) = (∇h)u.

Here, ∇h is a Jacobian matrix and u is a vector whose elements are defined as

{u}i = π(ai|s)
(∑

j π(aj |s)(Q(ai, s)−Q(aj , s))
)

= π(ai|s)Q(ai, s)− V (s).

16. The second expression is known as the reparameterized gradient and was introduced by Heess et al. (2015)
in the context of RL.
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Proof Denote by Z(s) the normalization factor of the policy, i.e. Z(s) =
∑

i e
hθ(ai,s) and

π(ai|s) = ehθ(ai,s)

Z(s) . First, we expand the term ∇π(ai|s) as

∇π(ai|s) =
ehθ(ai,s)

Z(s)
∇hθ(ai, s)−

ehθ(ai,s)(
∑

j e
hθ(aj ,s)∇hθ(aj , s))
Z(s)2

=

= π(ai|s)∇hθ(ai, s)− π(ai|s)
∑

j π(aj |s)∇hθ(aj , s).

We now plug this into the definition of IQπ (s), obtaining

IQπ (s) =
∑

i∇π(ai|s)Q(ai, s) =

=
(∑

i π(ai|s)∇hθ(ai, s)Q(ai, s)
)
−
(∑

j π(aj |s)∇hθ(aj , s)
)(∑

i π(ai|s)Q(ai, s)
)

=

=
(∑

i π(ai|s)∇hθ(ai, s)Q(ai, s)
)
−
(∑

i π(ai|s)∇hθ(ai, s)
)(∑

j π(aj |s)Q(aj , s)
)

=

=
∑

ij π(ai|s)π(aj |s)∇hθ(ai, s)(Q(ai, s)−Q(aj , s))

=
∑

i π(ai|s)∇hθ(ai, s)(Q(ai, s)− V (s)).

The last two lines give the desired result.

We include this observation because the required simplifications, leading to (12) may
not always be performed when using automatic differentiation software. Also, (12) makes
clear that only differences between Q-values matter, not absolute values.

To apply Observation 12 in practice, Q and V are replaced by their approximations Q̂
and V̂ respectively, similarly to the continuous case. However, the use of EPG for discrete
policies did not improve performance for a task we tried, a result we discuss in Section 6.5.

6. Experiments

While EPG has many potential uses, we focus on empirically evaluating its applications
to exploration and variance reduction in the actor. To benchmark our algorithms, we use
five continuous-action domains, modeled with the MuJoCo physics simulator (Todorov
et al., 2012): HalfCheetah-v2, InvertedPendulum-v2, Reacher2d-v2, Walker2d-v2, and
InvertedDoublePendulum-v2, as well as one discrete-action domain: Atari Pong. In Section
6.1, we evaluate the benefits of exploring using a covariance matrix that comes from the
Hessian exponential. In Section 6.2, we compare the types of quadrature typically used in
connection with policy gradients. In Section 6.3, we discuss hyperparameter tuning. In
Section 6.4, we compare EPG with proximal policy optimization (PPO) (Schulman et al.,
2017). In Section 6.5, we apply EPG to the discrete-action domain, Atari Pong.

6.1. Continuous Control: Exploration

The EPG framework can be used to derive a new policy gradient algorithm (see Algorithm
2 and Lemma 6), where the covariance of the exploration policy is obtained by either taking
the matrix exponent of the critic as given in (4.2) or its approximation, which we call 1-step
EPG, as given in (4.2). In practice, both versions of EPG differ from deep DPG (Lillicrap
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Figure 7: Learning curves (mean and 90% interval) showing exploration using EPG, 1-step
EPG and the OU noise used in DPG. Returns for Reacher-v2 are clipped at -10.
All results are obtained from 20 runs. Horizontal axis shows thousands of steps.

et al., 2015; Silver et al., 2014) only in the exploration strategy, though their theoretical
underpinnings are also different.

The Hessian is obtained using a sigma-point method, as follows. At each step, the agent
samples 100 action values from Q̂(·, s) and a quadratic is fit to them in the L2 norm. Since
this is a least-squares problem, it can be accomplished by solving a linear system. The
Hessian computation could be greatly sped up by using an approximate method, or even
skipped completely if we use a quadratic critic. However, we did not optimize this part of
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Figure 8: Learning curves (mean and 90% interval) comparing EPG with diagonal and full
Hessian. Returns for Reacher-v2 are clipped at -10. All results are obtained from
20 runs. Horizontal axis shows thousands of steps. Results for the pendulum
domains are not show since they only have one action dimension.

the algorithm since it is orthogonal to the core insight of GPG that the Hessian is useful for
exploration.

We now evaluate both EPG and 1-step EPG, as an alternative to the standard Ornstein-
Uhlenbeck (OU) exploration used by Deterministic Policy Gradients. The results in Figure 7
show that EPG’s exploration strategy yields much better performance than DPG with OU.
1-step EPG performs just well, or even slightly better than the version with the exponent.
This is not surprising – the function max(0, 1 + λ) is a good approximation of eλ in for the
range of eigenvalues seen during training.

In order to benchmark more accurately which aspects of EPG are important for perfor-
mance, we performed two additional ablations. Figure 8 compares EPG with a diagonal
version, which uses a diagonal Hessian. The diagonal Hessian is fitted using the same process
as the full Hessian, except that the local quadratic approximation is constrained so that
the off-diagonal entries are zero. The performance of diagonal EPG is similar to the full
version, showing that the critic curvature that has practical significance for exploration can
be estimated component-wise. This result is consistent with most recent work on the topic
(Haarnoja et al., 2018; Fujimoto et al., 2018).
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Figure 9: Learning curves (mean and 90% interval) showing exploration using vanilla EPG
and a variant that uses a averaged covariance (i.e. one that is constant for every
state). Returns for Reacher-v2 are clipped at -10. All results are obtained from
20 runs. Horizontal axis shows thousands of steps.

To make an even more minimal version of EPG, we tried to estimate the Hessian globally,
i.e., using the same estimate for every state. The results in Figure 9 show using such a
global Hessian is suboptimal.
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Figure 10: Learning curves (mean and 90% interval) showing learning performance when
updating the policy mean using Expected Policy Gradients with numerical
quadrature, as compared to deterministic policy gradients and stochastic policy
gradients. Returns for Reacher-v2 are clipped at -10. All results are obtained
from 20 runs. Horizontal axis shows thousands of steps.

