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Abstract

In complex tasks, such as those with large com-
binatorial action spaces, random exploration may
be too inefficient to achieve meaningful learning
progress. In this work, we use a curriculum of
progressively growing action spaces to accelerate
learning. We assume the environment is out of
our control, but that the agent may set an internal
curriculum by initially restricting its action space.
Our approach uses off-policy reinforcement learn-
ing to estimate optimal value functions for multi-
ple action spaces simultaneously and efficiently
transfers data, value estimates, and state represen-
tations from restricted action spaces to the full
task. We show the efficacy of our approach in
proof-of-concept control tasks and on challeng-
ing large-scale StarCraft micromanagement tasks
with large, multi-agent action spaces.

1. Introduction

The value of curricula has been well established in machine
learning, reinforcement learning, and in biological systems.
When a desired behaviour is sufficiently complex, or the
environment too unforgiving, it can be intractable to learn
the behaviour from scratch through random exploration.
Instead, by “starting small” (Elman, 1993), an agent can
build skills, representations, and a dataset of meaningful
experiences that allow it to accelerate its learning. Such
curricula can drastically improve sample efficiency (Bengio
et al., 2009).

Typically, curriculum learning uses a progression of tasks or
environments. Simple tasks that provide meaningful feed-
back to random agents are used first, and some schedule
is used to introduce more challenging tasks later during
training (Graves et al., 2017). However, in many contexts
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neither the agent nor experimenter has such unimpeded con-
trol over the environment. In this work, we instead make
use of curricula that are internal to the agent, simplifying
the exploration problem without changing the environment.
In particular, we grow the size of the action space of rein-
forcement learning agents over the course of training.

At the beginning of training, our agents use a severely re-
stricted action space. This helps exploration by guiding
the agent towards rewards and meaningful experiences, and
provides low variance updates during learning. The action
space is then grown progressively. Eventually, using the
most unrestricted action space, the agents are able to find
superior policies. Each action space is a strict superset of
the more restricted ones. In many cases, it is straightforward
to identify a suitable hierarchy of action spaces that enable
efficient exploration. For example, continuous action spaces
can be discretised with increasing resolution. Curricula for
coping with the large combinatorial action spaces induced
by many agents can be obtained from the prior that nearby
agents are more likely to need to coordinate. For example,
in routing or traffic flow problems nearby agents or nodes
may wish to adopt similar local policies to alleviate global
congestion. Our curriculum learning paradigm is valuable
whenever it is possible to identify a restricted action space
in which random exploration leads to significantly more
informative experiences than random exploration in the full
action space.

We propose an approach that uses off-policy reinforcement
learning to improve sample efficiency in this type of curricu-
lum learning. Since data from exploration using a restricted
action space is still valid in the Markov Decision Processes
(MDPs) corresponding to the less restricted action spaces,
we can learn value functions in the less restricted action
space with ‘off-action-space’ data collected by exploring
in the restricted action space. In our approach, we learn
value functions corresponding to each level of restriction
simultaneously. We can use the relationships of these value
functions to each other to accelerate learning further, by
using value estimates themselves as initialisations or as
bootstrap targets for the less restricted action spaces, as well
as sharing learned state representations.

Empirically, we first demonstrate the efficacy of our ap-
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proach in two simple control tasks, in which the resolution
of discretised actions is progressively increased. We then
tackle a more challenging set of problems with combina-
torial action spaces, in the context of StarCraft microman-
agement with large numbers of agents (50-100). Given the
heuristic prior that nearby agents in a multiagent setting are
likely to need to coordinate, we use hierarchical clustering
to impose a restricted action space on the agents. Agents
in a cluster are restricted to take the same action, but we
progressively increase the number of groups that can act
independently of one another over the course of training.
Our method substantially improves sample efficiency on a
number of scenarios, outperforming learning any particu-
lar action space from scratch, a number of ablations, and
an actor-critic baseline that learns a single value function
for the behaviour policy, as in the work of Czarnecki et al.
(2018). Code is available, but redacted here for anonymity.

2. Related work

Curriculum learning has a long history, appearing at least
as early as the work of (Selfridge et al., 1985) in reinforce-
ment learning, and for the training of neural networks since
(Elman, 1993). In supervised learning, one typically has
control of the order in which data is presented to the learn-
ing algorithm. For learning with deep neural networks,
(Bengio et al., 2009) explored the use of curricula in com-
puter vision and natural language processing. Many ap-
proaches use handcrafted schedules for task curricula, but
others (Zaremba & Sutskever, 2014; Pentina et al., 2015;
Graves et al., 2017) study diagnostics that can be used to
automate the choice of task mixtures throughout training.
In a self-supervised control setting, Murali et al. (2018)
use sensitivity analysis to automatically define a curriculum
over action dimensions and prioritise their search space.

