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Abstract

We propose a new way of deriving policy gradi-
ent updates for reinforcement learning. Our tech-
nique, based on Fourier analysis, recasts integrals
that arise with expected policy gradients as convo-
lutions and turns them into multiplications. The
obtained analytical solutions allow us to capture
the low variance benefits of EPG in a broad range
of settings. For the critic, we treat trigonometric
and radial basis functions, two function families
with the universal approximation property. The
choice of policy can be almost arbitrary, including
mixtures or hybrid continuous-discrete probabil-
ity distributions. Moreover, we derive a general
family of sample-based estimators for stochastic
policy gradients, which unifies existing results on
sample-based approximation. We believe that this
technique has the potential to shape the next gen-
eration of policy gradient approaches, powered by
analytical results.

1. Introduction
Policy gradient methods, also known as actor-critic methods,
are an effective way to perform reinforcement learning in
large or continuous action spaces (Lillicrap et al., 2015;
Schulman et al., 2015; 2017; Wu et al., 2017; Peters &
Schaal, 2008; Sutton et al., 1999; Williams, 1992). Since
they adjust the policy in small increments, they do not have
to perform expensive optimisations over the action space,
in contrast to methods based on value functions, such as Q-
learning (Mnih et al., 2015; Silver et al., 2017; van Hasselt
et al., 2015) or SARSA (van Seijen et al., 2009; Sutton &
Barto, 1998; Sutton, 1996). Moreover, they are naturally
suited to stochastic policies, which are useful for exploration
and necessary to achieve optimality in some settings, e.g.,
competitive multi-agent systems.

*Equal contribution 1Department of Computer Science, Uni-
versity of Oxford, United Kingdom. Correspondence to: Matthew
Fellows <matthew.fellows@cs.ox.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Until recently, policy gradient methods were either restricted
to deterministic policies (Silver et al., 2014) or suffered from
high variance (Sutton et al., 1999). The latter problem is ex-
acerbated in large state spaces, when the number of samples
required to reduce the variance of the gradient estimate be-
comes infeasible for the simple score function estimators on
which policy gradient methods typically rely. The problem
also arises when training recurrent neural networks (RNNs)
(Xu et al., 2015; Ba et al., 2015; Sukhbaatar et al., 2016)
that have to be unrolled over several timesteps, each adding
to the overall variance, and in multi-agent settings (Foerster
et al., 2017), where the actions of other agents introduce a
compounding source of variance.

Recently, a new approach called expected policy gradients
(EPG) (Ciosek & Whiteson, 2018a;b) was proposed that
eliminates the variance of a stochastic policy gradient by
integrating over the actions analytically. However, this re-
quires analytic solutions to the policy gradient integral and
the original work addressed only polynomial critics.

In this paper, we employ techniques from Fourier analysis
to derive analytic policy gradient updates for two important
families of critics. The first, radial basis functions (RBFs),
combines the benefits of shallow structure, which makes
them tractable, with an impressive empirical track record
(Buhmann, 2003; Carr et al., 2001). The second, trigono-
metric critics, is useful for modelling periodic phenomena.
Similarly to polynomial critics (Ciosek & Whiteson, 2018b),
these function classes are universal, i.e., they can approxi-
mate an arbitrary function on a bounded interval.

Furthermore, to address cases where analytical solutions are
infeasible, we provide a general theorem for deriving Monte
Carlo estimators that links existing methods using the first
and second derivatives of the action-value function, relating
it to existing sampling approaches.

Our technique also enables analytic solutions for new fam-
ilies of policies, extending EPG to any policy that has un-
bounded support, where it previously required the policy to
be in an exponential family. We also develop results for mix-
ture policies and hybrid discrete-continuous policies, which
we posit can be useful in multi-agent settings, where having
a rich class of policies is important not just for exploration
but also for optimality (Nisan et al., 2007).
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Overall, we believe that the techniques developed in this
paper can be used to shape the next generation of policy
gradient methods suitable for any reasonable MDP and that,
powered by analytical results, achieve zero or low variance.
Moreover, our methods elucidate the way policy gradients
work by explicitly stating the expected update. Finally,
while the main contribution of this paper is theoretical, we
also provide an empirical evaluation using a periodic critic
on a simple turntable problem that demonstrates the practi-
cal benefit of using a trigonometric critic.

2. Background
Reinforcement learning (RL) aims to learn optimal be-
haviour policies for an agent (or many agents) acting in
an environment with a scalar reward signal. Formally, we
consider a Markov decision process, defined as a tuple
(S,A,R, p, p0, γ). An agent has an environmental state
s ∈ S = Rn; takes a sequence of actions a1,a2, ..., where
at ∈ A; transitions to the next state s′ ∼ p(·|s,a) under the
state transition distribution p(s′|s, a); and receives a scalar
reward r ∈ R. The agent’s initial state s0 is distributed as
s0 ∼ p0(·).

The agent samples from the policy β to generate actions
a ∼ β(·|s), giving a trajectory through the environment
τ = (s0,a0, r1, s1,a1, r1, ...). The definition of the value
function is V β(s) = Eτ :s0=s[

∑
t γ

trt] and action-value
function is Qβ(s,a) = Eτ :s0=s,a0=a[

∑
t γ

trt], where γ ∈
[0, 1) is a discount factor. An optimal policy β? maximises
the total return J =

∫
s
V β

?

(s)dpo(s).

2.1. Policy Gradient Methods

Policy gradient methods seek a locally optimal policy by
maintaining a critic, learned using a value-based method,
and an actor, adjusted using a policy gradient update.