6.2. Continuous Control: Updates for the Policy Mean

In this section, we compare different ways of updating the policy mean. We test an expected
policy gradient method based on numerical quadrature NQ(m)-EPG, which computes
estimates of the policy gradient using multiple samples of the policy gradient integral and
compare it to DPG and SPG. The quadrature is performed as in (5.4).
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Figure 11: Learning curves (mean and 90% interval) showing learning performance when
updating the policy mean using multi-sample quadrature for variants with 1,
4 and 8 samples. Quadrature with 1 sample is equivalent to reparametrized
policy gradients (RPG). Returns for Reacher-v2 are clipped at -10. All results
are obtained from 20 runs. Horizontal axis shows thousands of steps.

In order to capture the effect of the actor update only, we used OU exploration with
noise 0.2 for both NQ(m)-EPG and DPG. We used Gaussian exploration for SPG. Details
of hyperparameters are given in Appendix A.4. Our results in Figure 10 show that using
numerical quadrature as in (5.4) generally improves performance. The results in Figure
11 show that adding more samples to numerical quadrature does not change performance
much, at least for the simple type of quadrature in (5.4). This is unsurprising given that
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NQ(1)-EPG (with one sample) corresponds to Reparameterized Policy Gradients, which are
known to perform well (Haarnoja et al., 2018). To obtain a larger improvement on these
tasks one would need to use either more sophisticated quadrature or a local parametric
approximation similar to the sigma-point method in Section 6.1.

The behavior of the InvertedDoublePendulum domain, where numerical quadrature
performs significantly worse than standard deterministic policy gradient update, is interesting.
We believe this behavior is due to the task’s inherent instability – any deviation from the
true value leads to sub-optimal updates. One way of addressing this problem would be to
reduce the exploration noise. However, in order to get meaningful comparisons, we elected
to run our experiments with the same hyperparameters across tasks.

Furthermore, SPG does poorly, solving only the easiest domain (InvertedPendulum-v2)
in reasonable time, achieving slow progress on HalfCheetah-v2, and failing entirely on the
other domains. This is not surprising since DPG was introduced precisely to solve the
problem of high variance SPG estimates on this type of task. In InvertedPendulum-v2, SPG
initially learns quickly, outperforming the other methods, because noisy gradient updates
provide a crude, indirect form of exploration that happens to suit this problem. Clearly, this
is inadequate for more complex domains: even for this simple domain it leads to sub-par
performance late in learning.

6.3. Sensitivity of EPG to hyperparameters

The hyperparameters for DPG and those of EPG that are not related to exploration were
taken from an existing benchmark (Islam et al., 2017; Brockman et al., 2016). They are
detailed in Appendix A.4. Our EPG exploration technique has just one hyperparameter σ0

while OU has two (standard deviation and mean reversion constant). We optimized σ0 on
the HalfCheetah domain (Figure 12) and settled on the value σ0 = 0.5.

40 120 200 280

0
50

00 EPG (0.2)
EPG (0.5)
EPG (1.0)

Figure 12: Learning curves (mean and 90% interval) for HalfCheetah-v2 showing different
values of σ0 for EPG. All results are obtained from 20 runs. Horizontal axis
shows thousands of steps.

To ensure a fair comparison, we also optimized hyperparameters for DPG; details and
learning curves are in Appendix A.4.
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6.4. Comparison with PPO.

One feature of EPG is stability in the learning outcome, i.e., low variance across runs. EPG’s
stability raises the question whether the instability of an algorithm (i.e., an inverted or
oscillating learning curve) is caused primarily by inefficient exploration or by excessively
large differences between subsequent policies. To address this question, we compare our
results with proximal policy optimization (PPO) (Schulman et al., 2017), a policy gradient
algorithm that explicitly penalizes large differences between successive policies. The results
are shown in Figure 13, where we allowed to run PPO until its performance plateaus. On
one hand, the results show that EPG is indeed more stable (represented by a narrower
confidence interval). On the other hand, PPO performed better overall on the Walker task.
This suggests that both the stability relating to exploration and the stability relating to
changes in policy space can play a role in policy gradients. In principle, it would be possible
to achieve both kinds of stability by exploiting the curvature of the critic to obtain the
covariance of the policy while at the same time constraining the sequence of policies to be
close to one another. Due to the amount of engineering involved in tuning such an algorithm,
we leave this idea to future work.

(a) HalfCheetah-v2
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00 EPG (full)
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(b) Walker2d-v2

200 400 600 800 1000 1200
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30

00
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Figure 13: Learning curves (mean and 90% interval) showing learning performance of PPO
(using the default parameters) as compared to EPG. All results are obtained
from 20 runs. Horizontal axis shows thousands of steps.

6.5. EPG for Discrete Action Spaces

To evaluate the usefulness of Expected Policy Gradients for discrete action spaces, we applied
it to the Atari version of Pong. The results are presented in Figure 14. We used the OpenAI
version of A2C (Mnih et al., 2016) for stochastic policy gradients (labeled SPG in the plot)
as a baseline, together with the default hyperparameters of the OpenAI implementation
(Dhariwal et al., 2017). To make a discrete version of EPG, we modified the A2C critic
to also learn Q̂. We also modified the policy gradient update to EPG as in (5.5) and kept
the remaining settings of the algorithm the same. Figure 14 demonstrates that for Pong,
there is no measurable benefit from introducing a sum over actions to the policy gradient
estimate. In discrete domains like Pong, the learned critic is often inaccurate, which can be
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a much greater problem than the variance of the policy estimator. Hence, even reducing the
variance in the policy gradient estimator to zero, as EPG does, does not help performance.

Figure 14: EPG vs SPG on a discrete action domain (Atari Pong). The curves show the
mean and 90% confidence interval and were obtained by 24 runs of each algorithm.
Horizontal scale is in millions of steps.

7. Related Work

In this section, we discuss the relationship between EPG and several other methods.

7.1. Sampling Methods for SPG

EPG has some similarities with VINE sampling (Schulman et al., 2015), which uses an
(intrinsically noisy) Monte Carlo quadrature with many samples. However, there are
important differences. First, VINE relies entirely on reward rollouts and does not use an
explicit critic. This means that VINE has to perform many independent rollouts of Q(·, s)
for each s, requiring a simulator with reset. A second, related difference is that VINE uses

the same actions in the estimation of IQ̂π that it executes in the environment. While this is
necessary with purely Monte Carlo rollouts, Section 5.4 shows that there is no such need in
general if we have an explicit critic. Ultimately, the main weakness of VINE is that it is
a purely Monte Carlo method. However, the example in Figure 1 (Section 3) shows that
even with a computationally expensive many-sample Monte Carlo method, the problem of
variance in the gradient estimator remains, regardless of the baseline.