In some reinforcement learning settings, it may also be pos-
sible to control the environment so as to induce a curriculum.
With a resettable simulator, it is possible to use a sequence
of progressively more challenging initial states (Asada et al.,
1996; Florensa et al., 2017). With a procedurally generated
task, it is often possible to automatically tune the difficulty
of the environments (Tamar et al., 2016). Similar curric-
ula also appear often in hierarchical reinforcement learning,
where skills can be learned in comparatively easy settings
and then composed in more complex ways later (Singh,
1992). (Taylor et al., 2007) use more general inter-task map-
pings to transfer ()-values between tasks that do not share
state and action spaces. In adversarial settings, one may
also induce a curriculum through self-play (Tesauro, 1995;
Sukhbaatar et al., 2017, Silver et al., 2017). In this case, the
learning agents themselves define the changing part of the
environment.

A less invasive manipulation of the environment involves

altering the reward function. Such reward shaping allows
learning policies in an easier MDP, which can then be trans-
ferred to the more difficult sparse-reward task (Colombetti
& Dorigo, 1992; Ng et al., 1999). It is also possible to learn
reward shaping on simple tasks and transfer it to harder
tasks in a curriculum (Konidaris & Barto, 2006).

In contrast, learning with increasingly complex function
approximators does not require any control of the envi-
ronment. In reinforcement learning, this has often taken
the form of adaptively growing the resolution of the state
space considered by a piecewise constant discretised approx-
imation (Moore, 1994; Munos & Moore, 2002; Whiteson
et al., 2007). Stanley & Miikkulainen (2004) study contin-
ual complexification in the context of coevolution, growing
the complexity of neural network architectures through the
course of training. These works progressively increase the
capabilities of the agent, but not with respect to its available
actions.

In the context of planning on-line with a model, there are
a number of approaches that use progressive widening to
consider increasing large action spaces over the course of
search (Chaslot et al., 2008), including in planning for con-
tinuous action spaces (Couétoux et al., 2011). However,
these methods cannot directly be applied to grow the action
space in the model-free setting.

A recent related work tackling our domain is that of Czar-
necki et al. (2018), who train mixtures of two policies with
an actor-critic approach, learning a single value function
for the current mixture of policies. The mixture contains a
policy that may be harder to learn but has a higher perfor-
mance ceiling, such as a policy with a larger action space
as we consider in this work. The mixing coefficient is ini-
tialised to only support the simpler policy, and adapted via
population based training (Jaderberg et al., 2017). In con-
trast, we simultaneously learn a different value function for
each policy, and exploit the properties of the optimal value
functions to induce additional structure on our models. We
further use these properties to construct a scheme for off-
action-space learning which means our approach may be
used in an off-policy setting. Empirically, in our settings, we
find our approach to perform better and more consistently
than an actor-critic algorithm modeled after Czarnecki et al.
(2018), although we do not take on the significant additional
computational requirements of population based training in
any of our experiments.

A number of other works address the problem of general-
isation and representation for value functions with large
discrete action spaces, without explicitly addressing the re-
sulting exploration problem (Dulac-Arnold et al., 2015; Pan
et al., 2018; Van de Wiele et al., 2020). These approaches
typically rely on action representations from prior knowl-
edge. Such representations could be used in combination
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with our method to construct a hierarchy of action spaces
with which to shape exploration by curriculum learning.

3. Background

We formalise our problem as a MDP, specified by a tuple
< 8,8y, A, P,r,v >. The set of possible states and ac-
tions are given by S and A, P is the transition function
that specifies the environment dynamics, Sy is the initial
state distribution, and -y is a discount factor used to specify
the discounted return R = ZtT:O ~tr, for an episode of
length T'. We wish our agent to maximise this return in
expectation by learning a policy 7 that maps states to ac-
tions. The state-action value function (@Q)-function) is given
by Q™ = E;[R]s, a]. The optimal Q-function Q* satisfies
the Bellman optimality equation:

Q*(s,a) = TQ"(s,a) =E[r(s,a) + ymax Q*(s', a')].
(D
-learning (Watkins & Dayan, 1992) uses a sample-based
approximation of the Bellman optimality operator 7 to
iteratively improve an estimate of Q™.