The critic Q̂ is learned using variants of SARSA (van Seijen
et al., 2009; Sutton & Barto, 1998; Sutton, 1996), with the
goal of approximating the true action-valueQβ . Meanwhile,
the actor adjusts the policy parameter vector θ of the policy
βθ with the aim of maximising J . For stochastic policies,
this is done by following the gradient:

∇θJ =

∫
s

ρ(s)

∫
a

Q(s,a)∇θβΘ(a|s)da︸ ︷︷ ︸
Iθ(s)

ds, (1)

where ρ(s) ,
∑∞
t=0 γ

tp(st = s|s0) is the discounted-
ergodic occupancy measure. The outer integral can be ap-
proximated by following a trajectory of length T through
the environment, yielding:

∇θJ = Eρ(s)[Iθ(s)] ≈
T−1∑
t=0

γtÎθ(st), (2)

Algorithm 1 Expected Policy Gradient
1: s← s0, t← 0
2: initialise optimiser, initialise policy parameters θ
3: while not converged do
4: gt ← γtÎθ(s)
5: θ ← θ + optimiser.UPDATE(gt)
6: a ∼ β(·, s)
7: s′, r ← environment.PERFORM-ACTION(a)
8: Q̂.UPDATE(s, a, r, s′)
9: t← t+ 1

10: s← s′

11: end while

where Îθ is the integral of (1) but with the critic Q̂ in place
of the unknown true Q-function:

Îθ(st) =

∫
a

Q̂(st,a)∇θβΘ(a|st)da. (3)

The subscript of Îθ denotes the fact that we are differenti-
ating with respect to θ. Now, since Q̂, unlike Q, does not
depend on the policy parameters, we can move the differen-
tiation out of the inner integral as follows:

Îθ(st) = ∇θ
∫
a

Q̂(st,a)dβΘ(a|st)︸ ︷︷ ︸
E(st)=Eβ [Q̂(st,·)]

. (4)

This transformation has two benefits: it allows for easier
manipulation of the integral and it also holds for determinis-
tic policies, where β is a Dirac-delta measure (Silver et al.,
2014; Ciosek & Whiteson, 2018a;b).

Using (2) directly with an analytic value of Î(st) yields
expected policy gradients (EPG)1 (Ciosek & Whiteson,
2018a;b), shown in Algorithm 1. If instead we add an
additional Monte Carlo sampling step:

Îθ ≈ Q̂(s,a)∇θ log β(a|s), (5)

we get the original stochastic policy gradients (Williams,
1992; Sutton et al., 1999). In place of (5), alternative Monte
Carlo schemes with better variance properties have also
been proposed (Baxter & Bartlett, 2000; Baxter et al., 2001;
Baxter & Bartlett, 2001; Gu et al., 2016; Kakade et al.,
2003). If we can compute the integral in (3), then EPG is
preferable since it avoids the variance introduced by the
Monte Carlo step of (5).

This paper considers both methods for solving integrals of
the form in (3) and Monte Carlo methods that improve on
(5) for cases where analytical solutions are not possible.

1Called all-action policy gradient in an unpublished draft by
Sutton et al. (2000).



Fourier Policy Gradients

Above, we used the symbol θ to denote a generic policy
parameter. Often, the policy is described by its moments
(for instance a Gaussian is fully defined by its mean and
covariance). To achieve greater flexibility, these immediate
parameters are obtained by a complex function approxima-
tor, such as a neural network, where the state vector is the
input, and parameterised by w. The total policy gradient
for w is then obtained by using the chain rule. For example,
for a Gaussian we have immediate parameters µ,Σ and the
parameterisation is:

β(a|s) = N (µ,Σ),

(µ,Σ1/2) = netw(s),

where netw is a neural network parameterised by the vector
w. The gradient for some w is then:

∇wIθ(s) = ∇wµIµ +∇wΣ1/2IΣ1/2 .

For clarity, we only give updates for the immediate param-
eters (in this case, Îµ and ÎΣ1/2) in the remainder of the
paper, without explicitly mentioning w.

2.2. Fourier Analysis

A convolution f ∗ g is an operation on two functions that
returns another function, defined as:

(f ∗ g)(x) ,
∫
x′
f(x′)g(x− x′)dx′.

Convolutions have convenient analytical properties that we
use to derive our main result. To make convolutions easy
to compute, we seek a transform F that, when applied to a
convolution, yields a simple operation like multiplication,
i.e., we want the property:

F (f ∗ g) (ω) =
(
F (f)F (g)

)
(ω). (6)

We also need the dual property:

F (fg) = F (f) ∗ F (g) ,

to ensure symmetry between the space of functions and their
transforms. It turns out that, up to scaling, there is only one
transform that meets our needs (Alesker et al., 2008), the
Fourier transform:

F (f) (ω) ,
∫
x

f(x)e−iω
>xdx.

The two sets of parentheses on the lefthand side are re-
quired because the Fourier transform F (f) is a function,
not a scalar, and F (f) (ω) is the result of evaluating this
function on ω. The Fourier transform of a probability
density function is known as the characteristic function

of the corresponding distribution. An intuitive interpreta-
tion of the Fourier transforms is that it provides a map-
ping from the action-spatial domain to the frequency do-
main, F (f(x)) : x → ω, decomposing the function f
into its frequency components. Consider, as a simple ex-
ample, a univariate sinusoidal function, f(x) = cos(xΩ).
The Fourier transform of f can be easily shown to be
F (f) = πδ(ω − Ω) + πδ(ω + Ω) (Stein & Shakarchi,
2003); the Fourier transform has mapped a sinusoid of fre-
quency Ω in the action domain to a double frequency spike
at ±Ω in the frequency domain.

The Fourier transform has another related intuitive interpre-
tation as a change of basis in the space of functions. The
Fourier basis functions e−iω

>x make analytical operations
convenient in much the same way as a choice of convenient
basis in linear algebra makes certain matrix operations eas-
ier. Since the basis functions are periodic, the Fourier trans-
form can also be viewed as a decomposition of the original
function into cycles. Sometimes these cycles are written ex-
plicitly when the complex exponential e−iω

>x is expressed
in polar form, which includes sines and cosines. Indeed, the
Fourier series, which we briefly discuss in Appendix A, can
be used to prove that any function on a bounded interval can
be approximated arbitrarily well with a sum of sufficiently
many such trigonometric terms.