EPG is also related to variance minimization techniques that interpolate between two
estimators (Gu et al., 2016a). However, EPG uses a quadratic (not linear) critic, which is
crucial for exploration. Furthermore, it completely eliminates variance in the inner integral,
as opposed to just reducing it.

A more direct way of coping with variance in policy gradients is to simply reduce the
learning rate when the variance of the gradient would otherwise explode, using, e.g., Adam
(Kingma and Ba, 2015) or the adaptive step size method (Pirotta et al., 2013). However,
this results in slow learning when the variance is high. Another way of reducing variance is
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by defining new estimators. Parmas (2018) introduces a framework for doing that based
on a graphical representation that also allows for including model-based approaches. This
framework provides another way of generalizing the deterministic and the stochastic policy
gradient theorem by looking them as different ways of estimating the same quantity. Unlike
EPG, it does not perform analytic integration.

7.2. Sarsa and Q-Learning

It has been known since the introduction of policy gradient methods (Sutton et al., 2000a)
that they represent a kind of slow-motion policy improvement as opposed to a greedy
improvement performed by methods such as (expected) sarsa with action maximization
or Q-learning. The two main reasons for the slow-motion improvement are that a greedy
maximization operator may not be available (e.g., for continuous or large discrete action
spaces) and that a greedy step may be too large because the critic only approximates
the value function locally. The argument for a sarsa-like method is that it may converge
faster and does not need an additional optimization for the actor. Recently, approaches
combining the features of both methods have been investigated. One-step Newton’s method
for Q-functions that are quadratic in the actions has been used to produce a sarsa-like
algorithm for continuous domains (Gu et al., 2016b), previously only tractable with policy
gradient methods. For discrete action spaces, softmax Q-learning, a family of methods with
a hybrid loss combining sarsa and Q-learning, has recently been linked to policy gradients
via an entropy term (O’Donoghue et al., 2017). In this paper, GPG with Hessian-based
exploration (Section 4.2) can be seen as another kind of hybrid. Specifically, it changes the
mean of the policy slowly, similar to a vanilla policy gradient method, and computes the
covariance greedily, similar to sarsa.

7.3. DPG

The update for the policy mean obtained in Corollary 7 is the same as the DPG update,
linking the two methods

IQπ (s) = [∇aQπθ(a, s)]a=µs
∇θµs.

We now formalize the equivalences between EPG and DPG. First, any EPG method with
a linear critic (or an arbitrary critic approximated by the first term in the Taylor expansion)
is equivalent to DPG with actions from a given state s drawn from an exploration policy of
the form

a ∼ π(s) + n(a|s), where Ea∼n [a | s] = 0.

Here, the PDF of the zero-mean exploration noise n(·|s) must not depend on the policy
parameters. This fact follows directly from Lemma 11, which says that, in essence, a linear
critic only gives information on how to shift the mean of the policy and no information
about other moments. Second, on-policy GPG with a quadratic critic (or an arbitrary critic
approximated by the first two terms in the Taylor expansion) is equivalent to DPG with a
Gaussian exploration policy where the covariance is computed as in Section 4.2. This follows
from Corollary 7. Third, and most generally, for any critic at all (not necessarily quadratic),
DPG is a kind of EPG for a particular choice of quadrature (using a Dirac measure). This
follows from Theorem 1.
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Surprisingly, this means that DPG, normally considered to be off-policy, can also be seen
as on-policy when exploring with Gaussian noise defined as above for the quadratic critic or
any noise for the linear critic. Furthermore, the compatible critic for DPG (Silver et al.,
2014) is indeed linear in the actions. Hence, this relationship holds whenever DPG uses a
compatible critic.17 Furthermore, Lemma 5 lends new legitimacy to the common practice of
replacing the critic required by the DPG theory, which approximates ∇aQ, with one that
approximates Q itself, as done in SPG and EPG.

7.4. Entropy-Based Methods

On-policy SPG sometimes includes an entropy term (Peters et al., 2010) in the gradient
in order to aid exploration by making the policy more stochastic. The gradient of the
differential entropy H(s) of the policy at state s is defined as18

−∇θH(s) = ∇θ
∫
a dπ(a|s) log π(a|s)

=
∫
a da∇θπ(a|s) log π(a|s) +

∫
a dπ(a|s)∇θ log π(a|s)

=
∫
a da∇θπ(a|s) log π(a|s) +

∫
a dπ(a|s) 1

π(a|s)∇θπ(a|s)

=
∫
a da∇θπ(a|s) log π(a|s) +∇θ

∫
a dπ(a|s)︸ ︷︷ ︸

1

=
∫
a da∇θπ(a|s) log π(a|s) =

∫
a dπ(a|s)∇θ log π(a|s) log π(a|s).

Typically, we add the entropy update to the policy gradient update with a weight α, obtaining

IEG (s) = IG(s) + α∇θH(s)

=
∫
a dπ(a|s)∇θ log π(a|s)(Qπθ(a, s)− α log π(a|s)). (5)

This equation makes clear that performing entropy regularization is equivalent to using a
different critic with Q-values shifted by α log π(a|s). This holds for both EPG and SPG,
including SPG with discrete actions where the integral over actions is replaced with a
sum. This follows because adding entropy regularization to the objective of optimizing
the total discounted reward in an RL setting corresponds to shifting the reward function
by a term proportional to log π(a|s) (Neu et al., 2017; Nachum et al., 2017). Indeed, the
path consistency learning algorithm (Nachum et al., 2017) contains a formula similar to (5),
though we obtained ours independently.

Next, we derive a further specialization of (5) for the case where the parameters θ are
shared between the actor and the critic. We start with the policy gradient identity given
by (2) and replace the true critic Q with the approximate critic Q̂. Since this holds for any
stochastic policy, we choose one of the form

π(a|s) =
1

Z(s)
eQ̂(a,s), where Z(s) =

∫
a
eQ̂(a,s)da.

For the continuous case, we assume that the integral in (7.4) converges for each state. Here,
we assume that the approximate critic is parameterized by θ. Because of the form of (7.4),

17. The notion of compatibility of a critic is different for stochastic and deterministic policy gradients.
18. For discrete action spaces, the same derivation with integrals replaced by sums holds for the entropy.
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the policy is parameterized by θ as well. Now, for the policy class given by (7.4), we can
simplify the gradient update even further, obtaining

IEG (s) =
∫
a dπ(a|s)∇θ log π(a|s)(Q̂(a, s)− α log π(a|s))

=
∫
a π(a|s)∇θ log π(a|s)(Q̂(a, s)− α log eQ̂(a,s)︸ ︷︷ ︸

Q̂(a,s)

−α logZ(s))

= (1− α)
∫
a π(a|s)∇θ log π(a|s)Q̂(a, s)

= −(1− α)∇θH(s).