QQ-learning is an off-policy method, meaning that samples
from any policy may be used to improve the value function
estimate. We use this property to engage (Q-learning for
off-action-space learning, as described in the next section.

In deep RL, the Q-function is approximated by a deep neural
network trained by stochastic gradient descent to minimise
the -learning TD-error (Mnih et al., 2015).

4. Curriculum learning with growing action
spaces

4.1. Action space hierarchies

We first introduce some notation for restricted action spaces.
In particular, for an MDP with unrestricted action space A
we define a set of IV action spaces Ay, ¢ € {0,..., N —1}.
Each action space is a subset of the next: Ay C Ay C ... C
An_1 € A. A policy restricted to actions A, is denoted
m¢(als). The optimal policy in this restricted policy class
is m; (als), and its corresponding action-value and value
functions are Q} (s, a) and V;*(s) = max, Q; (s, a).

Additionally, we define a hierarchy of actions by identifying
for every action a € Ay, ¢ > 0 a parent action parent,(a)
in the space of A,_1. Since action spaces are subsets of
larger action spaces, for all @ € A;_1,parent,(a) = a,
i.e., one child of each action is itself. Simple pieces of
domain knowledge are often sufficient to define these hier-
archies. For example, a discretised continuous action can
identify its nearest neighbour in .A,_; as a parent. In Sec-
tion 5 we describe a possible hierarchy for high-dimensional
action spaces for which each action dimension is associated

with a spatial location, such as those that arise in multi-
agent problems. One could use action-embeddings in a
latent space (Tennenholtz & Mannor, 2019) to learn such
a hierarchy from data, although we leave this direction to
future work.

4.2. Off-action-space learning

We observe that the value function for an action space A
may be updated with transitions using actions drawn from
its own action space, or any more restricted action spaces,
if we use an off-policy learning algorithm. The restricted
transitions simply form a subset of the data required to learn
the value functions of the less restricted action spaces. To
exploit this insight, we simultaneously learn an estimated
optimal value function Q% (s, a) for each action space Ay,
and use samples drawn from a behaviour policy based on a
value function for low ¢ to directly train all of the higher ¢
value functions.

At the beginning of each episode, we sample ¢ according to
some distribution (the curriculum is induced by gradually
increasing the mean of this distribution over the course of
training). The experiences generated in that episode are
used to update all of the Q% (s, a). This off-action-space
learning is a type of off-policy learning that enables efficient
exploration by restricting behaviour to the low-¢ regime. We
sample at the beginning of the episode rather than at each
timestep because, if the agent uses a high-¢ action, it may
enter a state that is inaccessible for a lower-¢ policy, and we
do not wish to force a low-£ value function to generalise to
states that are only accessible at higher ¢.

Since data from a restricted action space only supports a
subset of the state-action space relevant for the value func-
tions of less restricted action spaces, we hope that a suitable
function approximator allows useful generalisation to the
unexplored parts of the less restricted state-action space.

4.3. Value estimates

Note that:
Vi (s) < Vj*(s)Vs if 1 < J. 2)

This is because each action space is a strict subset of the
larger ones, so the agent can always in the worst case fall
back to a policy using a more restricted action space.

This monotonicity intuitively recommends an iterative de-
composition of the value estimates, in which Q}‘ 41(s,0a) s
estimated as a sum of Q’; (s, a) and some positive Ay (s, a).
This is not immediately possible due to the mismatch in
the support of each function. However, we can leverage a
hierarchical structure in the action spaces when present, as
described in Section 3. In this case we can use:

Qzﬂ(s,a) = Qz(s,parentz(a)) + Ay(s,a). 3)
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This is a task-specific upsampling of the lower-¢ value func-
tion to intialise the next value function. Both Q} (s, a) and
Ay (s, a) are learned components. We could further regu-
larise or restrict the functional form of A, to ensure the
required positivity which occurs for actions with matching
support, i.e. when parent,(a) = a. However, we did
not find this to be valuable in our experiments, and simply
initialise Ay to be small.

The property (2) also implies a modified Bellman optimality
equation:

Q7 (s,a) =E[r(s,a) + 7%13;{“5“(@:(3/7 a)] (@

The max; ., are redundant in their role as conditions on the
optimal value function ()7. However, the Bellman optimal-
ity equation also gives us the form of a (Q-learning update,
where the term in the expectation on the RHS is used as
a target towards which to move an estimate of Q*. When
these estimates are inaccurate, the modified form of the
Bellman equation may lead to different updates, allowing
the @-functions at higher ¢ to be bootstrapped from those at
lower £.