The inverse Fourier transform is defined as:

F−1 (g) (x) ,
1

(2π)n

∫
ω

g(ω)eiω
>xdω,

which has the property that, for any function f ,

F−1 (F (f)) = f. (7)

Thus, we can recover the original function by applying the
Fourier and inverse Fourier transforms. Just as the Fourier
transform maps from the action domain to the frequency
domain, the inverse Fourier transforms provides a mapping
from the frequency domain back to the action-spatial do-
main F−1 (f(ω)) : ω → x. The Fourier transform also
turns differentiation into multiplication:

iωF (f) = F(∇xf(x)), (8)

(iω)(iω)>F (f) = F
(
∇(2)
x f(x)

)
, (9)

where ∇(m)
x f denotes the mth order derivative of f w.r.t.

x ∀ m ≥ 0.

We formalise the n-dimensional Fourier transform in Ap-
pendix B, and provide definitions for Fourier transforms of
matrix and vector quantities. We also derive the differentia-
tion/multiplication property in n-dimensional space.
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3. Main Result
In this section, we prove our main result. The motivating
factor behind these derivations is that by viewing the in-
ner integral Îθ as a convolution, we can analyse our policy
gradient in the frequency domain. This affords powerful
analytical results that enable us to exploit the multiplica-
tion/derivative property of Fourier transforms, namely ma-
nipulation of expressions involving the derivatives of our
critic Q̂ in the action-spatial domain are represented simply
by factors of (iω) in the frequency domain. We apply this
elegant property in Section 4.1 to demonstrate the relative
ease of manipulation of the inner integral Îθ. In Section 4.2,
we show that existing Monte Carlo policy gradient estima-
tors arise from our theorem as a single family of cases using
different factors (iω) multiplied with the critic Q̂.

Moreover, our theorems rely only on the characteristic func-
tion F(β̃). While the original technique developed for EPG
(Ciosek & Whiteson, 2018b) relies on the moment gener-
ating function to obtain Î for a policy from an exponential
family and a polynomial family of critics, we require only
that both the policy PDF and the critic have a closed form
Fourier transform (Karr, 1993). For policies, this condition
is easy to satisfy since almost all common distributions have
a closed form characteristic function.

Theorem 1 (Fourier Policy Gradients). Let Îθ(st) =
∇θ
∫
a
Q̂(st,a)βθ(a|st)da be the inner integral of the pol-

icy gradient for a critic Q̂(a) and policy β(a) with auxiliary
policy β̃(µ− a) = β(a). We may write Îθ(st) as:

Îθ(st) = ∇θF−1
(
F(Q̂)F(β̃)

)
(µ). (10)

Proof. Recall the definition of Îθ(st) from (4):

Îθ(st) = ∇θ
∫
a

Q̂(st,a)βda.

To exploit the convolution property of Fourier transforms
given by (6), the first step is to introduce an auxiliary policy
β̃, so that the above integral becomes a convolution. If the
mean of the policy β is µ, the new auxiliary policy β̃ is:

β̃(µ− a) = β(a).

We start by rewriting Îθ as:

Îθ = ∇θ
∫
a

Q̂(a)β̃(µ− a)da = ∇θ(Q̂ ∗ β̃)(µ). (11)

Now, we apply the Fourier transform to the convolution and
use (6) to reduce it to a multiplication:

F(Q̂ ∗ β̃)(ω) = F
(∫

a

Q̂(a)β̃(µ− a))da

)
(ω),

=
(
F(Q̂)F(β̃)

)
(ω).

Taking the inverse Fourier transform gives:

(Q̂ ∗ β̃)(µ) = F−1
(
F(Q̂)F(β̃)

)
(µ).

Substituting this into (11) yields our main result:

Îθ(s) = ∇θF−1
(
F(Q̂)F(β̃)

)
(µ).

We now derive a variant of our main theorem for the special
case of µ.

Theorem 2 (Fourier Policy Gradients for µ). Let Îµ(st) =

∇µ
∫
a
Q̂(st,a)βθ(a|st)da be the inner integral of the pol-

icy gradient for µ with a critic Q̂(a) and policy β(a) with
auxiliary policy β̃(µ − a) = β(a). We may write Îµ(st)
as:

Îµ(st) = F−1
(
F(Q̂)iωF(∇β̃)

)
(µ). (12)

Proof. We return to (11), retaining the derivative inside the
integral:

Îµ(s) =

∫
a

Q̂(a)∇µβ̃(µ− a)da.

From the chain rule, we substitute ∇µ
(
β̃(µ − a)

)
=(

∇β̃
)

(µ− a), yielding:

Îµ(s) =

∫
a

Q̂(a)
(
∇β̃
)

(µ− a)da = (Q̂ ∗ ∇B̃)(µ).

(13)

Now, we take the Fourier transforms of the convolution
(Q̂ ∗ ∇B̃)(µ) and exploit the multiplication property of (6):

F((Q̂ ∗ ∇B̃))(ω) =
(
F(Q̂)F(∇β̃)

)
(ω).

Using the multiplication/derivative property from (8), we
substitute for F(∇β̃) = iωF(β̃):

F((Q̂ ∗ ∇B̃))(ω) =
(
F(Q̂)iωF(∇β̃)

)
(ω).

Finally, taking inverse Fourier transforms and substituting
into (13) yields our result:

Îθ(s) = F−1
(
F(Q̂)F(∇β̃)

)
(µ).
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We use Theorem 2 to derive the following corollary, valid
for all parameters ψ s.t. µ does not depend upon them.