In the above derivation, we could drop the term logZ(s) since it does not depend on a, as
with a baseline. This shows that, in the case of sharing parameters between the critic and
the policy as above, methods such as A3C (Mnih et al., 2016), which have both an entropy
loss and a policy gradient loss, are redundant since entropy regularization does nothing
except scale the learning rate.19 Alternatively, for this shared parameterization, a policy
gradient method simply subtracts entropy from the policy. In practice, this means that
a policy gradient method with this kind of parameter sharing is quite similar to learning
the critic alone and simply acting according to the argmax of the Q values rather than
representing the policy explicitly, producing a method similar to sarsa.

Another family of entropy-based methods are soft actor-critic methods (Haarnoja et al.,
2018). They combine a policy learned with an entropy bonus similar to (5), but with α = 1
and a different critic. In particular, for stochastic policies the gradient of the soft actor loss
(Haarnoja et al., 2018, Equation 12), can be written as

Isoft
G =

∫
a dπ(a|s)∇θ log π(a|s)(Q̂soft(a, s)− log π(a|s)) =

= ∇θ
[∫

a
dπ(a|s) log π(a|s)Q̂soft(a, s)−H(s)

]
.

Here, Q̂soft is a separate critic, learned in a way analogous to the regular critic Q̂, but based
off a reward function R(a, s)soft = R(a, s) + γH(s), where the term γH(s) is an intrinsic
entropy bonus. The formula above assumes that Q̂soft is a fixed learned approximation, i.e.,
it does not depend on the policy parameters. The rationale for using such a critic is largely
orthogonal to this paper and given by Haarnoja et al. (2018). Transforming the integral
above by a change of variables, we obtain the formula

Isoft
G =

∫
ε dN(ε)∇θ log π(a|s) + (∇a log π(a|s)−∇aQsoft(a, s))∇θf(ε, s).

Here, the reparameterization function f is chosen such that the pdf of π matches the pdf of
f(ε) and ε ∼ N is sampled from the standard normal. Soft actor-critic uses a one-sample
Monte Carlo estimate of the integral above, which can be written as

Isoft
G ≈ ∇θ log π(a|s) + (∇a log π(a|s)−∇aQsoft(a, s))∇θf(ε, s),

where ε ∼ N(ε) and a = f(ε).

19. In this argument, we ignore the effects of sampling on exploration.
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7.5. Off-Policy Actor-Critic

Off-policy learning with policy gradients typically follows the framework of off-policy actor-
critic (Degris et al., 2012). Denote the behavior policy as b(a | s) and the corresponding
discounted-ergodic measure as ρb. The method uses the reweighing approximation

∇θJ =

∫
s
dρ(s)

∫
a
dπ(a | s)∇θ log π(a | s)(Qπθ(a, s))

≈
∫
s
dρb(s)

∫
a
dπ(a | s)∇θ log π(a | s)(Qπθ(a, s)). (6)

The approximation is necessary since, as the samples are generated using the policy b, it is
not known how to approximate the integral with ρ from samples, while it is easy to do so for
an integral with ρb. A natural off-policy version of EPG emerges from this approximation
(see Algorithm 5), which simply replaces the inner integral with IQπ , giving∫

s
dρb(s)

∫
a
dπ(a | s)∇θ log π(a | s)(Qπθ(a, s)) =

∫
s
dρb(s)I

Q
π (s).

Here, we use an analytic solution to IQπ (s) as before. The importance sampling term π(a|s)
b(a|s)

does not appear because, as the integral is computed analytically, there is no sampling
in IQπ (s), much less sampling with an importance correction. Of course, the algorithm
also requires an off-policy critic for which an importance sampling correction is typically
necessary. Indeed, (7.5) makes clear that off-policy actor-critic differs from SPG in two
places: the use of ρb as in (6) and the use of an importance-sampled Monte Carlo estimator,
rather than regular Monte Carlo, for the inner integral.

Algorithm 5 Off-policy expected policy gradients with reweighing approximation
1: s← s0, t← 0
2: initialize optimizer, initialize policy π parameterized by θ
3: while not converged do
4: gt ← γt do-integral(Q̂, s, πθ) . gt is the estimated policy gradient as per (3)
5: θ ← θ + optimizer.update(gt)
6: a ∼ b(·, s)
7: s′, r ← simulator.perform-action(a)
8: Q̂.update(s, a, r, s′, π, b) . Off-policy critic algorithm
9: t← t+ 1

10: s← s′

11: end while

7.6. Value Gradient Methods

Value gradient methods (Fairbank, 2014; Fairbank and Alonso, 2012; Heess et al., 2015)
assume the same parametrization of the policy as policy gradients, i.e., π is parameterized
by θ, and maximize J by recursively computing the gradient of the value function. In our
notation, the policy gradient has the following connection with the value gradient of the
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initial state

∇θJ =

∫
s0

dp0(s0)∇θV πθ(s)0.

Value gradient methods use a recursive equation that computes ∇θV πθ(s) using ∇θV πθ(s)′

where s′ is the successor state. In practice, this means that a trajectory is truncated and the
computation goes backward from the last state all the way to s0, where (7.6) is applied, so
that the resulting estimate of ∇θJ can be used to update the policy. The recursive formulae
for ∇θV πθ(s) are based on the differentiated Bellman equation

∇θV = ∇θ
∫
a
dπ(a|s)

(
R(a, s) + γ

∫
s′
p(s′|a, s)V πθ(s)′

)
.

Different value gradient methods differ in the form of the recursive update for the value
gradient obtained from (7.6). For example, stochastic value gradients (SVG) introduce a
reparameterization both of π and p(s′|a, s) i.e.

s′ ∼ p(·|a, s) ⇔ s′ = f(a, s, ξ) with ξ ∼ B1,

a ∼ π(·|s) ⇔ a = h(s, η) with η ∼ B2.