We expect that policies with low ¢ are easier to learn, and
that therefore the corresponding Q}‘ is higher value and
more accurate earlier in training than those at high ¢. These
high values could be picked up by the extra maximisation in
the modified bootstrap, and thereby rapidly learned by the
higher-¢ value functions. Empirically however, we find that
using this form for the target in our loss function performs no
better than just maximising over Q0 (s', a’). We discuss the
choice of target and these results in more detail in Section 6.

4.4. Representation

By sharing parameters between the function approximators
of each ()¢, we can learn a joint state representation, which
can then be iteratively decoded into estimates of Q* for each
£. This shared embedding can be iteratively refined by, e.g.,
additional network layers for each Q}‘ to maintain flexibility
along with transfer of useful representations. This approach
has had great success in improving the efficiency of many
multi-task solutions using deep learning (Ruder, 2017).

4.5. Curriculum scheduling

We need to choose a schedule with which to increase the
¢ used by the behaviour policy over the course of train-
ing. Czarnecki et al. (2018) use population based training
(Jaderberg et al., 2017) to choose a mixing parameter on
the fly. However, this comes at significant computational
cost, and optimises greedily for immediate performance
gains. We use a simple linear schedule on a mixing param-
eter « € [0, N]. Initially & = 0 and we always choose
¢ = 0. Later, we pick £ = |« with probability [a] — «

and ¢ = [«] with probability o — || (e.g. if @« = 1.1,
we choose ¢ = 1 with 90% chance and ¢ = 2 with 10%
chance). This worked well empirically with little effort to
tune. Many other strategies exist for tuning a curriculum au-
tomatically (such as those explored by Graves et al. (2017)),
and could be beneficial, at the cost of additional overhead
and algorithmic complexity.

5. Growing action spaces for multi-agent
control

In cooperative multi-agent control, the full action space al-
lows each of IV agents to take actions from a set A.gent,
resulting in an exponentially large action space of size
|Aagent|N . Random exploration in this action space is
highly unlikely to produce sensical behaviours, so grow-
ing the action space as we propose is particularly valuable
in this setting. One approach would be to limit the actions
available to each agent, as done in our discretised continuous
control experiments (Section 6.1) and those of Czarnecki
et al. (2018). However, the joint action space would still be
exponential in N. We propose instead to use hierarchical
clustering, and to assign the same action to nearby agents.

At the first level of the hierarchy, we treat the whole team
as a single group, and all agents are constrained to take the
same action. At the next level of the hierarchy, we split
the agents into k groups using an unsupervised clustering
algorithm, allowing each group to act independently. At
each further level, every group is split once again into k
smaller groups. In practice, we simply use k-means clus-
tering based on the agent’s spatial position, but this can be
easily extended to more complex hierarchies using other
clustering approaches.

To estimate the value function, we compute a state-value
score V(s), and a group-action delta Ay (s, ag, g) for each
group g at each level ¢. Then, we compute an estimated
group-action value for each group, at each level, using a per-
group form of (3): Q;, (s, ay) = Q;(s,parenty(ay)) +
A(s,ag,9). We use Q*,(s,-) = V(s) to initialise the
iterative computation, similarly to the dueling architecture
of Wang et al. (2015). The estimated value of the parent
action is the estimated value of the entire parent group all
taking the same action as the child group. At each level ¢
we now have a set of group-action values.

In effect, a multi-agent value-learning problem still remains
at each level ¢, but with a greatly reduced number of agents
at low £. We could simply use independent ()-learning (Tan,
1993), but instead choose to estimate the joint-action value
at each level as the mean of the group-action values for the
groups at that /, as in the work of (Sunehag et al., 2017).
A less restrictive representation, such as that proposed by
(Rashid et al., 2018), could help, but we leave this direction
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Figure 1: Discretised continuous control with growing action spaces. We report the mean and standard error (over 10
random seeds) of the returns during training, with a moving average over the past 20 episodes. A2 (slow ¢) is an ablation of

As that decays € at a quarter the rate.

to future work.

A potential problem is that the clustering changes for every
state, which may interfere with generalisation as group-
actions do not have consistent semantics. We address this
in two ways. First, we include the clustering as part of
the state, and the cluster centroids are re-initialised from
the previous timestep for ¢ > 0 to keep the cluster seman-
tics approximately consistent. Second, we use a functional
representation that produces group-action values that are
broadly agnostic to the identifier of the group. In particular,
we compute a spatially resolved embedding, and pool over
the locations occupied by each group. See Figure 3 and
Section 6.2 for more details.