Corollary 2.1. Let ψ be a parameter that does
not depend upon µ. We can write Îψ(st) =

∇ψ
∫
a
Q̂(st,a)βθ(a|st)da as:

Îψ(s) = F−1
(
F(Q̂)∇ψF(β̃)

)
(µ). (14)

The required auxiliary policy β̃(a) = β(µ− a) exists for
all distributions β with unbounded support. For symmet-
ric distributions, β̃ often has a convenient form, e.g., for
a Gaussian policy β = N (µ,Σ), β̃ = N (0,Σ). This
transformation is similar to reparameterisation (Heess et al.,
2015). For critics, we discuss tractable critic families in the
remainder of the paper.

4. Applications
We now discuss a number of specialisations of (10) and
(12), linking them to several established policy gradient
approaches.

4.1. Frequency Domain Analysis

We now motivate the remainder of this section by con-
sidering the Gaussian policy β̃ = N (0,Σ). We need to
calculate the gradient w.r.t. Σ

1
2 where (Σ

1
2 )>Σ

1
2 = Σ.

From the characteristic function for a multivariate Gaussian,
F(N (0,Σ)) = e−

1
2ω
>Σω , we find derivatives as:

∇
Σ

1
2
F(β̃) = ∇

Σ
1
2
e−

1
2ω
>Σω,

= −1

2
Σ

1
2

(
2ωω>e−

1
2ω
>Σω

)
,

= Σ
1
2 (iω)(iω)>F(β̃).

Substituting for∇
ψ=Σ

1
2
F(β̃) in (14) gives the gradient for

Σ
1
2 . For completeness, we also include the update for µ

which, recall from (12), is the same for all policies with
auxiliary function β̃(a) = β(µ− a).

Îµ = F−1
(
F(Q̂)(iω)F(β̃)

)
(µ), (15)

Î
Σ

1
2

= F−1
(
Σ

1
2F(Q̂)(iω)(iω)>F(β̃)

)
. (16)

We see from (8) and (9) that the terms iω, once pulled
into the Fourier transform, become differentiation operators.
However, (15) and (16) afford us a choice – we can pull
them into the critic term or the policy term. This gives rise
to a number of different expressions for the gradient. To
differentiate between methods, we define the order of the
method, denoted by M , the order of the derivative with
respect to the critic.

We continue our example of Gaussian policies, using (15) to
compute an update for µ for M ∈ {0, 1} and (16) to com-
pute an update for Σ1/2 for M ∈ {0, 1, 2}. Full derivations
with Gaussian derivatives can be found in Appendix E.

Zeroth Order Method (M = 0) Using (15) and (16) in
their current form gives an analytic expression for a zeroth
order critic, as we do not multiply F(Q̂) by any factor of
iω. Using results for multidimensional Fourier transforms
from (8) and (9) when taking these inverse transforms, we
obtain:

Îµ = F−1(F(Q̂)F(∇β̃)) =

∫
a

Q̂∇β̃da

= −
∫
a

Q̂∇βda, (17)

Î
Σ

1
2

= F−1(Σ
1
2F(Q̂)F(∇(2)β̃)) = Σ

1
2

∫
a

Q̂∇(2)β̃da

= Σ
1
2

∫
a

Q̂∇(2)βda. (18)

Here, we use the identities ∇β̃ = −∇β and ∇(2)β̃ =
∇(2)β from Lemma 3.

First Order Method (M = 1) To obtain an analytic
expression in terms of∇aQ̂, we must manipulate the factors
of (iω) in (15) and (16) to obtain a factor of (iω)Q̂. We
then exploit the multidimensional Fourier transform result
for vectors from (8) as before:

Îµ = F−1
(

(iω)F(Q̂)F(β̃)
)

= F−1
(
F(∇Q̂)F(β̃)

)
=

∫
a

β∇Q̂da, (19)

Î
Σ

1
2

= F−1
(
Σ

1
2 (iω)F(β̃)(iω)>F(Q̂)

)
,

= F−1
(
Σ

1
2F(∇β̃)F(∇Q)>

)
,

= −Σ
1
2

∫
a

∇β(∇Q̂)>da. (20)

Second Order Method (M = 2) We repeat the process,
this time taking the derivative of Q̂ twice:

Î
Σ

1
2

= F−1
(
Σ

1
2 (iω)(iω)>F(Q̂)F(β̃)

)
,

= F−1
(
Σ

1
2F(∇(2)Q̂)F(β̃)

)
= Σ

1
2

∫
a

∇(2)
a Q̂βda.

(21)

Here, we exploit the multidimensional Fourier transform
result for matrices from (9) in deriving the second line.

4.2. Family of SPG Estimators

We are going to revisit certain integrals from Section 4.1
using the following rule for deriving Monte Carlo estimators:
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∫
a

f(a)da ≈ 1

β(a)
f(a) where a ∼ β.

Here, the quantity on the right is a sample-based approx-
imation. We have the following approximations for the
integrals given by equations (17,18,19,20,21), which recall
were defined for a Gaussian policy β = N (µ,Σ):

Îµ = −
∫
a
Q̂∇aβda ≈ Σ−1(at − µ)Q̂,

Î
Σ

1
2

= Σ
1
2

∫
a
Q̂∇(2)

a βda,

≈
(

(Σ
1
2 )−>(at − µ)(at − µ)>Σ−1

−(Σ
1
2 )−>

)
Q̂,


M = 0

Îµ =
∫
a
∇aQ̂βda ≈ ∇aQ̂,

Î
Σ

1
2

= −Σ
1
2

∫
a
∇aβ(∇aQ̂)>da,

≈ (Σ
1
2 )−>(at − µ)(∇aQ̂)>,

M = 1

Î
Σ

1
2

= Σ
1
2

∫
a
∇(2)
a Q̂βda

≈ Σ
1
2∇(2)

a Q̂.