Here, we denote the base noise distributions as B1 and B2, while f and h are deterministic
functions. The function f can be thought of as an MDP transition model. SVG rewrites
(7.6) using this reparametrization, to obtain

∇θV = ∇θ
∫
η dB2(η)

(
R(s, h(s, η)) + γ

∫
s′ dB1(ξ)V (f(h(s, η), s, ξ))

)
=

=
∫
η dB2(η)

∇θR(s, h(s, η)) + γ
∫
ξ dB1(ξ)∇θV (f(h(s, η), s, ξ)︸ ︷︷ ︸

s′

)

 . (7)

Here, the quantities ∇θR(s, h(s, η)) and ∇θV (f(h(s, η), s, ξ)) can be computed by the chain
rule from the known reward model R and a transition model f . SVG learns the approximate
model f̂ , R̂, ξ̂, η̂ from samples uses a sample-based approximation to (7) to obtain the value
gradient recursion.

By contrast, we now derive a related but simpler value gradient method that does not
require a model or a reparameterized policy,20 starting with (7.6). The value gradient is
given by

∇θV πθ(s) = ∇θ
∫
a dπ(a|s)

(
R(a, s) + γ

∫
s′ p(s

′|a, s)
)

=
∫
a da∇θπ(a|s)R(a, s) + γ∇θπ(a|s)

(∫
s′ p(s

′|a, s)V πθ(s)′
)

(8)

+ π(a|s)∇θ
(∫
s′ p(s

′|a, s)V πθ(s)′
)

=
∫
a,s′ π(a|s)p(s′|a, s)

(
∇θ log π(a|s)R(a, s) (9)

+∇θV πθ(s)′ +∇θ log π(a|s)V πθ(s)′
)
. (10)

20. SVG(∞) and SVG(1) require a model and a policy reparameterization while SVG(0) requires only a
policy reparameterization. In fact, SVG(0) can be thought of as a direct analog of DPG or reparametrized
gradient methods in the value gradient setting.
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We can use random sampling to approximate (10)

∇̂θV πθ(s) ≈
(
∇θ log π(a|s)R(a, s) + ∇̂θV πθ(s)′) +∇θ log π(a|s)V̂ (s′)

)
.

Here, the pair a corresponds to the action taken at s and s′ to the successor state. This
method requires learning a critic, while SVG requires a model.

An additional connection between value gradient methods and policy gradients is that,
since the quantity IG(s) in Theorem 1 can be written as IG(s) = ∇θV πθ(s)− γ

∫
s′ dpπ(s′ |

s)∇θV πθ(s)′), we can think of this theorem as showing how to obtain a policy gradient from
a value gradient without backwards iteration.

7.7. Methods using Sums or Integrals over Actions

Several methods that involve summations over actions pre-date EPG. For discrete actions,
it was first explicitly introduced in an unrefereed draft by Sutton et al. (2000b) and
independently developed by Bahdanau et al. (2016). The same idea was also independently
developed as Mean Actor Critic (Asadi et al., 2017), concurrently with EPG. Our work
differs from these other efforts in that we treat both continuous and discrete action spaces
and analyze the algorithm in a rigorous theoretical framework. We believe this contribution
is significant because, experimentally, the performance benefit of EPG occurs for systems
with continuous action spaces.

For continuous action spaces, the idea of numerical integration over actions is first
mentioned by Kakade (2002), where a continuous Linear-Quadratic-Gaussian (LQC) control
with positive-definite quadratic critic is solved. However, this method is computationally
inefficient.21 Peters et al. (2003) suggested extending (Sutton et al., 2000b) to continuous
action spaces for linear critics. They apply quadrature to pre-compute a matrix, which can
then be used to obtain the policy gradient by matrix-vector multiplication. However, their
method crucially depends on using a linear critic. The idea of performing integration over
actions is further explored in Interpolated Policy Gradients (Gu et al., 2017). The IPG
interpolation scheme between deterministic and stochastic gradients can be viewed as a
specific type of Monte-Carlo quadrature that could be used in EPG. In addition, both the
concept of the Normalized Advantage Function control variate (Gu et al., 2017, Appendix,
Section 11.3) and the quadratic assumption in MORE/MOTO (Abdolmaleki et al., 2015;
Akrour et al., 2016) can be viewed as the special case of EPG with quadratic critics where
the Hessian is positive/negative definite.22 Bayesian Actor-Critic (Ghavamzadeh et al., 2016)
also employs a similar idea in the context of learning a critic as a Gaussian Process, where the
kernel is chosen such that the mean estimate of the actor GP roughly corresponds to choosing
a specific subset of quadratic critics with positive-definite Hessians. The advantage of EPG
is that it works with any Hessian, and we derive an explicit formula for the exploration
covariance, for which indefinite Hessians are crucial for good performance. EPG also allows
families of critics more general than quadratic functions.

21. Kakade (2002) uses a numerical quadrature ran to convergence to evaluate the policy gradient exactly. It
does not describe the exact type of quadrature used.

22. MORE (Abdolmaleki et al., 2015) does cover some cases of indefinite Hessians, but at the cost of
heuristically setting the value of a Lagrange multiplier, which may lead to constraint violations.
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After EPG was originally published, Nachum et al. (2018a) introduced a similar approach
to policy gradients, called the smoothed action-value function. Since the authors present it
as novel, we provide an explicit comparison here. First, the concept of the smoothed action
function is, up to differentiation, essentially the same as our definition of the inner integral
IG; in particular, we have the identity

IQπ (s) = ∇θQ̃π(s, µ).

Here, the expression to the right is the “smoothed action value” (Nachum et al., 2018a, Eq.
9), while the term IQπ (s) is defined in (2) of this article as well as in (Ciosek and Whiteson,
2018, Equation 9). Nachum et al. (2018a, Section 5) claim that they can handle any critic
while avoiding quadrature, as opposed to EPG which requires either numerical quadrature
or a tractable analytical form of the critic. Nachum et al. (2018a, Section 5) describe
the process of what they call “estimating an integral” as different from approximating an
integral, which is what EPG with numerical quadrature does. However, the method they
introduce for computing Q̃ given by Nachum et al. (2018a, Equation 19) in fact is a kind of
numerical quadrature. Indeed, it requires computing averages over function evaluations at a
number of what they call “phantom actions”, i.e., actions used only to compute the value of
the smoothed action-value function. These phantom actions are normally called abscissae
in the numerical integration literature. Therefore, the only substantial difference between
smoothed actor-critic (Nachum et al., 2018a) and our original work on EPG is the use of
a different kind of quadrature and the fact that performing quadrature is integrated into
the process of learning the critic – Nachum et al. (2018a) learn the integrated critic directly,
rather than learning a regular critic and then integrating over it.