6. Experiments

We investigate two classes of problems that have a natural
hierarchy in the action space. First, simple control problems
where a coarse action discretisation can help accelerate ex-
ploration, and fine action discretisation allows for a more
optimal policy. Second, the cooperative multi-agent setting,
discussed in Section 5, using large-scale StarCraft micro-
management scenarios.

6.1. Discretised continuous control

As a proof-of-concept, we look at two simple examples:
versions of the classic Acrobot and Mountain Car environ-
ments with discretised action spaces. Both tasks have a
sparse reward of +1 when the goal is reached, and we make
the exploration problem more challenging by terminating
episodes with a penalty of -1 if the goal is not reached within
500 timesteps. The normalised remaining time is concate-
nated to the state so it remains Markovian despite the time
limit. There is a further actuation cost of 0.05||a/|2. At Ao,

the actions apply a force of +1 and —1. At each subsequent
Ay~o, each action is split into two children, one that is the
same as the parent action, and the other applying half the
force. Thus, there are 2¢ actions in A,.

The results of our experiments are shown in Figure 1. Train-
ing with the lower resolutions .4y and A; from scratch
converges to finding the goal, but incurs significant actu-
ation costs. Training with A4 from scratch almost never
finds the goal with e-greedy exploration. We also tried de-
caying the € at a quarter of the rate (As slow ¢€) without
success. In these cases, the policy converges to the one that
minimises actuation costs, never finding the goal. Training
with a growing action space explores to find the goal early,
and then uses this experience to transition smoothly into
a solution that finds the goal but takes a slower route that
minimises actuation costs while achieving the objective.

We also run three ablations of our method, to study the
impact of our algorithmic choices. The results of these
experiments are shown in Figure 2.

The first ablation, GAS(2): ON-AC, investigates the impact
of our off-action-space update. In this experiment, data
sampled at a particular level ¢ is only used to train the
Q-function for that level, rather than also being used for
each higher ¢ Q)-function in the hierarchy. In the Acrobot
environment, this ablation performs similarly to GAS (2),
although its final performance dips slightly. In Mountain
Car, training without the off-action-space update is less
efficient and less stable.

The second ablation, GAS(2): SEP-Q, investigates the im-
portance of iteratively computing the ()-values using Equa-
tion (3). In ‘SEP-Q’, each Q-function is computed sepa-
rately, rather than using the action-value estimates for re-
stricted action spaces as initialisations for the action-value
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Figure 2: Ablations of GAS in discretised continuous control.

estimates of their child actions. In both control tasks, this ab-
lation performs significantly worse than the full algorithm.

These ablations show the importance of efficiently using
data collected during curriculum learning, in addition to
shaping exploration via the curriculum of action spaces.

Finally, in GAS(2): Max Targets, we perform a maximi-
sation over coarser action spaces to construct the target as
described in Section 4.3. This harms performance in the
Mountain Car environment. One potential reason is that
maximising over more potential targets increases the max-
imisation bias already present in (-learning (Hasselt, 2010)

6.2. Combinatorial action spaces: StarCraft battles

6.2.1. LARGE-SCALE STARCRAFT
MICROMANAGEMENT

The real-time strategy game StarCraft and its sequel Star-
Craft IT have emerged as popular platforms for benchmark-
ing reinforcement learning algorithms (Synnaeve et al.,
2016; Vinyals et al., 2017). Full game-play has been tackled
by e.g. (Lee et al., 2018; Vinyals et al., 2019), while other
works focus on sub-problems such as micromanagement,
the low-level control of units engaged in a battle between
two armies (e.g. (Usunier et al., 2016)). Efforts to approach
the former problem have required some subset of human
demonstrations, hierarchical methods, and massive com-
pute scale, and so we focus on the latter as a more tractable
benchmark to evaluate our methods.

Most previous work on RL benchmarking with StarCraft
micromanagement is restricted to maximally 20-30 units
(Samvelyan et al., 2019; Usunier et al., 2016). In our exper-
iments we focus on much larger-scale micromanagement
scenarios with 50-100 units on each side of the battle. To
further increase the difficulty of these micromanagement
scenarios, in our setting the starting locations of the armies

are randomised, and the opponent is controlled by scripted
logic that holds its position until any agent-controlled unit
is in range, and then focus-fires on the closest enemy. This
increases the exploration challenge, as our agents need to
learn to find the enemy first, while they hold a strong de-
fensive position. The action space for each unit permits an
attack-move ormove action in eight cardinal directions,
as well as a st op action that causes the unit to passively
hold its position.