M = 2

The above equations summarise existing results for stochas-
tic policy gradients estimators, which are applicable for any
policy and critic. The zeroth-order results (M = 0) cor-
respond to standard policy gradient methods (Sutton et al.,
1999; Williams, 1992; Glynn, 1990); the first-order ones
(M = 1) correspond to reparameterisation-based methods
(Heess et al., 2015; Kingma & Welling, 2013); and, when
applied to a Gaussian policy, the second-order (M = 2) of
the update for Σ is a sample-based version of Gaussian pol-
icy gradients (Ciosek & Whiteson, 2018a), a special case of
EPG. Note that interpolations between different estimators
can also be used (Gu et al., 2016) as a method of reducing
variance further. The full derivations for of the derivatives
for the multivariate Gaussian are given in Appendix E.

4.3. Periodic Action Spaces

In some settings, the action space of an MDP is naturally
periodic, e.g., when actions specify angles. By using a
trigonometric function in the critic, we encode the insight
that rotating by−π and by π leads to similar results, despite
the fact that the two points lie on the opposite ends of the
action range.

Consider the case where the policy is Gaussian, i.e., β =
N (µ,Σ) and the critic Q̂ is a trigonometric function of the
form

Q̂(a) = cos(f>a− h),

where f ∈ Rn, h ∈ R, and n is the dimension of the action
space.

While a policy gradient method involving a critic Q̂ of this
form superficially resembles approximating the value func-
tion with the Fourier basis (Konidaris et al., 2011) for the
state space, it is in fact completely different. Indeed, our
method uses a Fourier basis to approximate a function of the
action space, not the state space, which often has different
structure. The dependence of Q̂ on the state can still be
completely arbitrary (for example a neural network).

We seek to find the policy gradient update for this combi-
nation of critic and policy. First, we write out their Fourier
transforms:

F(Q̂) = (2π)n
[
e−ihδ(ω − f) + eihδ(ω + f)

2

]
,

F(β̃) = e−
1
2ω
>Σω.

Computing the inverse Fourier transform yields:

F−1(F(Q̂)F(β̃))(a) = e−
1
2f
>Σf cos(f>a− h). (22)

A more detailed derivation of (22) can be found in ap-
pendix G. We now use (10) to obtain the policy gradients
for the mean and the covariance.

Îµ = ∇µF−1(F(Q̂)F(β̃))(µ),

= −e− 1
2f
>Σf sin(f>µ− h)f , (23)

ÎΣ = ∇ΣF−1(F(Q̂)F(β̃))(µ),

= −e− 1
2f
>Σf 1

2
ff> cos(f>µ− h).

Intuitively, the mean update contains a frequency damping
component e−

1
2f
>Σf , which is small for large f , ensur-

ing that the optimisation slows down when the signal is
repeating frequently. The covariance update uses the same
damping, while also making sure that exploration increases
in the minima of the critic and decreases near the maxima,
in a way slightly similar, but mathematically different, from
Gaussian policy gradients (Ciosek & Whiteson, 2018a;b).

We evaluated a periodic critic of this form on a toy turntable
domain where the goal is to rotate a flat record to the desired
position by rotating it (see Appendix D for details). We
compared it to the DPG baseline from OpenAI (Dhariwal
et al., 2017), which uses a neural network based critic capa-
ble of addressing complex control tasks. As expected, the
learning curves in Figure 1 show that using a periodic critic
(F-EPG) leads to faster learning, because it encodes more
information about the action space than a generic neural
network. Our method efficiently uses this information in
the policy gradient framework by deriving an exact policy
gradient update.
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Figure 1. Learning curves for Turntable. EPG with periodic critic
(F-EPG) vs. DPG with a neural network critic (NN-DPG).

4.4. Policy Gradients with Radial Basis Functions

Radial basis functions (RBFs) (Buhmann, 2003) have a long
tradition as function approximators in machine learning and
combine a simple, tractable structure with the universal
approximation property (Park & Sandberg, 1991). In this
section, we analyse the elementary RBF building block – a
single RBF node. Results on combining many such blocks
are deferred to Section 4.6.

Consider the setting where the policy is Gaussian, i.e.,
β = N (µ,Σ) and the critic is an RBF Q̂ = N (l,S).
Although the critic Q̂ has the shape of a Gaussian PDF,
it is not a random variable but simply an ordinary func-
tion parametrised by the location vector l and the positive-
definite scale matrix S, which occupy the place of the mean
and the covariance. We want to find the policy gradient
updates for the mean and the covariance. We begin the
derivation by writing out the Fourier transforms for the
policy and the critic:

F(Q̂) = eil
>ω− 1

2ω
>Sω,

F(β̃) = e−
1
2ω
>Σω.

The inverse Fourier transform has the following form:

F−1(F(Q̂)F(β̃))(a) = N (l,Σ + S)(a).

Now, we substitute a = µ and introduce the notation:

E = N (l,Σ + S)(µ).

We now derive the policy gradients using (10) and properties

of the derivative of the logarithm.

Îµ = ∇µE = E∇µ logE,

= −1

2
E∇µ‖µ− l‖2(Σ+S)−1 , (24)

ÎΣ = ∇ΣE = E∇Σ logE,

= −1

2
E
(
∇Σ‖µ− l‖2(Σ+S)−1 +∇Σ log det(2πΣ)

)
.

The RBF Policy gradient simply minimises the Mahalanobis
distance with the weight matrix (Σ + S)−1. Also, since
E is a positive scalar, for multi-dimensional action spaces,
the multiplication by E in the gradients does not change the
gradient direction, only the magnitude.