7.8. Methods Using the Geometry of the Policy Space

Policy gradient methods can be improved by adjusting the policy update in a way that
respects distances in the space of probability distributions (Kakade, 2002; Amari, 1998;
Peters and Schaal, 2008a; Furmston and Barber, 2012; Furmston et al., 2016; Schulman
et al., 2015; Nachum et al., 2018b), leading to a natural gradient method. Trust Region
Policy Optimization (Schulman et al., 2015), a representative recent method in this family,
is based on an optimization problems of either the form

θ? = arg max
{θ: KL(πθ,πold)<δ}

Jθ, or

θ? = arg max
θ

(Jθ −KL (πθ, πold)) .

Here, the total discounted return J is defined as in (2) and πold is the policy from the
previous time-step. (7.8) gives the version of TRPO as implemented, while (7.8) gives a
version that comes form the theoretical analysis (Schulman et al., 2015). TRPO relies
on Monte-Carlo approximation to the policy gradient integral in the gradient of J , while
performing analytic integration in the KL term. In principle, one can combine EPG with
TRPO by computing both integrals analytically. This is done by Model-Free Trajectory
Optimization (MOTO) (Akrour et al., 2016), albeit only for critics that are both quadratic
and negative-definite. Another example is the recent work of Abdolmaleki et al. (2018),
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Policy Class Squashing Q̂ Analytic Update
Normal, a ∈ Rd none a>Asa+ a>Bs

}
I
Q
π(s),µs

= (∇θµs)(2Asµs + Bs),

I
Q

π(s),Σ
1/2
s

= (∇θΣ
1/2
s )AsΣ

1/2
s

Logit-Normal; a ∈ [0, 1]d a = expit(b) b>Asb+ b>Bs
Log-Normal; a ∈ [0,∞]d a = eb b>Asb+ b>Bs
any policy none B>s a IQπ (s) = ∇θµπ(·|s)Bs

Table 1: A summary of the most useful analytic results for expected policy gradients. For
bounded action spaces, we assume that the bounding interval is [0, 1] or [0,∞].

where the KL constraint is introduced using the RL-as-inference framework. Because the
idea of using a KL constraint is orthogonal to the main thrust of this article, we leave the
study of such hybrid algorithms to future work.

In Section 6.4, we instead compare EPG with PPO (Schulman et al., 2017), an existing
established approximation to natural gradients with good empirical performance.

8. Conclusions

This paper proposed a new framework for reasoning about policy gradient methods called
expected policy gradients (EPG) that integrates across the action selected by the stochastic
policy, thus reducing variance compared to existing stochastic policy gradient methods. We
proved a new general policy gradient theorem subsuming the stochastic and deterministic
policy gradient theorems, which covers any reasonable class of policies. We showed that
analytical results for the policy update exist and, in the most common cases, lead to
a practical algorithm (the analytic updates are summarized in Table 1). We also gave
universality results which state that, under certain broad conditions, the quadrature required
by EPG can be performed analytically. For Gaussian policies, we also developed a novel
approach to exploration that infers the exploration covariance from the Hessian of the
critic. The analysis of EPG yielded new insights about DPG and delineated the links
between the two methods. We have also described a version of EPG that works with
discrete policies. Finally, we discussed the connections between EPG and other common RL
techniques, notably sarsa, Q-learning, entropy regularization and methods taking account
of the geometry of the policy space. We performed an extensive empirical evaluation of
versions of EPG based on analytic and numerical quadrature.

Acknowledgments

This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
number 637713). Experiments performed at Oxford were made possible by a generous
equipment grant from NVIDIA. Moreover, we appreciate the comments from the JMLR
reviewers, which led to improvements in our original submission. We also thank Paavo
Parmas and Rika Antonova for helpful feedback as well as Kaiqing Zhang and Zac Chen for
pointing out typos in the original draft.

39



Ciosek and Whiteson

Appendix A.

A.1. Proofs and Detailed Definitions

First, we prove two lemmas concerning the discounted-ergodic measure ρ(s), of the Markov
chain induced by fixing a policy in an MDP. They have been implicitly realized for some
time but as far as we could find, never proved explicitly in RL literature.

Definition 13 ( Time-dependent occupancy) The time-dependent state occupancy is
defined as

p(s | t = 0) = p0(s) and

p(s′ | t = i+ 1) =

∫
s
p(s′ | s)p(s | t = i) for i ≥ 0.

Definition 14 (Truncated trajectory) We define a trajectory truncated after N steps
as τN = (s0, a0, r0, s1, a1, r1, . . . , sN ).

Observation 15 (Expectation with respect to truncated trajectory) Since τN =
(s0, s1, s2, . . . , sN ) is associated with the density

∏N−1
i=0 p(si+1 | si)p0(s0), we have

EτN
[∑N

i=0 γ
if(si)

]
=

=
∫
s0,s1,...,sN

(∏N−1
i=0 p(si+1 | si)

)
p0(s0)

(∑N
i=0 γ

if(si)
)
ds0ds1 . . . dsN =

=
∑N

i=0

∫
s0,s1,...,sN

(
p0(s0)

∏N−1
i=0 p(si+1 | si)

)
γif(si)ds0ds1 . . . dsN =

=
∑N

i=0

∫
s p(s | t = i)γif(s)ds

for any function f .

Definition 16 (Expectation with respect to infinite trajectory)
For any bounded function f , we have

Eτ

[ ∞∑
i=0

γif(si)

]
, lim

N→∞
EτN

[
N∑
i=0

γif(si)

]
.

Here, the sum on the left-hand side is part of the symbol being defined.

Observation 17 (Property of expectation with respect to infinite trajectory)
We have

Eτ
[∑∞

i=0 γ
if(si)

]
= limN→∞ EτN

[∑N
i=0 γ

if(si)
]

=

= limN→∞
∑N

i=0

∫
s p(s | t = i)γif(s)ds =

=

∞∑
i=0

∫
s
dp(s | t = i)γif(s)

for any bounded function f .
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Definition 18 (Discounted-ergodic occupancy measure ρ) We define the discounted-
ergodic occupancy measure as

ρ(s) =

∞∑
i=0

γip(s | t = i).

The measure ρ is not normalized in general. Intuitively, it can be thought of as ‘marginalizing
out’ the time in the system dynamics.

Lemma 19 (Discounted-ergodic property) For any bounded function f , we have∫
s
ρ(s)f(s) = Eτ

[ ∞∑
i=0

γif(si)

]
.

Proof We re-write the expectation as

Eτ

[ ∞∑
i=0

γif(si)

]
=
∞∑
i=0

γi
∫
s
p(s | t = i)f(s)ds =

∫
s

[ ∞∑
i=0

γip(s | t = i)

]
︸ ︷︷ ︸

ρ(s)

f(s)ds.