In our experiments, we use k = 2 for k-means clustering
and split down to at most four or eight groups. The max-
imum number of groups in an experiment with A, is 2¢.
Although our approach is designed for off-policy learning,
we follow the common practice of using n-step (Q-learning
to accelerate the propagation of values (Hessel et al., 2018).
Our base algorithm uses the objective of n-step Q-learning
from the work of Mnih et al. (2016), and collects data from
multiple workers into a short queue similarly to Espeholt
et al. (2018). Full details can be found in the Appendix.

6.2.2. MODEL ARCHITECTURE

We propose an architecture to efficiently represent the value
functions of the action-space hierarchy for this type of multi-
agent control problem. The overall structure is shown in
Figure 3. We start with the state of the scenario (1). Ally
units are blue and split into two groups. From the state,
features are extracted from the units and map (see Appendix
for full details). These features are concatenated with a one-
hot representation of the unit’s group (for allied agents), and
are embedded with a small MLP. A 2-D grid of embeddings
is constructed by adding up the unit embeddings for all units
in each cell of the grid (2). The embeddings are passed
through a residual CNN to produce a final embedding (3),
which is copied several times and decoded as follows. First,
a state-value branch computes a scalar value by taking a
global mean pooling (4) and passing the result through a
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Figure 3: Architecture for GAS with hierarchical clustering. For clarity, only two levels of hierarchy are shown. The dark
shaded regions identify the locations that are pooled over before state-value or group-action scores are computed.

2-layer MLP (6). Then, for each ¢, a masked mean-pooling
is used to produce an embedding for each group at that
Ay by masking out the positions in the spatial embedding
where there are no units of that group (5a, 5b, 5c). A single
evaluation MLP for each /¢ is used to decode this embedding
into a group action-score (7a, 7b, 7c). This architecture
allows a shared state representation to be efficiently decoded
into value-function contributions for groups of any size, at
any level of restriction in the action space. It may be easily
applied to any problem with a high-dimensional action space
in which each action dimension is associated with a location
in a 2-D plane.

Our default approach for combining the outputs of this
model is described in Section 5: each group’s action-value is
given by the sum of the state-value and group-action-scores
for the group and its ancestors (8a, 8b). In the ‘SEP-Q’
ablation for these experiments, each group’s action-value is
simply given by the state-value added to the group-action
score, i.e., Q5 (s,a,) = V(s) + Ay(s,ay,9)

6.2.3. RESULTS AND DISCUSSION

Figure 4 presents the results of our method, as well as a
number of baselines and ablations, on a variety of micro-
management tasks. Our method is labeled Growing Action
Spaces GAS(¥), such that GAS(2) will grow from Aj to
As. Our primary baselines are policies trained with ac-
tion spaces A or A from scratch. GAS(2) consistently
outperforms both of these variants. Policies trained from
scratch on Ay struggle with exploration, in particular in the
harder scenarios where the opponent has a numbers advan-
tage. Policies trained from scratch on Aq learn quickly, but

plateau comparatively low, due to the limited ability of a
single group to position effectively. GAS(2) benefits from
the efficient exploration enabled by an intialisation at Ay,
and uses the data gathered under this policy to efficiently
transfer to 4o; enabling a higher asymptotic performance.

We also compare against a Mix&Match (MM) baseline us-
ing the actor-critic approach of Czarnecki et al. (2018), but
adapted for our new multi-agent setting and supporting a
third level in the mixture of policies (Ag, A1, Az). We
tuned hyperparameters for all algorithms on the easiest,
fastest-training scenario (80 marines vs. 80 marines). On
this scenario, MM learns faster but plateaus at the same
level as GAS(2). MM underperforms on all other scenarios
to varying degrees. Learning separate value functions for
each Ay, as in our approach, appears to accelerate the trans-
fer learning in the majority of settings. Another possible
explanation is that MM may be more sensitive to hyperpa-
rameters. We do not use population based training to tune
hyperparameters on the fly, which could otherwise help MM
adapt to each scenario. However, GAS would presumably
also benefit from population based training, at the cost of
further computation and sample efficiency.

The policies learned by GAS exhibit good tactics. Control
of separate groups is used to position our army so as to
maximise the number of attacking units by forming a wall
or a concave that surrounds the enemy, and by coordinating
a simultaneous assault. Figure 5 in the Appendix shows
some example learned policies. In scenarios where MM
fails to learn well, it typically falls into a local minimum of
attacking head-on.