For the mean update∇µ, this result is intuitive – if we want
our policy to reach the maximum of the RBF node (i.e., a
bump) we simply minimise the distance between the current
policy mean and the top of the bump. We now provide
an additional variant of this result, based on natural policy
gradients. The Fisher matrix for the Gaussian distribution
parameterised by µ (with the covariance kept constant) is
simply Σ, yielding the following update:

gnatural = −1

2
(Σ)(Σ + S)−1(µ− l),

= −1

2
(SΣ−1 + Id)−1(µ− l).

Here, the symbol Id denotes the identity matrix. The update
given by gnatural can be used in place of Iµ to obtain a natural
policy gradient method. Moving from a standard first order
policy gradient to the natural policy gradient is simply a
change in the weighting matrix of the Mahalanobis distance
from (Σ + S)−1 to (SΣ−1 + Id)−1. Furthermore, the
Mahalanobis distance reduces to the unweightedL2 distance
when S = Σ. Intuitively, since the natural policy gradient
takes the geometry of the space of distributions into account,
a simpler update is obtained if this geometry is the same as
the geometry of the RBF (as given by S).

4.5. Revisiting Gaussian Policy Gradients

In this section, we revisit Gaussian policy gradients (Ciosek
& Whiteson, 2018a) with the aim of contrasting it with the
RBF derivation presented above. Gaussian policy gradients
assume that the policy is Gaussian, i.e., β = N (µ,Σ), and
the critic is quadric, i.e.,

Q̂(a) = a>Ha+ a>b+ const = (a− l)>H(a− l).

Here we denote by ‘const’ some constant which always
exists so that the above equality holds for l = − 1

2H
−1b.

In this setting we have that,

E = Eβ
[
(a− l)>H(a− l)

]
,

= trace(HΣ) + (µ− l)>H(µ− l).
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Now, we compute the policy gradient for the mean:

Îµ = ∇µE = ∇µ(µ− l)>H(µ− l).

This is almost the same as (24), except for a positive scaling
factor and the fact that,H need not be positive-definite (un-
like the matrix S from the definition of the RBF.). This illus-
trates both the similarities and differences between Gaussian
policy gradients, which uses quadrics, and the updates given
by (24), which is based on RBFs. The similarity is that we
are minimising a quadratic form, while the difference is that
the quadratic form used by RBF comes from a more restric-
tive family (i.e., it has to be positive definite). However,
RBFs also have some advantages over quadrics in that they
are bounded both from above and below.

4.6. Hybrid Critics

We now consider the case when the critic Q̂ is a linear
combination, i.e., Q̂(a) =

∑
i ciQ̂i(a) for some ci. The

main observation is that the integral Î is linear in the critic,
i.e., for any parameter θ we have that,

Îθ =
∑
i

ci{Îθ}i + (∇θci)Ei, where

Ei =

∫
a

Q̂iβ(a)da and {Îθ}i = ∇θEi.

Thus, we can compute the policy gradient update for each
component of the critic separately, and then use a linear
combination of the updates. If each of these components is
in a tractable family, such as a trigonometric function (Sec-
tion 4.3), an RBF (Section 4.4) or a polynomial (Ciosek &
Whiteson, 2018b), the whole update is also tractable. In this
way, we can use critics consisting not just of of a superposi-
tion of functions from a single family (like a Fourier basis,
which consists of different trigonometric functions), but also
hybrid ones, combining functions from many families.

All these three categories of critics have their corresponding
universal approximation result, implying that a linear com-
bination of a sufficient number of functions from that class
alone is rich enough to approximate any reasonable function
on a bounded interval to arbitrary accuracy. Indeed, we have
the Weierstrass theorem about linear combinations of mono-
mials (Weierstrass, 1885; Stone, 1948), the result by Park
& Sandberg (1991) for linear combinations of RBFs, and
the Fourier series approximation for linear combinations of
trigonometric functions (see Appendix A).

These results show that, in principle, we can have analytic
updates for a critic matching any Q-function, and hence any
MDP, without the need for Monte Carlo sampling schemes
similar to (5), with no sampling noise (given the state) and
with virtually no computational overhead relative to stochas-
tic policy gradients. However, there remain two obstacles.

First, for a finite number of basis functions, the approxima-
tion may introduce spurious local minima that are harmful
to any local optimisation method. Second, even when local
minima are not a problem, there is a case for using a degree
of sampling in case we believe that our critic Q̂ is biased
– some sampling methods allow the use of direct reward
rollouts to address bias. We believe that the practical im-
pact of our analytic results and the question of which critic
combination to use is yet to be determined.

4.7. Mixture Policies and Other Nonstandard Policies

We now consider mixture policies of the form β(a) =∑
i b
′
iβi(a), where b′i ≥ 0 and

∑
i b
′
i = 1. Similarly to

the previous section, we use the linearity of the integral:

Îθ =
∑
i

{b′iÎθ}βi + (∇θb′i)Eβi , where (25)

Eβi =

∫
a

Q̂(a)βi(a)da and {Îθ}βi = ∇θEβi .

The two most common types of components for the policy
are Gaussian and the deterministic policy (i.e., a Dirac-delta
measure). Hence, using (25), we can obtain a policy gradi-
ent method for policies that have several modes (modelled
with Gaussians) as well as several focussed (discrete) points.
Of course, we can also use any other distribution with a
characteristic function by substituting into (10). We believe
that such policies can be particularly useful in multi-agent
settings, where the concept of finding a maximum of the
total expected return generalises to finding a Nash equilib-
rium and it is known that some Nash equilibria admit only
stochastic policies (Nisan et al., 2007). It is also possible to
have both a mixture policy and a hybrid critic. We do not
give the formula, since it is straightforward to derive.