Here, the first equality follows from Observation 17.

This property is useful since the expression on the left can be easily manipulated while the
expression on the right can be estimated from samples using Monte Carlo.

Lemma 20 (Generalized eigenfunction property) For any bounded function f , we
have

γ

∫
s
dρ(s)

∫
s′
dp(s′ | s)f(s′) =

(∫
s
dρ(s)f(s)

)
−
(∫

s
dp0(s)f(s)

)
.

Proof We rewrite the expression in the left as

γ
∫
s dρ(s)

∫
s′ dp(s

′ | s)f(s′) = γ
∑∞

i=0 γ
i
∫
s,s′ p(s | t = i)p(s′ | s)f(s′)dsds′ =

=
∑∞

i=0 γ
i+1
∫
s′ dp(s

′ | t = i+ 1)f(s′)

=
∑∞

i=1 γ
i
∫
s′ dp(s

′ | t = i)f(s′)

=
(∑∞

i=0 γ
i
∫
s′ dp(s

′ | t = i)f(s′)
)
−
(∫
s dp0(s)f(s)

)
=
(∫
s dρ(s)f(s)

)
−
(∫
s dp0(s)f(s)

)
.

Here, the first equality follows form definition 18, the second one from definition 13. The
last equality follows again from definition 18.

Definition 21 (Markov Reward Process)
A Markov Reward Process is a tuple (p, p0, R, γ), where p(s′|s) is a transition kernel, p0 is
the distribution over initial states, R(·|s) is a reward distribution conditioned on the state
and γ is the discount constant.
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An MRP can be thought of as an MDP with a fixed policy and dynamics given by
marginalizing out the actions pπ(s′ | s) =

∫
a dπ(a | s)p(s′ | a, s). Since this paper considers

the case of one policy, we abuse notation slightly by using the same symbol τ to denote tra-
jectories including actions, i.e. (s0, a0, r0, s1, a1, r1, . . . ) and without them (s0, r0, s1, r1, . . . ).

Lemma 22 (Second Moment Bellman Equation) Consider a Markov Reward Process
(p, p0, X, γ) where p(s′ | s) is a Markov process and X(· | s) is some probability density
function.23 Denote the value function of the MRP as V . Denote the second moment function
S as

S(s) = Eτ

( ∞∑
t=0

γtxt

)2
∣∣∣∣∣∣ s0 = s

 , where xt ∼ X(· | st).

Then S is the value function of the MRP: (p, p0, u, γ
2), where u(s) is a deterministic random

variable given by

u(s) = VX(x|s) [x] +
(
EX(x|s) [x]

)2
+ 2γEX(x|s) [x]Ep(s′|s)

[
V πθ(s)′)

]
.

Proof We rewrite S(s) as

S(s) = Eτ
[(
x0 +

∑∞
t=1 γ

txt
)2 ∣∣∣ s0 = s

]
= Eτ

[
x2

0 + 2x0

(∑∞
t=1 γ

txt
)

+
(∑∞

t=1 γ
txt
)2 ∣∣∣ s0 = s

]
= Eτ

[
x2

0

∣∣ s0 = s
]

+ Eτ
[
2x0

(∑∞
t=1 γ

txt
) ∣∣ s0 = s

]︸ ︷︷ ︸
u(s)

+Eτ
[(∑∞

t=1 γ
txt
)2 ∣∣∣ s0 = s

]
︸ ︷︷ ︸

γ2Ep(s′|s)[S(s′)]

.

This is exactly the Bellman equation of the MRP (p, p0, u, γ
2). The theorem follows since

the Bellman equation uniquely determines the value function.

Observation 23 (Dominated Value Functions)
Consider two Markov Reward Processes (p, p0, X1, γ) and (p, p0, X2, γ), where p(s′ | s) is a
Markov process (common to both MRPs) and X1(s), X2(s) are some deterministic random
variables meeting the condition X1(s) ≤ X2(s) for every s. Then the value functions V1

and V2 of the respective MRPs satisfy V1(s) ≤ V2(s) for every s. Moreover, if we have that
X1(s) < X2(s) for all states, then the inequality between value functions is strict.

Proof Follows trivially by expanding the value function as a series and comparing series
elementwise.

23. Note that while X occupies a place in the definition of the MRP usually called ‘reward distribution’, we
are using the symbol X, not R since we shall apply the lemma to Xes which are constructions distinct
from the reward of the MDP we are solving.
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A.2. Proofs about Exponential Families

Lemma 8 (EPG for Exponential Families w. Polynomial Sufficient Statistics)
Consider the class of policies parameterized by θ defined by the formula

π(a | s) = e
(ηsθ)>T s(a)−Us

ηs
θ

+W s(a)
,

where each entry in the vector T s(a) is a (possibly multivariate) polynomial in the entries of
the vector a. Moreover, assume that the critic Q̂(a, s) is (a possibly multivariate) polynomial
in the entries of a. Then, the policy gradient update is a closed form expression in terms of
the uncentered moments of π(· | s) and can be written as

IQπ (s) = (∇θ(ηsθ)>)((CsTQ)>mπ)− (∇θU sηsθ)((C
s
Q)>mπ),

where CsQ is the vector containing the coefficients of the polynomial Q̂(·, s), CsTQ is the vector

containing the coefficients of the polynomial T s(a)Q̂(a, s), i.e., a multiplication of T s and
Q̂(a, s). Moreover, mπ is a vector of uncentered moments of π (in the order matching the
polynomials).

Proof We first rewrite the inner integral as an expectation, obtaining

IQ̂π (s) =

∫
A
dπ(a | s)∇θ log π(a | s)Q̂(a, s)

= Ea∼π
[
∇θ log π(a | s)Q̂(a, s)

]
= Ea∼π

[
(∇θ(η>θ T s(a)− U sηθ +W s(a)))Q̂(a, s)

]
= Ea∼π

[
(∇θη>θ )T s(a)Q̂(a, s)− (∇θU sηθ)Q̂(a, s)

]
= (∇θη>θ )Ea∼π

[
T s(a)Q̂(a, s)

]
− (∇θU sηθ)Ea∼π

[
Q̂(a, s)

]
.