In each scenario, we also evaluate the GAS (2): ON-AC
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Figure 4: StarCraft micromanagement with growing action spaces. We report the mean and standard error (over 5 random
seeds) of the evaluation winrate during training, with a moving average over the past 500 episodes.

ablation that does not use our off-action-space update. This
ablation performs somewhat worse on average, although the
size of the impact varies. In most scenarios, it is indeed
beneficial to accelerate learning for finer action spaces using
data drawn from the off-action-space policy.

We present further ablations on two scenarios. The most
striking failure is of the ‘SEP-Q’ ablation which does not
compose the value function as a sum of scores in the hierar-
chy. It is critical to ensure that values are well-initialised as
we move to less restricted action spaces.

The ‘Max Targets’ variant performs comparably to GAS(2).
Because we use an n-step objective which combines a par-
tial on-policy return with the bootstrap target, the relative
impact of the choice of target may be reduced.

Finally, we experiment with a higher ¢. Unfortunately,
asymptotic performance is degraded slightly once we use
Aj or higher. One potential reason is that it decreases the
average group size, pushing against the limits of the spatial
resolution that may be captured by our CNN architecture.
Higher /¢ increases the amount of time that there are fewer
units than groups, leaving certain groups empty and render-

ing our masked pooling operation degenerate. We do not
see a fundamental limitation that should restrict the further
growth of the action space, although we note that most hier-
archical approaches in the literature avoid too many levels
of depth. For example, Czarnecki et al. (2018) only mix
between two sizes of action spaces rather than the three we
progress through in the majority of our GAS experiments.

7. Conclusion

In this work, we present an algorithm for growing action
spaces with off-policy reinforcement learning to efficiently
shape exploration. We learn value functions for all levels
of a hierarchy of restricted action spaces simultaneously,
and transfer data, value estimates, and representations from
more restricted to less restricted action spaces. We also
present a strategy for using this approach in multi-agent con-
trol. In discretised continuous control tasks and challeng-
ing multi-agent StarCraft micromanagement scenarios, we
demonstrate empirically the effectiveness of our approach
and the value of off-action-space learning. An interesting
avenue for future work is to automatically identify how to
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restrict action spaces for efficient exploration, potentially
through meta-optimisation. We also look to explore more
complex and deeper hierarchies of action spaces.
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8. Appendix
8.1. Discretised continuous control
8.1.1. HYPERPARAMETERS

For our experiments in discretised continous control, we
use a standard DQN trainer (Mnih et al., 2015) with the
following parameters.

Parameter | Value
batch size 128
replay buffer size 10000
target update interval 200
€ initial 1.0
€ final 0.1
€ decay 25000 env steps
{ lead-in 25000 env steps
{ growth 25000 env steps
env steps per model udpate 4
Adam learning rate Se-4
Adam € le-4

For GAS experiments, we keep the mixing coefficient o« = 0
for 25000 environment steps, and then increase it linearly by
1 every 25000 steps until reaching the maximum value. We
use v = 0.998 for our Acrobot experiments, but reduce it to
v = 0.99 for Mountain Car to prevent diverging (J-values.

Our model consists of fully-connected ReLU layers, with
128 hidden units for the first and 64 hidden units for all sub-
sequent layers. Two layers are applied as an encoder. Then,
for each ¢ one layer is applied on the current embedding to
produce a new embedding, and an evaluation layer on that
embedding produces the ()-values for that level.

8.2. StarCraft micromanagement scenarios
8.2.1. SCENARIOS AND LEARNED STRATEGIES

We explore five Starcraft micromanagement scenarios: 50
hydralisks vs 50 hydralisks, 80 marines vs 80 marines, 80
marines vs 85 marines, 60 marines vs 65 marines, 95 zer-
glings vs 50 marines. In these scenarios, our model controls
the first set of units, and the opponent controls the second
set.

The opponent is a scripted opponent that holds its location
until an opposing unit is within range to attack. Then, the
opponent will engage in an “attack-closest” behavior, as
described in Usunier et al. (2016), where each unit indi-
vidually targets the closest unit to it. Having the opponent
remain stationary until engaged makes this a more difficult
problem — the agent must find its opponent, and attack into
a defensive position, which requires good positions prior to
engagement.