5. Conclusions
This paper developed new theoretical tools for deriving pol-
icy gradient updates, showing that expected policy gradients
are tractable in three important classes of critics and for
almost all policies. We also discussed a framework for de-
riving estimators for stochastic policy gradients, which gen-
eralises existing approaches. Moreover, we addressed the
setting of MDPs with periodic action spaces and described
an experiment demonstrating the benefits of explicitly mod-
elling periodicity in a policy gradient method.
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A. Fourier Series and Approximation
Formally, the Fourier series is an expansion of a periodic
function f(x) of period 2L in terms of an infinite summation
of sines and cosines. For clarity, we give the univariate case
– the multivariate result can be found in literature.

f(x) = u0 +

∞∑
m=1

um cos(mω0x) +

∞∑
m=1

vm sin(mω0x),

(26)
where ω0 , π

L and the coefficients for the series are:

um =
1

L

∫ L

−L
f(x) cos(mω0x)dx,

vm =
1

L

∫ L

−L
f(x) sin(mω0x)dx.

By writing sine and cosine terms in their complex exponen-
tial forms, it is possible to define a complex Fourier series
for real valued functions as

f(x) =

m=∞∑
m=−∞

cme
imω0x, (27)

cm =
1

2L

∫ L

−L
f(x′)e−imω0x

′
dx′.

(26) and (27) are equivalent if we set cm as:

cm =


1
2 (um + ivm) for m < 0,

u0 for m = 0,
1
2 (um − ivm) for m > 0.

In reality, we cannot sum to infinity and instead use the
series to approximate f(x) to a finite value of m. Just as
a Taylor series approximation becomes more accurate by
using higher and higher order polynomials xm, a Fourier
series expansion becomes more accurate by using sinusoids
of higher and higher frequencies mω0. However, a Fourier
series approximation approximates the function over its
whole period, whereas the Taylor series does so only in a
local neighbourhood of the given point.

Although the Fourier series is defined for periodic functions,
it is still applicable to aperiodic functions. For bounded
aperiodic functions, we define the period 2L to be the size
of the domain of f(x) and then integrate over this domain to
obtain the Fourier coefficients. Intuitively, this is equivalent
to repeating the bounded function periodically over an infi-
nite domain. Aperiodic functions that are not bounded may
be approximated by defining Fourier series over a bounded
region of the function. As the size of this bounded region
increases, and consequently the period 2L increases, the
Fourier series approximation becomes more accurate and
approaches a Fourier transform. Thus, for aperiodic un-
bounded functions, a Fourier series approximates a Fourier
transform.

We now formalise the idea of taking the limit of the period
going to infinity (L → ∞) for a complex Fourier series
representation of any general function f(x). Firstly, it is
convenient to rewrite (27) as:

f(x) =
1

2π

m=∞∑
m=−∞

∫ L

−L
f(x′)e−imω0x

′
dx′eimω0xω0.

Taking the limit as L→∞ (Stein & Shakarchi, 2003) gives

f(x) =
1

2π

∫
ω

( F(f)︷ ︸︸ ︷∫
x′
f(x′)e−iωx

′
dx′
)
eiωxdω︸ ︷︷ ︸

F−1(F(f))

,

which is exactly equivalent to (7).

The integrals in the definition of the Fourier transform arise
from taking a Fourier series representation of a function and
letting the number of coefficients go to infinity.

B. n-Dimensional Fourier Transforms
Definitions Firstly, we make the definition of a n-
dimensional Fourier transform precise: Consider a func-
tion f(·) : Rn → R. For x = (x1, x2, ...xn)> ∈ Rn and
ω = (ω1, ω2, ...ωn)> ∈ Rn, we have:

F (f(x)) ,
∫
x

f(x)e−iω
>xdx,

=

n︷ ︸︸ ︷∫
x1

...

∫
xn

f(x)e−iω
>xdx1...dxn.

The corresponding n-Dimensional inverse Fourier transform
is defined as:

F−1 (f(x)) ,
( 1

2π

)n ∫
ω

f(x)eiω
>xdω,

=
( 1

2π

)n n︷ ︸︸ ︷∫
ω1

...

∫
ωn

f(x)eiω
>ωdω1...dωn.

We define the Fourier transform of a vector/matrix quantity
as simply the Fourier transform of individual elements of
the vector/matrix. For example, the Fourier transform of
matrix

[
F (x)

]
jk

= fjk(x) is found from:[
F(F (x))

]
jk

, F (fjk(x)) . (28)

And similarly for the inverse Fourier transform:[
F−1(F (x))

]
jk

, F−1 (fjk(x)) .
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Multiplication-Derivative Identities We now derive
multi-dimension analogues to the single dimension
multiplication-derivative property, which we state here:

F
(

∂

∂xj
f(x)

)
= iωjF(f(x)). (29)

Proofs of (29) are commonplace in Fourier Analysis refer-
ences (Stein & Shakarchi, 2003). We start with a vector
identity:

Lemma 1 (Multiplication-Derivative Property: Vectors).
Given a function f(x) with Fourier transform F (f(x)),
multiplying F (f(x)) by the vector iω in the frequency
domain is equivalent to taking the first order derivative
∇xf(x) in the action domain, that is:

iωF (f(x)) = F(∇xf(x)).

Proof. Consider the elements of the vector iωF (f(x)):[
iωF (f(x))

]
j

= iωjF (f(x)) .

Using the single dimension multiplication-derivative prop-
erty from (29) yields:[

iωF (f(x))
]
j

= F
(

∂

∂xj
f(x)

)
.

Using the definition of the Fourier transform of a vector
from (28) gives our main result:

iωF (f(x)) = F(∇xf(x)).

We now derive a similar identity for matrices:

Lemma 2 (Multiplication-Derivative Property: Matrices).
Given a function f(x) with Fourier transform F (f(x)),
multiplying F (f(x)) by the matrix (iω)(iω)> in the fre-
quency domain is equivalent to taking the second order
derivative ∇(2)

x f(x) in the action domain, that is:

(iω)(iω)>F (f(x)) = F
(
∇(2)
x f(x)

)
.