Since T s(a) and Q̂(a, s) are polynomials, and the multiplication of polynomials is still
polynomial, both expectations are expectations of polynomials. To compute the second
expectation, we exploit the fact that, since Q̂(a, s) is a polynomial on a, it equals a sum of
monomial terms

Ea∼π
[
Q̂(a, s)

]
= Ea∼π

 D∑
i=1

ci

d∏
j=1

a
pi(j)
j

 =

D∑
i=1

ci Ea∼π

 d∏
j=1

a
pi(j)
j


︸ ︷︷ ︸

cross-moment of π

.

On the right, the terms Ea∼π
[∏d

j=1 a
pi(j)
j

]
(we do not explicitly denote the dependence on

s for clarity), are the uncentered (pi(1), pi(2), . . . , pi(d))-cross-moments of π. If we arrange
the coefficients ci into the vector CsQ and the cross-moments into the vector ms

π, we obtain

the right term in (8). We can apply the same reasoning to the product of T s and Q̂(·, s) to
obtain the left term.
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Lemma 9 Consider an invertible and differentiable function g. Define a policy π as in (5.2).
Assume that the Jacobian of g is non-singular except on a set of πb-measure zero. Consider
a critic Q̂. Denote as Q̂b a reparameterized critic such that for all a, Q̂b(g

−1(a), s) = Q̂(a, s).

Then the policy gradient update is given by the formula IQ̂π (s) = IQ̂bπb (s).

Proof We rewrite the policy gradient update

IQπ (s) =

∫
A
dπ(a | s)∇θ log π(a | s)Q̂(a, s)

=

∫
Rd
dπ(g(b) | s)∇θ log π(g(b) | s)Q̂(g(b), s) det Jbθg(b)

=

∫
Rd
dπb(b | s)∇θ log π(g(b) | s)Q̂b(b, s)

=

∫
Rd
dπb(b | s)(∇θ log πb(b | s)−∇θ log det Jbθg(b)︸ ︷︷ ︸

0

)Q̂b(b, s) = IQ̂bπb (s).

In the second equality, we perform the variable substitution a = g(b). In the third equality
we use (5.2) and the fact that Q̂b(g

−1(a), s) = Q̂(a, s). In the fourth equality we again use
(5.2) and the fact that log det Jbθg(b) = 0 since g is not parameterized by θ.

A.3. Computation of Moments for an Exponential Family

Consider the moment generating function of T s(a), which we denote as MT , for the expo-
nential family of the form given in equation (8), that is

MT (v) = e
Us
v+ηs

θ
−Us

ηs
θ .

It is well-known that MT is finite in a neighborhood of the origin (Bickel and Doksum, 2006),
and hence the cross moments can be obtained as

Ea∼π

 K∏
j=1

T s(a)
p(j)
j

 =
∂

∂p(1)v1, ∂p(2)v2, . . . , ∂p(K)vK
MT (v)

∣∣∣∣
v=0

.

Here, we denoted as K the size of the sufficient statistic (i.e. the length of the vector T s(a)).
However, we seek the cross-moments of a, not T s(a). If T s(a) contains a subset of indices
which correspond to the vector a, then we can simply use the corresponding indices in the
above equation. On the other hand, if this is not the case, we can introduce an extended

distribution π′(a | s) = e
(η)′>T ′(a)−Us

ηs
θ

+W s(a)
, where T ′ is a vector concatenation of T s and a.

We can then use the MGF of T ′(a), restricted to a suitable set of indices to get the moments.

A.4. Experimental Details

The exploration hyperparameters for EPG were σ0 = 0.5 and c = 1.0 where the exploration
covariance is σ0e

cH . These values were obtained using a grid search from the set {0.2, 0.5, 1}
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Shared parameters
Target network update constant τ 0.01
Size of replay buffer 1000000
Method of sampling from buffer uniform
Ignored steps at beginning of training 10000
Reward scale for

InvertedPendulum-v2 and
InvertedDoublePendulum-v2 0.1

Reward scale for other tasks 1 (no scaling)
Optimiser used for both actor and critic Adam
Learning rate 1e-3
Batch size 64
Structure of critic network hidden layers of 100, 100 neurons respectively,

ReLU nonlinearities
Structure of actor network hidden layers of 100, 50, 25 neurons respectively,

ReLU nonlinearities
Target network update constant τ 0.01

Experiment-specific parameters
DPG σ = 0.2, ψ = 0.15
EPG σ0 = 0.5
SPG σ = 0.2, fixed
NQ(m)-EPG σ = 0.2, ψ = 0.15 (OU exploration)

Table 2: List of hyperparameters

for σ0 over the HalfCheetah-v2 domain (see Figure 12). The remaining parameters were
based on previous attempts to obtain good sample efficiency for deterministic policy gradients
(Islam et al., 2017; Brockman et al., 2016). We provide a full list in Table 2.

The experiments described here extend our previous conference work (Ciosek and
Whiteson, 2018). The experiments here are not directly comparable because they were
performed on different versions of MuJoCo environment (version 2 instead of 1) and using
PyTorch (Paszke et al., 2017) rather than TensorFlow (Abadi et al., 2015), which have minor
differences in the implementation of optimisation algorithms. Despite these differences, our
new results are very similar.

For the PPO algorithm, we simply ran the PPO2 version published by OpenAI (Dhariwal
et al., 2017) with its default parameters. For the experiments with discrete action spaces we
used the hyperparameters of the A2C algorithm (Dhariwal et al., 2017).

A.5. Parameter Tuning for Deterministic Policy Gradients

The original paper the combined Deterministic Policy Gradients with deep networks used
σ = 0.2 (Lillicrap et al., 2015). To ensure a fair comparison, we tested the algorithm using
three different settings for the exploration noise σ: 0.2, 0.5 and 1. The parameter for the
memory of the OU noise was set to 15

20σ, following Lillicrap et al. (2015). On the HalfCheetah
domain (Figure 15), the performances were comparable, with the value 1 leading to the best
performance (although the difference wasn’t statistically significant). We initially wanted to
use that value. However, exploring with such a large noise leads to catastrophic failure in the

45



Ciosek and Whiteson

(a) HalfCheetah-v2

40 120 200 280

0
40

00 DPG (0.2)
DPG (0.5)
DPG (1.0)

(b) InvertedDoublePendulum-v2

25 75 125 175

0
50

00 DPG (0.2)
DPG (0.5)
DPG (1.0)

Figure 15: Learning curves (mean and 90% interval) showing the performance of Determin-
istic Policy Gradients for different values of the exploration noise. All results are
obtained from 20 runs. Horizontal axis shows thousands of steps.

InvertedDoublePendulum task. We therefore settled on the value of 0.2, which performed
reasonably on both tasks and was already widely used (Lillicrap et al., 2015).
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