As mentioned in section 6.2, all of our scenarios require
control of a much larger number of units than previous
work. The 50 hydralisks and 80v80 marines scenarios are
both imbalanced as a result of attacking into a defensive
position. The optimal strategy for 80 marines vs 85 marines
and 60 vs 65 marines requires slightly more sophisticated
unit positioning, and the 95 zerglings vs 50 marines scenario
requires the most precise positioning. The agent can use
the enemy’s initial stationary positioning to its advantage
by slightly surrounding the opponent in a concave, ensuring
that the outermost units are in its attack range, but far enough
away to be out of range of the center-most enemy units.
Ideally, the timing of the groups in all scenarios should be
coordinated such that all units get in range of the opponent
at roughly the same point in time. Figure 5 shows how our
model is able to exhibit this level of unit control.

8.2.2. FEATURES

We use a standard features for the units and map, given by
TorchcraftAl !

For each of the units, the following features are extracted:

e Current x, y positions.

e Current x, y velocities.

e Current hitpoints

e Armor and damage values

e Armor and damage types

e Range versus both ground and air units
e Current weapon cooldown

e A few boolean flags on some miscellaneous unit at-
tributes

Approximate normalization for each feature keep its value
approximately between 0-1.

For the map, the following features are extracted for each
tile in the map:

e a one-hot encoding of tile’s the ground height (4 chan-
nels)

e boolean representing or not the given tile is walkable
e boolean representing or not the given tile is buildable

e and boolean representing or not the given tile is covered
by fog of war.

The features form a HxW a7 tensor, where our map has
height H and width W.

"https://github.com/TorchCraft/TorchCraft Al
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Figure 5: Final learned policies of StarCraft micromanagement unit control with growing action spaces. Scenarios shown
from left to right at time 0, 3, 5, 10, 15 seconds. Top to bottom the scenarios are: 60 marines vs 65 marines, 50 hydralisks vs
50 hydralisks, 95 zerglings vs 50 marines. In these examples, the opponent is always on the right, and the agent controlled

by model trained with GAS is on the left.

8.2.3. ENVIRONMENT DETAILS

We use a frame-skip of 25, approximately 1 second of real
time, allowing for reasonably fine-grained control but with-
out making the exploration and credit assignment problems
too challenging.

We calculate at every timestep the difference in total health
points (HP) and number of units for the enemy from the
last step, normalised by the total starting HP and unit count.
As a reward function, we use the normalised damage dealt,
plus 4 times the normalised units killed, plus an additional
reward of 8 for winning the scenario by killing all enemy
units. This reward function is designed such that the agent
gets some reward for doing damage and killing units, but
the reward from doing damage will never be greater than
from winning the scenario. Ties and timeouts are considered
losses.

8.3. Experimental details
8.3.1. MODEL

As described in Section 6.2.2 a custom model architecture
is used for Starcraft micromanagement. Each unit’s feature

vector is embedded to size 128 in step 2 of Figure 3. The
grid where the unit features and map features are scattered
onto is the size of the Starcraft map of the scenario in walk-
tiles downsampled by a factor of 8. After being embedded,
the unit features for ally and enemy units are concatenated
with the downsampled map features and sent into a ResNet
encoder with four residual blocks (stride 7 padding 3). The
output is an embedding of size 64.

The decoder uses a mean pooling over the embedding cells
as described in Section 6.2.2. Each evaluator is a 2-layer
MLP with 64 hidden units and 17 outputs, one for each
action. All layers are separated with ReLU nonlinearities.

8.3.2. TRAINING HYPERPARAMETERS

We use 64 parallel actors to collect data in a short queue
from which batches are removed when they are consumed
by the learner. We use batches of 32 6-step segments for
each update.

For the -learning experiments, we used the Adam opti-
mizer with a learning rate of 2.5 x 107*and e = 1 x 107%.
For the MM baseline experiments, we use a learning rate



Growing Action Spaces

of 1 x 10~%, entropy loss coefficient of 8 x 10~ and value
loss coefficient 0.5. The learning rates and entropy loss
coefficient were tuned by random search, training with 4
from scratch on the 80 marines vs 80 marines scenario with
10 configurations sampled from log_ uniform(—5, —3)
for the learning rate and log_uniform(—3,—1) for the
entropy loss coefficient.

For (-learning, we use an e-greedy exploration strategy
, decaying ¢ linearly from 1.0 to 0.1 over the first 10000
model updates. We also use a target network that copies the
behaviour model’s parameters every 200 model updates.

We also use a linear schedule to grow the action-space.
There is a lead in of 5000 model updates, during which the
action-space is held constant at A, to prevent the action
space from growing when € or the policy entropy is too high.
The action-space is then grown linearly at a rate of 10000
model updates per level of restriction, so that after 10000
updates, we act entirely at .4, and after 20000, entirely at
As.