Proof. Consider the elements of the matrix
(iω)(iω)>F (f(x)):[

(iω)(iω)>F (f(x))
]
jk

= (iωj)(iωk)F (f(x)) .

Using the single dimension multiplication-derivative prop-
erty from (29) twice yields:[

(iω)(iω)>F (f(x))
]
jk

= (iωj)F
(

∂

∂xk
f(x)

)
,

= F
(

∂2

∂xj∂xk
f(x)

)
.

Using the definition of the Fourier transform of a matrix
from (28) gives our main result:

iωF (f(x)) = F(∇(2)
x f(x)).

C. Auxiliary Function Properties
Lemma 3 (nth Order Derivative of Auxiliary Function).
Given an auxiliary function β̃(µ− a) = β(a) for a policy
β, we may relate the m-th order derivative of β̃ w.r.t. µ to
the mth order derivative of β w.r.t. a as:(
∇(m)β̃

)
(µ− a) = (−1)n∇(m)

a β(a) ∀ m ≥ 0.

Proof. For m = 1 From the chain rule we write:(
∇β̃
)

(µ− a) = ∇µβ̃(µ− a).

Let ν = µ− a s.t. β̃(µ− a) = β̃(ν). Using the chain rule
again for ∇µβ̃(µ− a) yields:

∇µβ̃(ν) = ∇µν∇νa∇aβ̃(ν).

Now, ∇µν = I and ∇νa = −I . Substituting yields:

∇µβ̃(µ− a) = (−1)∇aβ̃(ν).

Substituting β̃(ν) = β̃(µ − a) = β(a) gives our main
result for m = 1:(

∇β̃
)

(µ− a) = (−1)∇aβ(a).

Finally, taking m− 1 more derivatives will give our main
result: (

∇(m)β̃
)

(µ− a) = (−1)m∇(m)
a β(a).

D. Turntable Experimental Setup Details
The turntable domain is a toy continuous control task. The
goal is to align a disk to a desired angle by rotating it around
its axis. The action is an angle in the range a ∈ [−π, π]
and the observations are the current position of the disk and
the target position, both expressed as angles. The reward
is set to sin(α + αtarget) − 1

4 |a|. For DPG, we used the
OpenAI baseline implementation, where both the actor and
the critic are represented using neural networks. For Fourier-
EPG, we used the same setup but changed the critic to be
trigonometric critic of the form sin(α+ αtarget − a) + w|a|
with a tuneable weight w and the actor update given by
Equation (23). The exploration policy was Gaussian with
fixed standard deviation σ = 0.05 in both cases.
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E. Gaussian Derivatives
We derive specific analytical solutions for the Gaussian
policy β = N (µ,Σ) from Section 4.1. The following
identities (Petersen & Pedersen, 2012) will be useful:

∇aβ = −Σ−1(a− µ)β, (30)

∇(2)
a β =

(
Σ−1(a− µ)(a− µ)>Σ−1 −Σ−1

)
β.(31)

Zeroth order (M = 0) Substituting for ∇aβ from (30)
and∇(2)

a β from (31) in (17) and (18) respectively, we obtain
our analytic expression:

Îµ =

∫
a

Σ−1(a− µ)Q̂βda,

Î
Σ

1
2

=

∫
a

(
(Σ

1
2 )−>(a− µ)(a− µ)>Σ−1

− (Σ
1
2 )−>

)
Q̂βda.

First order (M = 1) Substituting for∇aβ from (30) in
(20), we obtain our analytic expression:

Î
Σ

1
2

=

∫
a

(Σ
1
2 )−>(a− µ)(∇aQ̂)>βda.

F. Proofs
Corollary 2.1. Let ψ be a parameter that does
not depend upon µ. We can write Îψ(st) =

∇ψ
∫
a
Q̂(st,a)βθ(a|st)da as:

Îψ(s) = F−1
(
F(Q̂)∇ψF(β̃)

)
(µ).

Proof. Using Theorem 2, we obtain the following expres-
sion for Îψ(st):

Îψ(st) = ∇ψF−1
(
F(Q̂)F(β̃)

)
(µ).

Using Leibniz’s rule for integration under the integral, we
move the derivative inside of the inverse Fourier transform,
obtaining our result:

Îψ(st) = F−1
(
F(Q̂)∇ψF(β̃)

)
(µ).

G. Complete Periodic Critic Derivation
We now derive the analytic update from (22) for our periodic
critic. Firstly, for ease of analysis we re-write our critic

using the hyperbolic function:

Q̂(a) = cos(f>a− h),

=
ei(f

>a−h) + e−i(f
>a−h)

2
,

=
e−iheif

>a + eihe−if
>a

2
.

Taking the Fourier transform yields:

F
(
Q̂
)

=
1

2

[
e−ih(2π)n

n∏
j=1

δ(ωj − fj)

+ eih(2π)n
n∏
j=1

δ(ωj + fj)

]
,

=(2π)n
[
e−ihδ(ω − f) + eihδ(ω + f)

2

]
.

Recall that the characteristic function of the Gaussian aux-
iliary function is F

(
β̃
)

= e−ω
>Σω. Now taking inverse

Fourier transforms of F(Q̂)F(β̃) yields:

F−1(F(Q̂)F(β̃))(a) =
1

(2π)n

∫
F(Q̂)F(β̃)eiω

Tadω,

=
1

2

∫
e−ω

>Σω
[
e−ihδ(ω − f) + eihδ(ω + f)eiω

Ta
]
dω,

=
1

2

∫
e−ω

>Σω
[
ei(ω

Ta−h)δ(ω − f) + ei(ω
Ta+h)δ(ω + f)

]
dω,

= e−f
>Σf

[
ei(f

Ta−h) + e−i(f
Ta−h)

2

]
,

= e−f
>Σf cos(fTa− h),

where we have used the hyperbolic definition of cos to
derive our desired result in the final line.


